
Pre-training General User Representation with Multi-type APP Behaviors
Yuren Zhang1 , Min Hou2 ∗ , Kai Zhang1 ∗ , Yuqing Yuan3 , Chao Song3 , Zhihao Ye3 ,

Enhong Chen1 , Yang Yu1

1State Key Laboratory of Cognitive Intelligence,
University of Science and Technology of China

2Hefei University of Technology
3OPPO Research Institute

{yurenz, yflyl613}@mail.ustc.edu.cn, hmhoumin@gmail.com, {kkzhang08, cheneh}@ustc.edu.cn,
{yuanyuqing, songchao12, yezhihao3 }@oppo.com

Abstract
In numerous user-centric services on mobile ap-
plications (apps), accurately mining user interests
and generating effective user representations are
paramount. Traditional approaches, which often
involve training task-specific user representations,
are becoming increasingly impractical due to their
high computational costs and limited adaptability.
This paper introduces a novel solution to this chal-
lenge: the Multi-type App-usage Fusion Network
(MAFN). MAFN innovatively pre-trains universal
user representations, leveraging multi-type app be-
haviors to overcome key limitations in existing
methods. We address two primary challenges: 1)
the varying frequency of user behaviors (ranging
from low-frequency actions like (un)installations to
high-frequency yet insightful app launches); and
2) the integration of multi-type behaviors to form
a cohesive representation. Our approach involves
the creation of novel pre-training tasks that harness
self-supervised signals from diverse app behaviors,
capturing both long-term and short-term user inter-
ests. MAFN’s unique fusion approach effectively
amalgamates these interests into a unified vector
space, facilitating the development of a versatile,
general-purpose user representation. With a practi-
cal workflow, extensive experiments with three typ-
ical downstream tasks on real-world datasets verify
the effectiveness of our approach.

1 Introduction
Recent years have witnessed the rapid development of mo-
bile technology, leading to the widespread integration of mo-
bile apps into people’s daily lives, including online shop-
ping, daily commuting, and entertainment [Radosavljevic et
al., 2016]. The fast-growing user behaviors on mobile apps
(e.g., launch, (un)install, retention) encompasses valuable in-
sights into user interests [Lu et al., 2014]. This phenomenon
presents both opportunities and challenges for user model-

∗Min Hou and Kai Zhang are corresponding authors.

ing, which plays a pivotal role in providing user-centric mo-
bile services. Traditional methods that learn task-specific user
embeddings using the end-to-end paradigm face practical
challenges, as they often require substantial expert efforts and
are hard to generalize to other scenarios [Zhao et al., 2016;
Zhang et al., 2020]. Therefore, a crucial demand asks to
develop an approach to mine app usage data and generate
general-purpose user representations that can support various
tasks. To this end, our study focuses on pre-training universal
user representations based on multi-type app behaviors.

Towards this goal, we identify the following two primary
challenges. Firstly, the diverse frequency of user behav-
ior necessitates the design of appropriate pre-training tasks.
Existing studies mainly concentrate on a single type of user
behavior or behaviors with similar frequencies, such as pur-
chase and cart [Cheng et al., 2021; Gu et al., 2021], and com-
monly adopt a unified modeling approach [Jin et al., 2020;
Xu et al., 2023]. However, user behaviors in app scenarios
exhibit substantial frequency differences. While app launches
occur frequently throughout the day, (un)installation behav-
iors typically take place over longer periods, spanning weeks
or even longer. To achieve a comprehensive understanding
of mobile users, it is essential and challenging to explore
tailored pre-training tasks for collaborative modeling these
multi-type app behaviors with varying frequencies. Sec-
ondly, further exploration is required to develop an effective
approach that can integrate users’ multi-aspect interests in an
adaptive manner during the pre-training stage. Traditional
vector fusion methods may yield sub-optimal performance
due to the distinct semantic spaces of users’ long- and short-
term preferences. Consequently, finding a practical solution
for user interests fusion to form a cohesive user representation
remains a substantial challenge.

To address these challenges, we propose the Multi-type
App-usage Fusion Network (MAFN) for learning general
user representation. Specifically, in light of the rapid evo-
lution observed in app launch behaviors [Li et al., 2020],
we first design the Short-term Interest Module (SIM) to cap-
ture users’ recent preferences related to high-frequency app
launches. Then, we introduce the Long-term Interest Mod-
ule (LIM) to extract users’ long-term demands based on the
less frequent but more informative app (un)installation and
retention (which apps are currently installed on the phone).

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5535

To effectively guide the learning of each module, we also
propose several customized self-supervised pre-training tasks
that align with the data characteristics. Furthermore, we de-
vise the Interest Fusion Module (IFM) in conjunction with a
contrastive learning task to integrate the multi-aspects inter-
ests at the user level in a unified vector space. To validate
the effectiveness of our methods, we conduct the experiments
with three downstream tasks on real-world datasets from a
worldwide leading smartphone manufacturer. Experimental
results demonstrate the effectiveness of our approach.

Our contributions can be summarized as three-fold:

• To address an important practical issue, we propose a
novel framework named MAFN for collectively model-
ing multi-type app behaviors and extracting general user
representation. To the best of our knowledge, this is the
pioneering effort to pre-train universal user model based
on multi-type app behaviors with varying frequencies.

• We design tailored modules and pre-training tasks to ef-
fectively capture users’ multi-aspect interests. Our mod-
eling ideas can inspire research on other user behaviors.

• We extensively evaluate our approach through experi-
ments on three real-world tasks and compare it with
competitive models, indicating its effectiveness.

2 Related Work
2.1 User Representation Learning
User representation learning aims to obtain informative vec-
tors that can effectively represent users. Existing studies
mainly focused on extracting features from single-type inter-
action data, and leveraging statistical and deep learning meth-
ods for this purpose [Yuan et al., 2020; Zhang et al., 2020;
Wu et al., 2020; Gu et al., 2021]. For example, Wu et al. pro-
posed two self-supervision tasks for task-specific user repre-
sentation learning, which took the relatedness between past
and future behaviors into account. Gu et al. considered be-
havioral consistency and proposed a self-supervised model to
learn universal user embeddings. Recent efforts have also at-
tempted to integrate multi-domain interaction for alleviating
data sparsity [Qiu et al., 2021; Mu et al., 2022]. For example,
Qiu et al. proposed the customized U-BERT to pre-train user
representation by leveraging review interaction to bridge the
gaps among different domains. Though related to these stud-
ies, our focus is on mining user interests from multi-type app
behaviors with varying frequencies to benefit multiple real-
world tasks. Existing methods are not directly applicable.

