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1Key Laboratory of Symbolic Computation and Knowledge Engineering (Jilin University), Ministry of
Education, China

2College of Computer Science and Technology, Jilin University, China
3College of Software, Jilin University, China

{lus, shenchun}@jlu.edu.cn, {zeyuz22, sjzhang22}@mails.jlu.edu.cn

Abstract

Active domain adaptation (ADA) aims to label
a small portion of target samples to drastically
improve the adaptation performance. The exist-
ing ADA methods mostly rely on the output of
domain discriminator or the original prediction
probability to design sample selection strategies
and do not fully explore the semantic informa-
tion of source and target domain features, which
may lead to selecting the valueless target samples.
Moreover, most of them require complex network
structures (such as introducing additional domain
discriminator, multiple classifiers, or loss predic-
tors) and multiple query functions. In this work,
we propose a concise but effective ADA method
called Reconfigurability-Aware Selection for Con-
trastive active domain adaptation (RASC). With the
reconfigurability-aware sample selection strategy,
RASC can select the most valuable target samples
for annotation in the presence of domain shift. To
better utilize the selected target samples, we fur-
ther design a contrastive learning-based gradual ac-
tive domain adaptation framework. In addition,
we propose a variant of RASC called RASC-Ob,
which uses a simpler sample annotation method
and supplements the learning of misclassified sam-
ples. Extensive experimental results on multiple
benchmarks demonstrate the superiority of RASC.

1 Introduction
Unsupervised domain adaptation (UDA) is one of the most re-
searched paradigms, which aims to generalize models trained
on labeled source domain to unlabeled target domain, al-
leviating the dependence of training on a large amount of
labeled data. However, the performance of UDA methods
is still significantly worse than that of corresponding su-
pervised learning methods, especially when there is a sig-
nificant domain shift [Fu et al., 2021; Xie et al., 2022a;
Huang et al., 2023a]. In practical scenarios, labeling a small
portion of target samples is feasible. However, as shown in
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Figure 1: Target domain contains both valuable and valueless sam-
ples. It is difficult for the model trained through supervised learning
on the source domain to correctly classify valuable target samples
because they differ significantly from the source domain. The oppo-
site is true for valueless target samples.

Figure 1, not all target samples are beneficial for further im-
proving performance. It is not necessary to label valueless
samples that are similar to the source domain.

Active learning (AL) aims to select the most valuable sam-
ples from a large number of unlabeled samples for annotation
[Tang and Huang, 2021; Liu et al., 2021; Zhan et al., 2021;
Ren et al., 2022]. However, AL assumes that unlabeled and
labeled samples subject to the same distribution. Therefore,
in the presence of domain shift, AL methods cannot select the
most valuable target samples for annotation. Recently, a new
domain adaptation paradigm called active domain adaptation
(ADA) has been proposed to address the above-mentioned is-
sue. ADA aims to select the most valuable target samples
for annotation in the presence of domain shift and use these
samples for training to further improve performance. How-
ever, current ADA methods [Su et al., 2020; Fu et al., 2021;
Xie et al., 2022b; Han et al., 2023] rely on the original predic-
tion probability, auxiliary modules, or multiple query func-
tions for sample selection, and do not fully explore the se-
mantic information of source and target domain features.

With the consideration above, in this paper, we propose
the Reconfigurability-Aware Selection for Contrastive active
domain adaptation (RASC). Different from previous meth-
ods, we utilize the relationship between semantic informa-
tion of source and target domain features for sample selec-
tion. We not only consider the sample-level value but also
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design a class prediction reliability-based sample rejection
strategy to jointly consider the class-level value. To better uti-
lize the selected target samples, inspired by [He et al., 2020]
and [Singh, 2021], we further design a contrastive learning-
based gradual active domain adaptation framework to reduce
the distribution discrepancy between labeled target domain
and source domain, as well as between unlabeled target do-
main and labeled domains. In addition, considering that the
current ADA methods require experts to label the selected
target samples correctly, however, it is difficult for experts to
remember and distinguish all categories when there are thou-
sands of categories. Inspired by [Zhang et al., 2022], we also
propose a variant of RASC called RASC-Ob, where experts
only need to judge whether the model predictions are correct,
without having to label the samples correctly.