2.2 Multi-Behavior Learning
Multi-behavior Learning aims to leverage users multi-type
behaviors to enhance the accuracy of predicting their target
behavior, and has been widely explored and verified in prac-
tice [Wu et al., 2022; Zhang et al., 2023]. Scholars have
proposed various models via deep learning techniques. For
example, Zhou et al. designed a self-attention based frame-
work to model feature interactions. Later on, GNNs are uti-
lized to explore multi-hop user-item interactions. For ex-
ample, MRIG [Wang et al., 2020] and MBGCN [Jin et al.,

2020] learned distinct user interests using user-item interac-
tion graphs, while Xia et al. followed a graph meta-learning
paradigm to distill the behavior diversity for recommenda-
tions. To fight against the data sparsity and cold-start issues,
Wu et al. and Xu et al. introduced self-supervised Con-
trastive Learning tasks into Multi-behavior Learning. Despite
the existing progress, most previous studies are task-oriented,
which constrains their practical value in serving various ap-
plications. In this paper, we focus on developing a user model
for general use based on multi-type app usage.

2.3 Analysis of Mobile App Data
As mobile apps have become indispensable in our lives, a
quantity of studies has been devoted to analyzing the app us-
age pattern. Several statistical-based works have illustrated
the rich information contained in app usage[Li et al., 2016;
Tu et al., 2018; Peltonen et al., 2018; Li et al., 2020;
Li et al., 2022; Yu et al., 2020]. Recently, advanced efforts
have attempted to build general user models based on users’
app behaviors. For example, Zhang et al. extracted general-
purpose user embeddings by a tailored Transformer-based
AETN. Bian et al. learned user representation by the pro-
posed macro-micro fusion network, which considers the se-
mantic relevance of users’ interaction both within and outside
of apps. Liu et al. proposed DAUC to obtain task-optimized
user clusters by leveraging app usage to transfer knowledge
from active users to cold-start users. However, these works
mainly focused on low-frequency app usage and overlooked
the significance of high-frequency ones. In this paper, we
analyse multi-type app behaviors with different frequencies
for a more comprehensive understanding of user interests.

3 Problem Formulation
For learning general user representations, we consider three
types of user-app interactions that are closely related to users’
daily lives, namely launch, (un)installation, and retention.
Formally, we define the set of users and apps as U (u ∈ U)
and A (a ∈ A) respectively, where |U| and |A| represent the
number of users and apps. The app behavior sequence of a
user u can be presented as Su = {a1, a2, ..., an}. For each
app behavior ai, we also introduce its corresponding app cat-
egory ci and timestamp ti to provide better characterization.
To distinguish different types of behaviors, we utilize unique
superscripts: ala for launch, ain for installation, aun for unin-
stallation and are for retention. Therefore, our user model
acts as a function Fθ which takes these behavioral sequences
as input and outputs low-dimensional user embeddings eu as:

eu = Fθ
(
Slau , Sinu , Sunu , Sreu

)
. (1)

For simplification, we may omit the subscript u indicating
a user in the rest of the paper when there is no confusion.

4 Methodology
This section introduces our MAFN framework for general
user representation learning. As illustrated in Figure 1,
MAFN consists of two phases. In the pre-training phase,
we design customized self-supervised learning objectives to
obtain universal user representations from three types of app

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5536

Low-Frequency
App (Un)installation

App Retention

2 weeks

3 months

present

High-Frequency
App Launch

Short-term Interest Module

Long-term Interest Module

Pre-training Phase

Autoencoder

Transformer
Encoder

Former Embedding

Latter Embedding

User Short-Term

Interest Embedding

User Long-Term

Interest Embedding

Transformer
Encoder

Transformer
Decoder

#2: App Reconstruction

#3: Semantic Contrastive Learning

+

Interest Fusion Module

General User Embedding

#1: App Distribution
Prediction

Fine-tuning Phase

Installed

Uninstalled

push away

pull closer

Vector
Quantization

Codebook

Aspect 1, …, Aspect V

Unified Space

user A

user A

pull closer

push away

user B

#4: User Contrastive
Learning

Downstream Task

Supervised Signals

Efficient
Fine-tuning

Long- & Short-term
Interest Module

(parameters fixed)

Interest Fusion
Module

Inference

Serving

Downstream Task-
Specific Models

Figure 1: The two-phases architecture of our proposed MAFN. The framework is designed for generating general-purpose user representation
based on multi-type mobile app behaviors, and serving multiple downstream mobile tasks. In the Pre-training phase, the Short- and Long-term
Interest Modules leverage types of high- and low-frequency app behaviors to learn users’ recent preferences and stable demands, respectively.
The retention AutoEncoder models the apps’ co-occurrence relations, and the Interest Fusion Module projects two aspects of users’ interests
embeddings onto unified vector space and dynamically combines them. In the Fine-tuning phase, MAFN performs efficient fine-tuning with
downstream task supervised signals and generate high-quality user representations for specific mobile service.

behaviors with varying frequencies. Specifically, we design
three key components to gain a deeper understanding of user
intents. 1) Short-term Interest Module (SIM) models high-
frequency app launch behaviors to capture users’ recent pref-
erences. 2) Long-term Interest Module (LIM) extracts users’
stable demands from low-frequency (un)installation and re-
tention behaviors. 3) Interest Fusion Module (IFM) combines
users’ multi-aspect interests dynamically. In the fine-tuning
phase, user representations are adapted to arbitrary down-
stream tasks. In the following part, we first introduce three
components of the pre-training phase in detail. After that, we
elaborate on our two-stage schema.

4.1 Short-term Interest Module
App launch behavior is quite frequent in users’ lives and indi-
cates their recent intents. For example, if a user installed Call
of Duty Mobile and opened it frequently in the last week, the
conclusion that he/she recently likes FPS games is convinc-
ing. However, if he/she has only installed the game but rarely
opened it, this conclusion appears unreliable. Motivated by
this, we propose the SIM to capture users’ short-term inter-
ests from high-frequency app launches. In the following sub-
section, we provide a detailed explanation of the architecture
and the customized pre-training task employed in the SIM.

High-Frequency App Launch Modeling
Inspired by the Transformer architecture that succeeds in
modeling temporal interaction data [Devlin et al., 2018;
Mu et al., 2022; Seol et al., 2022], we develop a BERT-based
module to encode app launch behavior. Specifically, we first
utilize the shared app embedding layer to encode each app
ai in user launch records into a dense vector elai = E(alai).
We also incorporate category embedding clai and timestamp

embedding tlai , which can alleviate the gravely sparse of
long-tailed apps and provide helpful time information, i.e.,
elai = elai + clai + tlai . Since app retention serves as an intu-
itive indicator of a user’s current habits, we concatenate the
app launch embedding elai with the app retention embedding
ere, which is generated from an AutoEncoder. Finally, we
utilize multi-head self-attention MHA(·) and mean-pooling
MP(·) operations to incorporate the representations of each
behavior into the short-term interest embedding eshort as:

eshort = MP(FFN(MHA({ela1 , ela2 , ..., elan ; e
re}))), (2)

where FFN(·) represents a feed-forward network.