Our main contributions can be summarized as follows:

• We propose a reconfigurability-aware sample selection
strategy, which utilizes the semantic information of
source and target domain features to select the most
valuable target samples for annotation.

• We propose a contrastive learning-based gradual active
domain adaptation framework to drastically improve the
adaptation performance.

• We propose a variant of RASC called RASC-Ob that ex-
perts only need to judge whether the prediction is correct
and supplements the learning of misclassified samples.

• RASC attains excellent results on multiple benchmarks.
Numerous experiments and analyses demonstrate the ef-
fectiveness of RASC.

2 Related Work
2.1 Domain Adaptation
Domain adaptation (DA) aims to transfer the knowledge
learned from the source domain to the target domain. Un-
supervised domain adaptation assumes that the target domain
has no labels at all. Previous methods [Long et al., 2015;
Long et al., 2017; Li et al., 2020] are based on discrepancy
metric minimization. Recently, adversarial learning-based
methods [Ganin and Lempitsky, 2015; Long et al., 2018;
Wang and Zhang, 2020; Li et al., 2021] inspired by GAN
further improve the performance. Although UDA methods
have achieved excellent results, the corresponding supervised
learning methods still significantly outperform UDA meth-
ods. Semi-supervised domain adaptation (SSDA) [Saito et
al., 2019; Jiang et al., 2020; Singh, 2021; Yan et al., 2022;
Huang et al., 2023b] assumes a small number of labeled target
domain samples are available and uses contrastive learning or
adversarial learning to alleviate the domain shift. However,
the labeled target samples in SSDA are passively provided
before the training begins and not all of these samples are
beneficial for training. In addition, contrastive learning-based
SSDA methods [Singh, 2021; Huang et al., 2023b] use noisy
target pseudo labels to construct prototypes, and do not con-
sider the distribution discrepancy between the source and the
labeled target domains.

2.2 Active Learning
Active learning (AL) aims to select the most valuable samples
for annotation and these samples will be used for training to
further improve performance. AL methods require defining
a query function to measure the value of samples and finally
select the samples with the highest value for annotation [Zhan
et al., 2021; Wu et al., 2022]. The uncertainty-based meth-
ods [Wang and Shang, 2014; Yan and Huang, 2018] select
the difficult-to-distinguish samples near the decision bound-
ary for annotation. The diversity-based methods [Sener and
Savarese, 2018; Sinha et al., 2019] aim to select samples to
more comprehensively represent the entire dataset. However,
AL assumes that unlabeled and labeled samples are subject to
the same distribution, therefore, the AL methods are ineffec-
tive in the presence of domain shift.

2.3 Active Domain Adaptation
AADA [Su et al., 2020] is the first work to introduce ac-
tive domain adaptation into vision tasks, utilizing the outputs
of domain discriminator and the entropy to measure the do-
mainness and uncertainty of samples, and combining with the
adversarial-based DA method. TQS [Fu et al., 2021] pro-
poses a transferable query selection strategy that combines
multiple mechanisms. EADA [Xie et al., 2022a] utilizes the
free energy biases across domains for sample selection, and
proposes a regularization term to reduce domain shift. TL-
ADA [Han et al., 2023] proposes a transferable loss-based
sample selection strategy. DiaNA [Huang et al., 2023a] pro-
poses a data subdivision selection strategy and designs cus-
tomized learning for samples with different values.

However, these methods mostly rely on the output of do-
main discriminator or the original prediction probability to
design selection strategies, and most of them require complex
networks or multiple query functions. More importantly, they
have not fully explored the semantic information of source
and target domain features, and the DA strategies are also rel-
atively rough. Thus motivated, we propose Reconfigurability-
Aware Selection for Contrastive active domain adaptation
(RASC), which utilizes the relationship between semantic in-
formation of source and target domain features for sample se-
lection, and design a more refined contrastive learning-based
gradual active domain adaptation framework.

3 Methodology
In this section, we first formalize ADA and then introduce the
details of the proposed Reconfigurability-Aware Selection for
Contrastive active domain adaptation (RASC) and its variant.