Pre-training Task #1: App Distribution Prediction
Some classical self-supervised learning tasks have succeeded
in modeling sequential data, such as mask word prediction
and its variants [Sun et al., 2019]. However, app launch
records often exhibit repetitions and noise due to users fre-
quently launching the same apps and occasionally launching
irrelevant ones. In this case, common pre-training tasks that
aim to predict specific launched apps may not be appropriate,
as the specific behaviors and their order may not carry mean-
ingful information. Instead, focusing on capturing the overall
statistics of the behaviors can be more beneficial. Therefore,
we design the app distribution prediction pre-training task to
accurately guide model learning, which aims to predict the
occurrence of each app in the user’s subsequent records.

Specifically, for user u with launch behavior records
{ala1 , ala2 , ..., alaN}, we force the module to use his preceding
N behaviors to predict the distribution of app occurrences in
the subsequent K behaviors, i.e., the number of times each
app appears in {alaN+1, a

la
N+2, ..., a

la
N+K}. Given user’s short-

term interests embedding eshort generated from past N be-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5537

haviors, the predicted app distribution can be presented as:

p̂(ai|u) =
exp

(
eTi fϕ(e

short)
)∑

aj∈S′ exp
(
eTj fϕ(e

short)
) , (3)

where fϕ(·) is a fully connected layer with parameters ϕ. eTi
is the transpose of embedding elai , and i is the ith app that
occurs in the following sequence S

′
. Then, we set the nor-

malized occurrences of apps as the ground-truth, i.e.,

p(ai|u) =
log (1 + count(ai))∑

aj∈S′ log (1 + count(aj))
, (4)

where count(ai) is the number of occurrence of the app ai
in sequence S

′
. With p̂(ai|u) and p(ai|u), we can use the

Kullback-Leibler divergence to measure the differences and
define the pre-training loss function as:

Ldist = DKL(p||p̂) ∝ −
∑

p(ai|u) log p̂(ai|u). (5)

4.2 Long-term Interest Module
In contrast to app launches, app (un)installation and reten-
tion behaviors occur less frequently but provide more exten-
sive information. Hence, we design the LIM with a clas-
sical encoder-decoder structure to capture users’ long-term
demands. Considering the unique semantic relationship be-
tween app installation and uninstallation, we further intro-
duce two customized self-supervised learning tasks to guide
the user representation learning process.

Low-Frequency App (Un)installation Modeling
The users’ app (un)installing behaviors often occur over
weeks, characterized by low-frequency and uneven distribu-
tion over time. To better model users’ long-term and cross-
temporal interest dependencies, we employ a Transformer-
based encoder for collectively modeling these behaviors.
Specifically, we first encode app (un)installing behaviors via
the shared app embedding layer E(·). Then, we introduce the
type embeddings d to distinguish the installation and unin-
stallation, e.g., eini = E(aini) + din. Thereafter, we incorpo-
rate time embedding ti, aiming to mitigate the impact of the
uneven distribution of (un)installations. Finally, we leverage
a Transformer encoder TE(·) to accomplish the information
aggregation and generate the user’s long-term preference em-
bedding elong, denoted as:

elong = TE
(
{ein1 , ..., einn ; eun1 , ..., eunm ; ere}

)
. (6)

Pre-training Task #2: App Reconstruction
Motivated by the success in the pre-training language model
[Devlin et al., 2018], we initially introduce the app recon-
struction task that aids the model in obtaining a compre-
hensive understanding of the behavioral sequences by recon-
structing the original app sequence. We aim to formulate self-
supervised learning objectives based on the consistency of
user behavior. Formally, we leverage a Transformer decoder
to reconstruct the (un)installation sequences with a softmax
cross-entropy loss function as:

Lre = − 1

|S|
∑
an∈S

logP (an = a∗n|Sn), (7)

where Sn is the raw app (un)installation sequence, S is the
predicted sequence, a∗n is the ground-true app for each pre-
dicted app an, P (a) = softmax(fψ(elong)) is the predicted
probability, and fψ(·) is a fully connected layer.

Pre-training Task #3: Semantic Contrastive Learning
There is a natural negative correlation between the app instal-
lation and uninstallation. Intuitively, users’ app installation
often reflects their preferences and needs, while uninstalla-
tion indicates their dislike or dissatisfaction. Such semantic
correlation is highly valuable in improving the model’s un-
derstanding of users [Zhang et al., 2022]. Hence, we design a
novel Semantic contrastive learning task to effectively lever-
age this correlation.

Specifically, we consider obtaining user representations
from three distinct app sets: the set of apps the user has in-
stalled, the set of apps the user has never interacted with, and
the set of uninstalled apps. We note those representations as
uin, uno and uun, respectively. Naturally, uin are expected
to be closer to uno and be further away from uun. There-
fore, we regard (uin, uno) as the positive pair, considering
them as different augmentations of user interests, and regard
(uin, uun) as the in-batch negative pairs. Framed in the clas-
sical InfoNCE[Oord et al., 2018] paradigm, we formulate the
semantic loss function with temperature coefficient τ as:

Lsem = − log
exp

(
sim

(
uin, uno

)
/τ

)∑
exp (sim (uin, uun) /τ)

, (8)

where sim(·) is dot-product for measuring similarity.

4.3 Interest Fusion Module
After obtaining the short- and long-term interest embeddings
by SIM and LIM, how to fuse them properly is not triv-
ial. Previous studies commonly adopt vector concatenation,
weighted summation or gate network for fusion in similar
contexts [Zhang et al., 2020; Qiu et al., 2021]. However,
combining the two embeddings we generated becomes chal-
lenging due to their derivation from different modules, uti-
lization of distinct data, and resulting in dissimilar represen-
tation spaces. To address this dilemma, we present a unified
interests fusion module. Inspired by the Vector Quantization
mechanism [Van Den Oord et al., 2017; Liu et al., 2021;
Hou et al., 2023], we create a discretized embedding space
that is shared across short- and long-term interest embed-
dings. This discrete embedding space is capable of unifying
different aspects of user interests through a finite number of
embedding vectors, facilitating consistent representation fu-
sion. Furthermore, we design a user-level contrastive learning
task to enhance the fusion. In this subsection, we elaborate on
the fusion approach and the training objective.

Unified Interests Fusion
Given the embeddings presenting users’ multi-aspect inter-
ests, noted as eI of interests I ∈ {long, short}, this module
attempts to effectively fuse them to obtain general user repre-
sentations. To address the disparity in vector spaces between
the two types of embeddings derived from data with differ-
ent frequencies, we intuitively project the short- and long-
term interest embeddings into a shared discrete embedding

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5538

space. Specifically, we first construct a unified interests em-
bedding table Ec = {e1, e2, ..., eV } of size V (named code-
book), which represents V implicit types of users’ interests.
Then, we compute v = argmink∈V ||eI − ek||2 to find the
most relevant unified interests embedding ev ∈ Ec for each
embedding eI . After that, we project eI into the unified em-
bedding space by a Linear network f I , and then combine it
with ev to obtain the transferred representation êI as

êI = f I(eI) + sg(ev − f I(eI)), (9)

where sg(·) is the stop-gradient operator. In this way, the pro-
jected êlong and êshort are expected to lie in the same unified
embedding space, containing both users’ single-aspect inter-
ests and unified interests. Finally, we perform vector summa-
tion to generate final user representations as

eu = êlong
u + êshort

u . (10)

In the whole process, the codebook acts as a bridge, connect-
ing user interests at different aspects within a shared discrete
embedding space. We train the codebook jointly with the rest
of our framework and fine-tune it with downstream tasks to
achieve context-aware fusion of users’ multi-aspect interests.

Pre-training Task #4: User Contrastive Learning
To learn a shared embedding space that is invariant to each
input, we utilize a self-supervised contrastive learning task
which encourages the model to focus more on the semantic
aspect of the input. We maximize the mutual information be-
tween the high- and low-frequency app behavior sequences of
the same user. For simplicity, we re-denote the representation
of two kinds of sequences of the same user as p and q, and
then formulate the contrastive loss function as:

Luser = −E
Pl

[
log

Dω (p, q)

Dω (p, q) +
∑

q̃∈Q̂ Dω (p, q̃)

]
, (11)

where Pl represents the joint distribution of the two se-
quences, i.e., (p, q) ∼ Pl. q̃ denotes the negative sample ran-
domly sampled from the different user’s behavior sequence
within one mini-batch. Dω(·, ·) is the discriminator parame-
terized by ω, we define it with parameter matrix W as:

Dω (p, q) = exp
(
p⊤ ·W · q

)
. (12)

The loss in Equation (11) is the categorical cross-entropy
of classifying the positive sample correctly, which pro-
motes the separation of samples from different latent classes,
thereby improving the stability of the fused representation.

4.4 Training and Serving Scheme
Model Training. Our entire training procedure follows a
classic two-stage paradigm, i.e., pre-training and fine-tuning
stages. At the pre-training stage, we first train the tailored
modules to extract user interests via the well-designed pre-
training tasks. Then, we train the adaptive fusion module to
dynamically fuse different views of user intents. By integrat-
ing the loss functions, the overall objective is defined as:

Lpretrain = Ldist + Lre + Lsem + Luser. (13)

Statistics Pre-training dataset
of users 5,486,783
of apps 10,404

avg. # of app launch behaviors 535
avg. # of app install behaviors 168

avg. # of app uninstall behaviors 174

Table 1: Statistics of the anonymized pre-training dataset.

Statistics Ad Attr Player
of users 2,771,647 4,878,698 360,658
of apps 1,112 - 1

of interactions 28,033,719 - 1,381

Table 2: Statistics of the three downstream datasets.

At the fine-tuning stage, we first initialize with the pre-
trained parameters and then fine-tune the model with the su-
pervised signals from downstream tasks. To achieve efficient
fine-tuning, we keep most parameters fixed and only tune the
fusion module, so as to learn context-aware representation.

Serving. In scenarios involving mobile apps, online serv-
ing time is often much more critical than offline training
time. Hence, a practical way is to pre-train and fine-tune our
model offline, store the generated user representations spe-
cific to downstream tasks, and provide these user embeddings
to downstream models for online services.

Complexity Analysis. SIM and LIM utilize Transformer-
based structures, resulting in a time complexity of O(N2),
where N is the input sequence length. IFM involves cluster-
ing for user representations, resulting in a time complexity of
O(d · V), where d is the embedding dimension. Commonly
N >> d · V , so the overall complexity is O(N2). In com-
parison to other sequential models, the complexity associated
with our approach is competitive, and our practical workflow
does not entail significant costs in downstream tasks.

5 Experiments
In this section, we report the extensive experimental results
on real-world datasets and tasks, as well as the corresponding
analysis and discussion of limitation.

5.1 Experimental Setup
Pre-training Dataset
We conduct experiments on industrial data from a worldwide
leading smartphone manufacturer. We collect app data of
users who agree to share their anonymous behavior data for
improving service quality. More than 10 thousand popular
apps and randomly sampled 5.5 million users are used for
pre-training. We filter users and apps with fewer than five
interactions, and collect app (un)installation actions over 3
months and app launch behaviors over 2 weeks. We randomly
split out about 10% users for validation. The statistics of the
processed data are summarized in Table 1. Note that our re-
search process is tightly regulated for avoiding any disclosure
of user privacy, so as to avoid possible Ethical issues.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5539

Evaluation in Downstream Tasks
We evaluate our framework on three typical downstream
applications, encompassing various commonly used down-
stream models. The tasks and settings are detailed as follows.

Task 1: Ad CVR Prediction. This task aims to predict the
conversion rate (CVR), which is the probability that a user
will become an active user after clicking on an advertisement.
We consider it as a classification task, and train a two-layer
MLP model to estimate the probability of conversion for each
user based on the generated user embeddings.

Task 2: User Attribute Prediction. In this task, we try
to predict the user gender based on the generated user em-
beddings. The dataset is constructed by selecting users with
gender tags from the anonymized pre-training dataset. We
train a DeepFM [Guo et al., 2017] model for this task.

Task 3: Game Player Recall. This task aims to predict the
chances of losing players returning to the game, so as to adopt
appropriate strategies to recall game players. We regard it as
a binary classification task, in which the returned players are
positive cases and players who have not returned are negative
cases. We train a GBDT-based [Friedman, 2001] model to
predict the returning probability using the user embeddings
and multiple statistical features.

Table 2 shows statistics of the downstream datasets.

Evaluation Settings
We combine the generated user embeddings with the origi-
nal input of each task to evaluate the performance gains. For
Task 1 and 2, we adopt the commonly used metrics includ-
ing AUC, Recall and F1 score. For Task 3, considering the
low player returning rate, we report the relative Hit ratio in
the top 200,000 recalled players. The three datasets are all
divided into train, valid and test sets in the ratio of 8:1:1. We
repeat each experiment 5 times and report the average results.

Comparison Methods
We compare our methods with the following baselines.

• Denoising AutoEncoder [Vincent et al., 2008] is
widely applied for unsupervised representation learning.