3.1 Problem Formulation
In ADA, we can access a source domain Ds = {(xs

i , y
s
i )}

ns

i=1

with ns labeled data and a target domain Dut = {xut
i }nut

i=1
with nut unlabeled data. Ds and Dut are sampled from
P (xs, ys) and Q(xt, yt) with P ̸= Q, respectively. We con-
duct R rounds sample selection and select nlt = B · |Dut|
target samples in total for annotation, where B is the label-
ing budget. These labeled samples will be removed from Dut

and form Dlt = {(xlt
i , y

lt
i )}

nlt
i=1. For convenience, we denote

Dl = Ds∪Dlt as all labeled data across domains. Our model
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Figure 2: The framework of RASC. (a) For the reconfigurability-aware selection process, we utilize reconfigurability-aware value (RAV) and
class prediction reliability-based sample rejection strategy (CPR) to select the most valuable target samples for annotation in the presence of
domain shift. (b) For the training process, we utilize contrastive learning-based gradual active domain adaptation to reduce the distribution
discrepancy between labeled target domain and source domain, as well as between unlabeled target domain and labeled domains.

consists of a feature extractor F to extract feature f = F (x)
and a classifier H to categorize a feature into a logit vector
over all K classes, without adding any auxiliary modules.
The framework of RASC is illustrated in Figure 2.

3.2 Reconfigurability-Aware Selection
To select the most valuable target samples in the presence
of domain shift, we propose the reconfigurability-aware se-
lection strategy (RAS), which utilizes the relationship be-
tween semantic information of source and target domain fea-
tures. RAS not only considers the sample-level value but also
jointly considers the class-level value by a class prediction
reliability-based sample rejection strategy (CPR).
Reconfigurability-aware value. Existing ADA methods
do not fully explore the semantic information of source and
target domain features, which may lead to the selection of un-
informative target samples. In contrast to the previous meth-
ods, we propose a reconfigurability-aware selection strategy
that utilizes the relationship between semantic information
of source and target domain features for sample selection
and integrates the value of the target domain sample into a
reconfigurability-aware value. First, we attain the source do-
main global prototypes for each class as follows:

µs = [µs
c]

K
c=1, µ

s
c =

∑
(x,y)∈Ds

1{y=c}F (x)∑
(x,y)∈Ds

1{y=c}
(1)

where µs contains semantic information for each class fea-
ture in the source domain. We utilize µs and combine it with
the prediction probability of xut to reconstruct the original
feature of the unlabeled target sample xut:

f̃ut = σ(H(F (xut)))µs (2)
where σ(·) is the softmax operation.

Suppose xut does not contain target domain-specific fea-
ture, i.e. xut has a high similarity to the source domain (xut

is valueless). Since the model is obtained by supervised train-
ing on the source domain, it can classify xut confidently and
correctly. Therefore, the feature reconstructed using the pre-
diction probability of xut and µs can effectively express the
semantic information of xut. In other words, the semantic in-
formation of the original feature is the same as that contained
in the reconstructed feature f̃ut. Thus, the discrepancy be-
tween the prediction probabilities of the original feature and
f̃ut is small. On the contrary, for valuable target samples,
their semantic information cannot be reconstructed using the
source domain prototypes, therefore the discrepancy between
the prediction probabilities of the original feature and the re-
constructed feature is significant.

Motivated by this, we integrate the value of the target
sample into a simple value function: reconfigurability-aware
value (RAV). We can obtain RAV(xut) by using only the
prediction probability for the original feature of xut: put =
σ(H(F (xut))) and the prediction probability of the recon-
structed feature f̃ut: p̃ut = σ(H(f̃ut)):

RAV(xut) = −
K∑
c=1

(putc + p̃utc ) log(putc p̃utc ) (3)

For those valuable target samples, namely those contain-
ing a large amount of target domain-specific knowledge, their
RAVs are relatively high, while for valueless target samples,
their RAVs are relatively low. Additionally, only when the
model produces consistent and completely certain predictions
for the original and reconstructed features (e.g. [1,0,0] and
[1,0,0]), RAV reaches the minimum value of zero. We the-
oretically explain the role of RAV in measuring the value of
target samples in the Appendix.
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Class prediction reliability-based sample rejection strat-
egy. RAV reflects the sample-level value. To comprehen-
sively measure the sample value from different perspectives,
we propose a class prediction reliability-based sample rejec-
tion strategy (CPR) to jointly consider the class-level value.
We use the average confidence of c-th class predictions to
measure the c-th class prediction reliability:

CPR[c] =

∑
xut∈Dut

1{ŷut=c}p
ut
c∑

xut∈Dut
1{ŷut=c}

(4)

where ŷut = argmax put. A high CPR[c] indicates a high
prediction confidence of sample belonging to the c-th class,
which means that the predicted label of the c-th class is
more likely to be correct. Due to our desire to select more
hard samples for annotation, we hope to reject samples with
pseudo label c with a high probability. Naturally, we use CPR
as the rejection probability for various classes. For a candi-
date sample with pseudo label c, we first generate a random
number ξ from a uniform distribution U(0, 1) and then reject
the sample when ξ < CPR[c].

3.3 Contrastive Learning-Based Gradual Active
Domain Adaptation

After sample selection, we obtain the labeled target domain
Dlt. Previous methods merge Dlt and Ds as a whole and
then use traditional UDA methods for adaptation, which pro-
duce suboptimal results. In ADA, sample selection and model
training alternate, and a good DA strategy should reduce the
discrepancy between the source and target domains while also
having a positive impact on the next round of sample selec-
tion, prompting it to select more valuable target samples.

With the above consideration, we design a contrastive
learning-based gradual active domain adaptation framework.
Following [He et al., 2020], we use bank Bl to store source
domain and labeled target domain samples, and bank Bul

to store unlabeled target domain samples. And we use the
momentum model F ′(·) to encode the samples in the bank.
Due to the significant discrepancy between the selected target
samples and the source samples, it is suboptimal to directly
consider Dlt and Ds as a whole, as in previous methods. To
alleviate the discrepancy between Dlt and Ds and better learn
discriminative features, we hope to pull samples belonging to
the same class across Dlt and Ds closer to each other, while
push away samples from different classes. To accomplish it,
we design an instance contrastive loss:

Lsup = −Exi∼Dl
log

∑
xj∈P(xi)

h(x̂i, xj)∑
xj∈Bl

h(x̂i, xj) +
∑

xj∈N (xi)

h(x̂i, x̂j)

(5)
where x̂i = Aug(xi) is the strongly augmented version of xi,
P(xi) is the set of samples with the same label as xi in Bl,
N (xi) = Bl \P(xi), h(q, k) = exp(Sim(F (q), F ′(k))/τ) is
the similarity between the features of q and k extracting by F
and F ′ respectively, and τ is the temperature parameter.

After aligning Dlt and Ds, the distribution discrepancy be-
tween Dut and Dl can be further reduced. Inspired by [Singh,
2021], we mitigate the discrepancy by aligning prototypes of
the same class across domains. Unlike prior works, we do not
use pseudo labels when calculating prototypes for each class
in Dut because they contain some noise. Instead, we use pre-
diction probability to weight and average the features, which
can disperse the features of samples to different classes rather
than just the classes corresponding to the pseudo labels to al-
leviate the impact of noisy pseudo labels. The prototype of
the c-th class in Dut for each training batch is formulated as:

µ′ut
c =

∑nb

i=1 σc(H(F (xut
i )))F (xut

i )∑nb

i=1 σc(H(F (xut
i )))

(6)

where nb is the size of the batch.
After computing the prototypes for the current batch, we

update the global prototypes in a moving average manner:

µut
c = λµut

c + (1− λ)µ′ut
c (7)

where λ is the update trade-off parameter. Then, we calculate
and update prototypes for each class in Dl in the same way
and use µl

c to denote the global prototype of its c-th class. We
utilize prototype-based contrastive loss to align prototypes of
the same class across domains to reduce the discrepancy be-
tween unlabeled target domain and labeled domains:

Lalign = − 1

K

K∑
c=1

log
Ω(µut

c , µl
c)∑K

j=1 Ω(µ
ut
c , µl

j)
(8)

where Ω(q, k) = exp(Sim(q, k)/τ).
For unlabeled target domain data, we hope that they can

form good clustering, which is not only beneficial for aligning
the source and target domains but also has a positive impact
on sample selection. We utilize self-supervised contrastive
loss to achieve this goal:

Lreg = −Exi∼Dut

log
h(x̂i, xi)

h(x̂i, xi) +
∑

xj∈But

(h(x̂i, xj) + h(x̂i, x̂j))

(9)
Overall, the final objective of RASC can be stated as:

Lrasc = Lce + α(Lsup + Lreg) + βLalign (10)

where Lce is the cross entropy loss of labeled data, α and β
are the parameters to trade-off different loss.