• Hierarchy LSTM extracts sequential information using
two-layer LSTMs[Graves and Graves, 2012].

• BERT4Rec [Sun et al., 2019] models sequences via a
bi-directional self-atentive model with a cloze objectve.

• CLUE [Cheng et al., 2021] uses implicitly augmented
views for contastive pre-training.

• IDICL [Sun et al., 2022] performs contrastive pre-
training via taking different time periods of the same be-
havior sequence as augmented views.

• MBSSL [Xu et al., 2023] uses inter- and intra-behavior
self-supervised learning tasks to capture the behavior
correlations for multi-behavior recommendation.

• AETN [Zhang et al., 2020] is tailored for generating
general user embeddings based on app usage.

• MFN [Bian et al., 2021] learns user representation with
users’ interaction both within and outside of apps.

These methods can be categorized into distinct sets: clas-
sic sequential models (AutoEncoder, LSTM and BERT4Rec),
discriminative pre-training methods (CLUE, IDICL), multi-
behavior learning approach (MBSSL), and user representa-
tion models designed for app scenarios (AETN, MFN).

5.2 Experimental Results

Table 3 presents the performance of all methods on three in-
dustrial downstream datasets. From the shown results, we
make the following observations.

For the baseline methods, we can see that the user em-
beddings generated by all models are beneficial to down-
stream tasks, validating the practical significance of our goal.
Among them, models that incorporate multiple behaviors
(MBSSL, AETN and MFN) outperform those focusing on
single behavior, demonstrating the importance of considering
multi-type behaviors for an accurate understanding of users.
Additionally, models designed for mobile scenarios (AETN,
MFN) perform better than other approaches, highlighting the
necessity of specialized modeling based on app usage.

For the proposed approach MAFN, it achieves the best per-
formance on all datasets. On small-scale dataset with sparse
supervised signals (task 3), the results indicate that the tai-
lored modules can effectively extract users’ intents from app
usage, providing valuable information that helps alleviate the
data sparsity in downstream tasks. On large-scale datasets
(task 1, 2), the context-aware fusion module can be well fine-
tuned to generate embeddings that contain relevant user inter-
ests based on the given context. Overall, these results show
that the MAFN is an effective solution for obtaining general
user representation based on app usage.

5.3 Ablation Study

We conduct a detailed ablation study to analyze how each of
the proposed components affects final performance. Table 4
shows the performance of our default method and its six vari-
ants on User Attribute Predicion task. Similar conclusions
can be drawn on other tasks, which are omitted here.

(1) w/o LIM or SIM: Without either of the two modules that
capture users’ specific aspect of interests, the variants exhibit
significantly poorer performance compared to the MAFN.
The results indicate both the importance of collectively mod-
eling behaviors with varying frequencies, and the effective-
ness of the LIM and SIM.

(2) w/o IFM: In these variants, we replace the fusion
module with the vector concatenation, attention-based fusion
and gate network fusion to obtain final user representations.
The inferior performance of all these variants compared to
MAFN across all evaluation metrics demonstrates that pre-
vious fusion methods, which overlook the dissimilar embed-
ding space, can result in sub-optimal results.

(3) w/o tailored pre-training tasks: In these variants, we re-
place the pre-training tasks with widely-used mask behavior
prediction tasks. The performance drops sharply, additionally
showing the necessity of the proposed self-supervised tasks
tailored to behavioral characteristics.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5540

Model Advertisement CVR Prediction User Attribute Prediction Game Player Recall
AUC ↑ Recall@20% ↑ F1 ↑ AUC ↑ Recall@20% ↑ F1 ↑ HITr ↑

Base Model 0.6084 0.3130 0.1536 - - - 0.9363
Denosing Autoencoder 0.6163 0.3197 0.1547 0.5899 0.2925 0.3860 0.9385

Hierarchy LSTM 0.6174 0.3197 0.1550 0.5858 0.2545 0.3443 0.9370
BERT4Rec 0.6206 0.3258 0.1561 0.6153 0.2714 0.3612 0.9399

CLUE 0.6210 0.3204 0.1577 0.6205 0.2739 0.3641 0.9406
IDICL 0.6205 0.3195 0.1549 0.6147 0.2809 0.3628 0.9399

MBSSL 0.6225 0.3223 0.1577 0.6422 0.2912 0.3731 0.9392
AETN 0.6249 0.3300 0.1597 0.6448 0.2924 0.3881 0.9435
MFN 0.6247 0.3211 0.1583 0.6450 0.2809 0.3896 0.9442

MAFN 0.6325 0.3359 0.1621 0.6619 0.2994 0.3978 0.9544
Improv. +1.2% +1.7% +1.5% +2.6% +2.4% +2.1% +1.1%

Table 3: Performance comparison of methods on real-world downstream tasks: Advertisement CVR Prediction, User Attribute Prediction and
Game Player Recall. For each metric, we use bold and underline fonts to mark the best and second best performance, respectively. Improv.
presents the relative improvement of MAFN over the best result of the baselines. Improvements are statistically significant with ρ < 0.05.

Variants User Attribute Prediction
AUC ↑ Recall@20% ↑ F1 ↑

MAFN 0.6619 0.2994 0.3978
w/o LIM 0.6287 0.2759 0.3684
w/o SIM 0.6223 0.2744 0.3623
Concat. Fusion 0.6580 0.2969 0.3941
Attn. Fusion 0.6544 0.2897 0.3863
Gate. Fusion 0.6515 0.2831 0.3821
w/o Ldist 0.6391 0.2815 0.3737
w/o Lre 0.6501 0.2922 0.3884
w/o Lsem 0.6420 0.2902 0.3879
w/o Luser 0.6601 0.2960 0.3938

Table 4: Ablation analysis on MAFN and its variants.

Service Model AUC Recall@20%
Game App +AETN +0.6% +1.7%

Recommendation +MAFN +1.1% +2.5%

Table 5: Simulate online evaluation results.

5.4 Simulate Online A/B Testing
To further verify the effectiveness of the output user embed-
dings, we simulate online feed recommendation A/B testing
on industrial data for Game App Recommendation task us-
ing evaluation metrics AUC and Recall@20%. We evaluate
the base model, model with AETN embeddings, and model
with our MAFN embeddings. We split test traffic by user IDs
evenly for the tested models. The improvement results com-
pared with the base model are presented in Table 5, which
further confirm the practical value of our approach.