3.4 Variant: Reconfigurability-Aware Selection
with One-bit Annotation

Current ADA methods require experts to label the selected
samples correctly. However, when data comes from hundreds
or thousands of categories, such annotation is difficult for ex-
perts. Inspired by [Zhang et al., 2022], we introduce one-bit
annotation into ADA and propose a variant of RASC called
RASC-Ob to reduce the workload of experts when labeling
samples. Unlike the traditional annotation method, one-bit
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annotation only requires experts to judge whether the model
prediction of the selected sample is correct, that is, experts
only need to answer yes or no. From the perspective of in-
formation content, one-bit annotation is more efficient. For
example, for a K-classes classification problem, labeling the
sample correctly requires log2 K bits of information, while
asking experts to judge whether the model prediction is cor-
rect (yes or no) only requires one bit. Therefore, using one-bit
annotation allows us to query more samples under the same
labeling budget and effectively reduce the burden on experts.

Unlike [Zhang et al., 2022], which requires the initial la-
beled data used for training, our RASC-Ob does not require
labeled initial data at all, meaning that all labeling budgets
are used in a one-bit annotation manner. In RASC-Ob, for
samples judged by experts to be correctly predicted, the uti-
lization method is the same as in RASC. For samples judged
by experts to be incorrectly predicted, we use them to form
Derr. Inspired by [Zhang et al., 2022], we design the nega-
tive contrastive loss:

Lneg = −Exi∼Derr

log
h(x̂i, xi)

h(x̂i, xi) +
∑

xj∈Nerr(xi)

(h(x̂i, xj) + h(x̂i, x̂j))

(11)
where Nerr(xi) contains samples with the same real label as
the incorrect label of xi in Bl and all samples in But.

In addition, to keep the model prediction of incorrect sam-
ples away from known incorrect category, we also utilize neg-
ative loss [Kim et al., 2019]:

Lnl = −E(xi,y
−
i )∈Derr

K∑
i=1

log(1− σy−
i
(H(F (xi)))) (12)

where y−i is the known incorrect category of xi.
Overall, the final objective of RASC-Ob can be stated as:

Lrasc−ob = Lce + Lnl + α(Lsup + Lreg + Lneg)

+ βLalign
(13)

where α and β are the same as Eq. (10).

4 Experiments
Datasets. To evaluate the superiority of RASC, we conduct
experiments on four benchmark datasets: Office-31 [Saenko
et al., 2010] is a mainstream DA dataset. It contains 3 do-
mains: Amazon (A), Webcam (W), DSLR (D) and 31 cate-
gories. Office-Home [Venkateswara et al., 2017] is a more
challenging dataset. It contains 4 domains: Artistic (A),
Clipart (C), Product (P), Real-World (R) and 65 categories.
VisDA [Peng et al., 2017] is a large-scale dataset containing
150k synthetic images and 55k real images. It contains two
domains: Syntatic (S), Real (R) and 12 categories. MiniDo-
mainNet [Zhou et al., 2021] is a subset of DomainNet [Peng
et al., 2019], consisting of four domains: Clipart (C), Paint-
ing (P), Real (R), Sketch (S) and 126 categories. It preserves
the complexity of DomainNet and reduces the consumption
of computing resources.

Method A→D A→W D→A D→W W→A W→D Avg

Source Only 81.5 75.0 63.1 95.2 65.7 99.4 80.0
Random 87.1 84.1 75.5 98.1 75.8 99.6 86.7
Entropy 91.0 89.2 76.1 99.7 77.7 100.0 88.9
CoreSet 82.5 81.1 70.3 96.5 72.4 99.6 83.7
BADGE 90.8 89.1 79.8 99.6 79.6 100.0 89.8

AADA 89.2 87.3 78.2 99.5 78.7 100.0 88.8
CLUE 92.0 87.3 79.0 99.2 79.6 99.8 89.5
TQS 92.8 92.2 80.6 100.0 80.4 100.0 91.1
DBAL 88.2 88.9 75.2 99.4 77.0 100.0 88.1
SDM-AG 94.8 93.5 81.9 100.0 81.9 100.0 92.0
EADA 97.7 96.6 82.1 100.0 82.8 100.0 93.2
TL-ADA 96.6 96.8 79.9 99.8 81.7 99.8 92.2

RASC 96.8 96.6 83.4 100.0 84.0 100.0 93.5
RASC-Ob 96.0 96.2 82.6 99.5 81.4 100.0 92.6

Table 1: Comparison results (Accuracy: %) on Office-31 with 5%
labeling budget. The best accuracy is indicated in bold and the sec-
ond best one is underlined.

Implementation details. All experiments are implemented
using the Pytorch platform. For fair comparison, like [Fu
et al., 2021; Xie et al., 2022b; Huang et al., 2023a], we
use ResNet-50 [He et al., 2016] pre-trained on ImageNet
[Krizhevsky et al., 2017] as the backbone. For training, we
use SGD optimizer with a learning rate of 0.01, momentum
of 0.9, and weight decay 5e-4. We set the prototype update
trade-off parameter λ to 0.9, the temperature τ in the simi-
larity function to 0.1 and the trade-off parameters α and β to
0.5 and 0.7 respectively. The batch size is 36 for VisDA and
32 for other datasets. For sample selection, we set the label-
ing budget B to 5% and conduct 5 rounds of selection. More
implementation details can be seen in the Appendix. Code is
available at https://github.com/zeyuz22/RASC.

4.1 Comparative Results

We compare RASC with three types of methods. The first
type is two baseline methods: Source Only (ResNet-50
trained with source domain only) and Random (target sam-
ples are randomly selected). The second type is several AL
methods: Entropy [Wang and Shang, 2014], CoreSet [Sener
and Savarese, 2018], and BADGE [Ash et al., 2020]. The
third type is the recently proposed ADA methods: AADA
[Su et al., 2020], CLUE [Prabhu et al., 2021], TQS [Fu et al.,
2021], DBAL [de Mathelin et al., 2022], SDM-AG [Xie et
al., 2022b], EADA [Xie et al., 2022a], TL-ADA [Han et al.,
2023], and DiaNA [Huang et al., 2023a].

Office-31. Results on Office-31 are shown in Table 1. We
can observe that the performance is saturated, but our RASC
still outperforms other methods significantly in most tasks,
especially in some difficult tasks (e.g. D→A and W→A). In
addition, due to the small size of Office-31, one-bit annota-
tion cannot obtain sufficient supervision information, result-
ing in a decrease in the performance of RASC-Ob, but it still
achieves performance second only to EADA.
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Method VisDA Office-Home

Syn→Real A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg

Source Only 44.7 42.1 66.3 73.3 50.7 59.0 62.6 51.9 37.9 71.2 65.2 42.6 76.6 58.3
Random 78.1 52.5 74.3 77.4 56.3 69.7 68.9 57.7 50.9 75.8 70.0 54.6 81.3 65.8
Entropy 82.7 58.0 78.4 79.1 60.5 73.0 72.6 60.4 54.2 77.9 71.3 58.0 83.6 68.9
CoreSet 81.9 51.8 72.6 75.9 58.3 68.5 70.1 58.8 48.8 75.2 69.0 52.7 80.0 65.1
BADGE 84.3 58.2 79.7 79.9 61.5 74.6 72.9 61.5 56.0 78.3 71.4 60.9 84.2 69.9

AADA 80.8 56.6 78.1 79.0 58.5 73.7 71.0 60.1 53.1 77.0 70.6 57.0 84.5 68.3
CLUE 85.2 58.0 79.3 80.9 68.8 77.5 76.7 66.3 57.9 81.4 75.6 60.8 86.3 72.5
TQS 83.1 58.6 81.1 81.5 61.1 76.1 73.3 61.2 54.7 79.7 73.4 58.9 86.1 70.5
DBAL 82.6 58.7 77.3 79.2 61.7 73.8 73.3 62.6 54.5 78.1 72.4 59.9 84.3 69.6
SDM-AG 80.3 61.2 82.2 82.7 66.1 77.9 76.1 66.1 58.4 81.0 76.0 62.5 87.0 73.1
EADA 88.3 63.6 84.4 83.5 70.7 83.7 80.5 73.0 63.5 85.2 78.4 65.4 88.6 76.7
TL-ADA 86.8 63.7 83.9 82.5 69.7 82.7 81.4 70.3 61.2 84.6 77.4 63.4 85.9 75.6
DiaNA - 64.5 86.0 84.9 72.3 84.6 82.5 73.3 63.7 85.6 78.5 67.2 89.5 77.7