5.5 Extra Cost and Run-Time Analysis
To further demonstrate the practical value of our method, we
conduct a comparison with the base methods (i.e., a down-
stream GBDT-based model that does not model users’ his-
torical behaviors and only uses statistical features) and tradi-

33.33

4.17

0

5

10

15

20

25

30

35

Pre-train Fine-tune

MAFN
End-to-end
Base model

2.12

0.55

3.5

1.13

1.98

0.52

0

0.5

1

1.5

2

2.5

3

3.5

4

Training Serving

MAFN
End-to-end
Base model

(a) Offline Pre-training (hours). (b) Offline Training & Online Serving (hours).

Figure 2: Time cost analysis at different stages.

tional end-to-end method (i.e., a BERT4Rec model that pro-
vides end-to-end training and inference based on extra long
sequential records). Figure 2 illustrates the time cost of these
three schemes at different stages on the Game Player Recall
task with a larger user population. In this task, we trained
the models on approximately 5 million users and made pre-
dictions for around 6 million users. The figure reveals that
while MAFN incurs considerable time consumption during
the offline pre-training and fine-tuning stages, it does not im-
pose a significant burden on the model during the training and
online service processes. This is because MAFN directly pro-
vides the generated user representations to downstream mod-
els, adding only 64-dimensional features. Consequently, the
impact on downstream model with hundreds of dimensional
features is minimal, yet the benefit is considerable (+1.1% on
Recall@500,000). Though the end-to-end model offers sim-
ilar benefits (+0.9% on Recall@500,000), its time consump-
tion in the online service phase is nearly double compared
to the base model, which hampers its practical application.
Hence, in mobile scenarios where offline training time is not
crucial, MAFN is a more suitable solution.

5.6 Case Study
To demonstrate our model’s ability in understanding mobile
users, we present a case study in Figure 3, where 3,000 users’
embeddings are visualized via the t-SNE [Van der Maaten

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5541

Typical apps launched recently

User #1 (ID: 8625545986****)

Babybus Dinner, Babybus ABC, Sports Health

User #2 (ID: 86255405669****)

Kid King, Babybus Story, Cool Cook

Typical apps launched recently

User #3 (ID: 86255405674****)

Honor of Kings (game), HUYA LIVE (video)

User #4 (ID: 86255405671****)

PUBG MOBILE (game), Douyin (video)

User #5 (ID: 86255405944****)

Genshin Impact (game)

Figure 3: A case study of the generated user embeddings. We ran-
domly sample five users from two clusters. The learned user repre-
sentations can distinguish users with distinct preferences, and bring
users with similar interests closer in the discrete embedding space.

(a) User embeddings from AETN. (b) User embeddings from MAFN.

Figure 4: Comparison of generated user embeddings.

and Hinton, 2008]. We found that the output user represen-
tations can distinguish users with different preferences, and
bring users with similar interests closer in the discrete em-
bedding space. For example, users #1 and #2, whose embed-
dings are close, both frequently accessed parenting-related
apps, suggesting similar needs. Meanwhile, the other three
neighboring users usually opened games, music, and video
apps, indicating their shared intents in entertainment.

Figure 4 shows the distribution difference between the user
representations generated by AETN and that by our MAFN.
Upon observation, it can be noted that the user representations
learned by AETN exhibit aggregation and lack distinctive-
ness, whereas the user embeddings learned by MAFN demon-
strate a more discrete and dispersed pattern.

5.7 Implementation and Hyper-parameters
Our code is available at https://github.com/CGYR/MAFN.

Hyper-Parameters
Following previous works [Cheng et al., 2021; Bian et al.,
2021], we set the dimension of user embedding and app em-
bedding as 64. The learning rates are set to default settings
for baselines and tuned to 0.01 for our model. In the uti-
lized Transformer modules, the number of attention heads
and layers are both set as 2. In the app distribution predic-
tion task, where we use a user’s preceding N behaviors to
predict app occurrences in the next K behaviors, we set N
and K as half of the sequence length to balance the difficulty
in distilling information and making predictions. In the con-
trastive learning tasks (i.e., pre-training tasks #3 and #4), the
temperature coefficients are set to 0.1 and the in-batch neg-
ative sampling number for each sample are set as 31. The

size of codebook (i.e., the auxiliary embedding table for uni-
fying users’ multi-aspects interests) is set to 32. With respect
to the sequence length distribution in our datasets, the max
length of input sequences is set to 512 (i.e., both the launch
records and (un)install records will be truncated or padded to
the length of 512). For downstream models, we adopt hyper-
parameters similar to the practical models. The dimension of
the intermediate layer in the two-layer MLP and DeepFM is
set as 64. In GBDT-based model, the number of leaves is set
to 53. For baseline models and our MAFN, the learning rate
is either searched from {0.01, 0.02, 0.05, 0.1, 0.2, ..., 0.9} or
copied from previous works if provided.

Adjustments on Baselines
To ensure a fair comparison among different baseline models,
we make moderate adjustments to baseline models to align
them with our specific scenario. For models designed for
learning single-type behavior (i.e., Denosing Autoencoder,
LSTMs, BERT4Rec, CLUE and IDICL), we train multiple
copies of them to separately extract information from differ-
ent types of app behavior sequences, and then concatenate
these embeddings to obtain the final user representation. For
models that consider multi-behaviors, we simply replace the
original input behaviors with our app behaviors. Besides, for
models that do not explicitly output user representations, we
use the overall representation of user behavior sequences as
user representations.

Training Settings
We use the Adam optimizer for model training. The batch
size is set as 256 for both pre-training and fine-tuning. We
implement all experiments with Python 3.7 and Pytorch 1.9.0
with CUDA 10.2 on NVIDIA Tesla V100 GPUs.

5.8 Limitations
A possible limitation is the additional time cost incurred dur-
ing the offline pre-training and fine-tuning phases. In prac-
tice, many techniques can be invoked to speed up these pro-
cesses, such as efficiency optimization [Singh, 2012], paral-
lel computation and distributed parameter learning [Dean et
al., 2012]. Also, the Parameter-Efficient Fine-Tuning (PEFT)
methods such as LoRA may accelerate model adaptation via
only updating a small fraction of parameters.

6 Conclusions
In this paper, we presented a novel MAFN framework for
pre-training general user representation based on multi-type
app usage. Framed in the two-stage pre-train & fine-
tune paradigm, we proposed several customized modules
equipped with well-designed pre-training tasks to extract
users’ short- and long-term preferences from types of user-
app interactions with varying frequencies. Further, we em-
ployed a unified fusion module to effectively combine users’
multi-aspect interests and generate general user representa-
tions, which can efficiently adapt to downstream tasks. Be-
sides, we provided a practical way to deploy our approach
within feasible time in practice. Extensive experiments con-
ducted on three real-world tasks have validated the effective-
ness of our approach. In the future, we will further explore
modeling for user behaviors across diverse mobile fields.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5542

https://github.com/CGYR/MAFN

Ethical Statement
The user data we collected is from anonymous users who
have opted into the User Experience Improvement Pro-
gram (i.e., users who have consented to share app data in
order for mobile manufacturers to provide personalized ser-
vices). Such program is globally recognized and widely
used in APP scenarios as a user data sharing protocol, which
strictly limits the scope of data usage, ensuring that users
are informed and the data is used appropriately, thereby safe-
guarding user privacy and preventing any data breaches.

Acknowledgements
This research was partially supported by grants from
the National Natural Science Foundation of China
(U20A20229), Anhui Provincial Natural Science Foun-
dation (No. 2308085QF229), the Fundamental Research
Funds for the Central Universities (No. JZ2023HGQA0471,
No. WK2150110034), and the OPPO joint research program.
We furthermore thank the anonymous reviewers for their
constructive comments.

References
[Bian et al., 2021] Shuqing Bian, Wayne Xin Zhao, Kun

Zhou, Xu Chen, Jing Cai, Yancheng He, Xingji Luo, and
Ji-Rong Wen. A novel macro-micro fusion network for
user representation learning on mobile apps. In Proceed-
ings of the Web Conference 2021, pages 3199–3209, 2021.

[Cheng et al., 2021] Mingyue Cheng, Fajie Yuan, Qi Liu,
Xin Xin, and Enhong Chen. Learning transferable user
representations with sequential behaviors via contrastive
pre-training. In 2021 IEEE International Conference on
Data Mining (ICDM), pages 51–60. IEEE, 2021.

[Dean et al., 2012] Jeffrey Dean, Greg Corrado, Rajat
Monga, Kai Chen, Matthieu Devin, Mark Mao,
Marc’aurelio Ranzato, Andrew Senior, Paul Tucker,
Ke Yang, et al. Large scale distributed deep networks.
Advances in neural information processing systems, 25,
2012.

[Devlin et al., 2018] Jacob Devlin, Ming-Wei Chang, Ken-
ton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805, 2018.

[Friedman, 2001] Jerome H Friedman. Greedy function ap-
proximation: a gradient boosting machine. Annals of
statistics, pages 1189–1232, 2001.

[Graves and Graves, 2012] Alex Graves and Alex Graves.
Long short-term memory. Supervised sequence labelling
with recurrent neural networks, pages 37–45, 2012.

[Gu et al., 2021] Jie Gu, Feng Wang, Qinghui Sun, Zhiquan
Ye, Xiaoxiao Xu, Jingmin Chen, and Jun Zhang. Exploit-
ing behavioral consistence for universal user representa-
tion. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 4063–4071, 2021.

[Guo et al., 2017] Huifeng Guo, Ruiming Tang, Yunming
Ye, Zhenguo Li, and Xiuqiang He. Deepfm: a

factorization-machine based neural network for ctr predic-
tion. arXiv preprint arXiv:1703.04247, 2017.

[Hou et al., 2023] Yupeng Hou, Zhankui He, Julian
McAuley, and Wayne Xin Zhao. Learning vector-
quantized item representation for transferable sequential
recommenders. In Proceedings of the ACM Web Confer-
ence 2023, pages 1162–1171, 2023.

[Jin et al., 2020] Bowen Jin, Chen Gao, Xiangnan He, De-
peng Jin, and Yong Li. Multi-behavior recommendation
with graph convolutional networks. In Proceedings of the
43rd International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 659–
668, 2020.

[Li et al., 2016] Huoran Li, Wei Ai, Xuanzhe Liu, Jian Tang,
Gang Huang, Feng Feng, and Qiaozhu Mei. Voting with
their feet: Inferring user preferences from app manage-
ment activities. In Proceedings of the 25th international
conference on world wide web, pages 1351–1362, 2016.

[Li et al., 2020] Tong Li, Mingyang Zhang, Hancheng Cao,
Yong Li, Sasu Tarkoma, and Pan Hui. ” what apps did you
use?”: Understanding the long-term evolution of mobile
app usage. In Proceedings of The Web Conference 2020,
pages 66–76, 2020.

[Li et al., 2022] Tong Li, Tong Xia, Huandong Wang, Zhen
Tu, Sasu Tarkoma, Zhu Han, and Pan Hui. Smartphone
app usage analysis: datasets, methods, and applications.
IEEE Communications Surveys & Tutorials, 2022.

[Liu et al., 2021] Alexander H Liu, SouYoung Jin, Cheng-
I Jeff Lai, Andrew Rouditchenko, Aude Oliva, and James
Glass. Cross-modal discrete representation learning. arXiv
preprint arXiv:2106.05438, 2021.

[Liu et al., 2022] Bulou Liu, Bing Bai, Weibang Xie, Yi-
wen Guo, and Hao Chen. Task-optimized user cluster-
ing based on mobile app usage for cold-start recommen-
dations. In Proceedings of the 28th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining, pages
3347–3356, 2022.

[Lu et al., 2014] Eric Hsueh-Chan Lu, Yi-Wei Lin, and Jing-
Bin Ciou. Mining mobile application sequential patterns
for usage prediction. In 2014 IEEE International Con-
ference on Granular Computing (GrC), pages 185–190.
IEEE, 2014.

[Mu et al., 2022] Shanlei Mu, Yupeng Hou, Wayne Xin
Zhao, Yaliang Li, and Bolin Ding. Id-agnostic user be-
havior pre-training for sequential recommendation. arXiv
preprint arXiv:2206.02323, 2022.

[Oord et al., 2018] Aaron van den Oord, Yazhe Li, and Oriol
Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

[Peltonen et al., 2018] Ella Peltonen, Eemil Lagerspetz,
Jonatan Hamberg, Abhinav Mehrotra, Mirco Musolesi,
Petteri Nurmi, and Sasu Tarkoma. The hidden image of
mobile apps: geographic, demographic, and cultural fac-
tors in mobile usage. In Proceedings of the 20th Interna-
tional Conference on Human-Computer Interaction with
Mobile Devices and Services, pages 1–12, 2018.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5543

[Qiu et al., 2021] Zhaopeng Qiu, Xian Wu, Jingyue Gao,
and Wei Fan. U-bert: Pre-training user representations for
improved recommendation. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages
4320–4327, 2021.

[Radosavljevic et al., 2016] Vladan Radosavljevic, Mihajlo
Grbovic, Nemanja Djuric, Narayan Bhamidipati, Daneo
Zhang, Jack Wang, Jiankai Dang, Haiying Huang, Ananth
Nagarajan, and Peiji Chen. Smartphone app categorization
for interest targeting in advertising marketplace. In Pro-
ceedings of the 25th International Conference Companion
on World Wide Web, pages 93–94, 2016.