RASC 88.7 71.6 87.3 86.0 72.6 86.7 82.6 73.9 69.6 85.4 79.8 73.3 91.3 80.0
RASC-Ob 87.2 67.7 87.2 86.8 72.5 86.9 84.3 74.1 66.8 87.6 80.4 72.0 91.6 79.8

Table 2: Comparison results (Accuracy: %) on VisDA and Office-Home with 5% labeling budget.

Method C→P C→R C→S P→C P→R P→S R→C R→P R→S S→C S→P S→R Avg

Source Only 52.1 63.0 49.4 55.9 73.0 51.1 56.8 61.0 50.0 54.0 48.9 60.3 56.3
Random 61.6 78.7 61.6 64.0 78.7 63.7 60.5 64.3 61.1 64.8 58.7 75.2 66.1

AADA 62.4 77.5 61.7 61.9 79.7 61.1 65.6 66.0 60.8 65.1 62.1 80.0 67.0
CLUE 57.6 77.5 58.6 58.9 76.8 65.9 66.3 60.2 60.5 66.2 58.7 76.0 65.3
TQS 67.8 82.0 65.4 67.5 84.8 66.1 63.8 67.2 62.5 71.1 64.4 81.6 70.4
DBAL 62.9 79.2 60.8 64.6 78.1 62.5 65.6 65.2 59.2 66.3 61.3 80.3 67.2
EADA 66.0 80.8 63.5 69.4 83.0 65.1 71.1 68.6 65.7 71.0 64.3 81.0 70.8

RASC 68.7 81.9 73.2 75.6 87.3 68.9 77.5 72.1 72.4 77.8 68.7 80.2 75.4
RASC-Ob 70.0 81.3 71.8 77.0 85.2 72.9 77.6 71.8 71.4 76.5 70.3 82.9 75.7

Table 3: Comparison results (Accuracy: %) on MiniDomainNet with 5% labeling budget.

Office-Home. Results on Office-Home are shown in Ta-
ble 2. We can observe that our method performs best on all
tasks. RASC and RASC-Ob also achieve +2.3% and +2.1%
improvement in average accuracy compared with the SOTA
method DiaNA respectively. It demonstrates the superiority
of our sample selection and domain adaptation strategies.

VisDA. As shown in the first column of Table 2, RASC per-
forms significantly better than AL and recent ADA methods.
Besides, RASC-Ob also achieves performance second only
to EADA. It demonstrates the effectiveness of our method for
large-scale datasets with significant domain shift.

MiniDomainNet. We also conduct experiments on a hard
dataset: MiniDomainNet, and the results are shown in Ta-
ble 3. Similarly, our method still achieves the best per-
formance, with RASC and RASC-Ob achieving +4.6% and
+4.9% improvement in average accuracy. It is noteworthy
that the performance of RASC-Ob is superior to RASC and
other methods. This is because MiniDomainNet contains a
large number of images from 126 categories, and for large-
scale datasets with such a large number of categories, RASC-
Ob can use one-bit annotation to obtain enough supervised
information to improve performance. It demonstrates that us-
ing one-bit annotation in ADA can effectively alleviate the

Method RAS Lsup Lalign Lreg Lneg Lnl VisDA

RASC ! ! ! ! - - 88.7
w/o RAS ! ! ! - - 80.9
w/o Lsup ! ! ! - - 87.3
w/o Lalign ! ! ! - - 87.9
w/o Lreg ! ! ! - - 88.1

RASC-Ob ! ! ! ! ! ! 87.2
w/o Lneg ! ! ! ! ! 86.5
w/o Lnl ! ! ! ! ! 84.5

Table 4: Ablation studies on VisDA with 5% labeling budget.

issue of ADA methods being difficult to apply to large-scale
datasets containing a large number of categories.