[Seol et al., 2022] Jinseok Jamie Seol, Youngrok Ko, and
Sang-goo Lee. Exploiting session information in bert-
based session-aware sequential recommendation. In Pro-
ceedings of the 45th International ACM SIGIR Conference
on Research and Development in Information Retrieval,
pages 2639–2644, 2022.

[Singh, 2012] Ajay Singh. An overview of the optimization
modelling applications. Journal of Hydrology, 466:167–
182, 2012.

[Sun et al., 2019] Fei Sun, Jun Liu, Jian Wu, Changhua Pei,
Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Se-
quential recommendation with bidirectional encoder rep-
resentations from transformer. In Proceedings of the 28th
ACM international conference on information and knowl-
edge management, pages 1441–1450, 2019.

[Sun et al., 2022] Qinghui Sun, Jie Gu, XiaoXiao Xu, Ren-
jun Xu, Ke Liu, Bei Yang, Hong Liu, and Huan Xu. Learn-
ing interest-oriented universal user representation via self-
supervision. In Proceedings of the 30th ACM International
Conference on Multimedia, pages 7270–7278, 2022.

[Tu et al., 2018] Zhen Tu, Runtong Li, Yong Li, Gang Wang,
Di Wu, Pan Hui, Li Su, and Depeng Jin. Your apps give
you away: distinguishing mobile users by their app us-
age fingerprints. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 2(3):1–
23, 2018.

[Van Den Oord et al., 2017] Aaron Van Den Oord, Oriol
Vinyals, et al. Neural discrete representation learning.
Advances in neural information processing systems, 30,
2017.

[Van der Maaten and Hinton, 2008] Laurens Van der Maaten
and Geoffrey Hinton. Visualizing data using t-sne. Journal
of machine learning research, 9(11), 2008.

[Vincent et al., 2008] Pascal Vincent, Hugo Larochelle,
Yoshua Bengio, and Pierre-Antoine Manzagol. Extract-
ing and composing robust features with denoising autoen-
coders. In Proceedings of the 25th international confer-
ence on Machine learning, pages 1096–1103, 2008.

[Wang et al., 2020] Wen Wang, Wei Zhang, Shukai Liu,
Qi Liu, Bo Zhang, Leyu Lin, and Hongyuan Zha. Beyond
clicks: Modeling multi-relational item graph for session-
based target behavior prediction. In Proceedings of the
web conference 2020, pages 3056–3062, 2020.

[Wu et al., 2020] Chuhan Wu, Fangzhao Wu, Tao Qi,
Jianxun Lian, Yongfeng Huang, and Xing Xie. Ptum: Pre-
training user model from unlabeled user behaviors via self-
supervision. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 1939–1944, 2020.

[Wu et al., 2022] Yiqing Wu, Ruobing Xie, Yongchun Zhu,
Xiang Ao, Xin Chen, Xu Zhang, Fuzhen Zhuang, Leyu
Lin, and Qing He. Multi-view multi-behavior contrastive
learning in recommendation. In International Conference
on Database Systems for Advanced Applications, pages
166–182. Springer, 2022.

[Xia et al., 2021] Lianghao Xia, Yong Xu, Chao Huang,
Peng Dai, and Liefeng Bo. Graph meta network for multi-
behavior recommendation. In Proceedings of the 44th in-
ternational ACM SIGIR conference on research and devel-
opment in information retrieval, pages 757–766, 2021.

[Xu et al., 2023] Jingcao Xu, Chaokun Wang, Cheng Wu,
Yang Song, Kai Zheng, Xiaowei Wang, Changping
Wang, Guorui Zhou, and Kun Gai. Multi-behavior self-
supervised learning for recommendation. arXiv preprint
arXiv:2305.18238, 2023.

[Yu et al., 2020] Yue Yu, Tong Xia, Huandong Wang, Jie
Feng, and Yong Li. Semantic-aware spatio-temporal
app usage representation via graph convolutional network.
Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, 4(3):1–24, 2020.

[Yuan et al., 2020] Fajie Yuan, Xiangnan He, Alexandros
Karatzoglou, and Liguang Zhang. Parameter-efficient
transfer from sequential behaviors for user modeling and
recommendation. In Proceedings of the 43rd International
ACM SIGIR conference on research and development in
Information Retrieval, pages 1469–1478, 2020.

[Zhang et al., 2020] Junqi Zhang, Bing Bai, Ye Lin, Jian
Liang, Kun Bai, and Fei Wang. General-purpose user em-
beddings based on mobile app usage. In Proceedings of the
26th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 2831–2840, 2020.

[Zhang et al., 2022] Kai Zhang, Kun Zhang, Mengdi Zhang,
Hongke Zhao, Qi Liu, Wei Wu, and Enhong Chen. In-
corporating dynamic semantics into pre-trained language
model for aspect-based sentiment analysis. arXiv preprint
arXiv:2203.16369, 2022.

[Zhang et al., 2023] Lei Zhang, Wuji Zhang, Likang Wu,
Ming He, and Hongke Zhao. Shgcn: Socially en-
hanced heterogeneous graph convolutional network for
multi-behavior prediction. ACM Transactions on the Web,
18(1):1–27, 2023.

[Zhao et al., 2016] Sha Zhao, Gang Pan, Yifan Zhao, Jian-
rong Tao, Jinlai Chen, Shijian Li, and Zhaohui Wu. Mining
user attributes using large-scale app lists of smartphones.
IEEE Systems Journal, 11(1):315–323, 2016.

[Zhou et al., 2018] Chang Zhou, Jinze Bai, Junshuai Song,
Xiaofei Liu, Zhengchao Zhao, Xiusi Chen, and Jun Gao.
Atrank: An attention-based user behavior modeling frame-
work for recommendation. In Proceedings of the AAAI
conference on artificial intelligence, volume 32, 2018.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5544

	Introduction
	Related Work
	User Representation Learning
	Multi-Behavior Learning
	Analysis of Mobile App Data

	Problem Formulation
	Methodology
	Short-term Interest Module
	High-Frequency App Launch Modeling
	Pre-training Task #1: App Distribution Prediction

	Long-term Interest Module
	Low-Frequency App (Un)installation Modeling
	Pre-training Task #2: App Reconstruction
	Pre-training Task #3: Semantic Contrastive Learning

	Interest Fusion Module
	Unified Interests Fusion
	Pre-training Task #4: User Contrastive Learning

	Training and Serving Scheme

	Experiments
	Experimental Setup
	Pre-training Dataset
	Evaluation in Downstream Tasks
	Evaluation Settings
	Comparison Methods

	Experimental Results
	Ablation Study
	Simulate Online A/B Testing
	Extra Cost and Run-Time Analysis
	Case Study
	Implementation and Hyper-parameters
	Hyper-Parameters
	Adjustments on Baselines
	Training Settings

	Limitations

	Conclusions