4.2 Additional Analysis
Ablation studies. To demonstrate the effect of the main
components of RASC and RASC-Ob, we conduct ablation
studies on VisDA. The results are shown in Table 4. Specifi-
cally, when RAS is removed, it indicates that the target sam-
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Figure 3: Hyper-parameter sensitivity analysis of α and β in task
A→C on Office-Home.

ples are randomly selected for annotation. From Table 4,
we can observe that the performance of the full RASC and
RASC-Ob significantly outperform other variants. RASC
surpassing RASC w/o RAS demonstrates that our sample se-
lection strategy can select valuable target samples for annota-
tion, which can significantly improve adaptation performance
when used for training. RASC surpassing RASC (w/o Lsup,
w/o Lalign or w/o Lreg) demonstrates that our contrastive
learning-based gradual active domain adaptation framework
can effectively alleviate domain shift. Furthermore, RASC-
Ob surpassing RASC-Ob (w/o Lneg or w/o Lnl) demon-
strates that it is necessary to supplement the learning of mis-
classified samples when using one-bit annotation. More ex-
periments and analyses can be seen in the Appendix.

Hyper-parameter sensitivity. To investigate the impact of
the trade-off parameters α and β on the performance of
RASC, we conduct experiments in task A→C on Office-
Home. The results are shown in Figure 3. The larger α em-
phasizes more on reducing the distribution discrepancy be-
tween the labeled target and source domains, while the larger
β emphasizes more on reducing the distribution discrepancy
between the unlabeled target domain and labeled domains.
We first set β to 0.7 while varying α from 0.1 to 1.0. We can
observe that when α is very small (0.1), the performance of
RASC is poor because the labeled target and source domains
are not well aligned. As α increases, the performance gradu-
ally improves, demonstrating that it is necessary to consider
the inter-domain discrepancy of labeled data in ADA. But
when α is too large (> 0.5), the performance will decrease
due to the over-alignment of the labeled target and source do-
mains. Then, we set α to 0.5 while varying β from 0.1 to 1.0,
and we can observe similar patterns for β.

Varying labeling budget. We show the performance of
RASC and RASC-Ob under varying labeling budgets (1% to
10%) in Figure 4. We can observe that RASC and RASC-Ob
outperform other ADA methods with varying labeling bud-
gets, demonstrating that our method is suitable for various
labeling budgets. More importantly, even if the labeling bud-
get is small (1%), our method can still select the most valu-
able samples. Moreover, we can observe that as the labeling
budget increases, our method can continuously improve the
adaptation performance, demonstrating that our sample se-
lection strategy is stable and effective, and can continuously
select the most valuable samples for annotation.
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Figure 4: Comparison results of varying percent of labeling budget
(1% to 10%) on Office-Home.

(a) RASC w/o CPR (b) RASC w/ CPR

Figure 5: T-SNE visualization of target features in task W→A on
Office-31.

How does RAS ensure diversity? While our sample selec-
tion strategy RAS mainly focuses on sample value estimation
without explicitly introducing constraints on sample diversity,
we identify that the class prediction reliability-based sample
rejection strategy (CPR) can effectively ensure the diversity
of the selected samples, as shown in Figure 5. The blue points
are unlabeled target samples and the red stars are the selected
samples. We can observe that samples selected with CPR are
diverse and more dispersed in the feature space, while with-
out CPR, the selected samples are confined to a small region
and many of them are redundant. This is because CPR in-
troduces randomness into the sample selection process, even
if the RAVs of samples in a small area are high, these sam-
ples still have a probability of being rejected, increasing the
probability of selecting samples from other areas.

5 Conclusion
In this paper, we propose a concise but effective method for
active domain adaptation problem, termed Reconfigurability-
Aware Selection for Contrastive active domain adaptation
(RASC). Specifically, we first design a reconfigurability-
aware sample selection strategy to select the most valuable
target samples in the presence of domain shift. Then, we de-
sign a contrastive learning-based gradual active domain adap-
tation framework to better reduce the distribution discrepancy
between labeled target domain and source domain, as well as
between unlabeled target domain and labeled domains. More-
over, we propose a variant of RASC called RASC-Ob, which
uses one-bit annotation method and supplements the learning
of misclassified samples. Extensive experiments and analyses
demonstrate the superiority of RASC.
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