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Abstract
Recent studies have raised questions about the suit-
ability of the Transformer architecture for long se-
quence time-series forecasting. These forecast-
ing models leverage Transformers to capture de-
pendencies between multiple time steps in a time
series, with embedding tokens composed of data
from individual time steps. However, challenges
arise when applying Transformers to predict long
sequences with strong periodicity, leading to per-
formance degradation and increased computational
burden. Furthermore, embedding tokens formed
one time step at a time may struggle to reveal
meaningful information in long sequences, fail-
ing to capture correlations between different time
steps. In this study, we propose Skip-Timeformer,
a Transformer-based model that utilizes a skip-
time interaction for long sequence time-series fore-
casting. Specifically, we decompose the time se-
ries into multiple subsequences based on different
time intervals, embedding various time steps into
variable tokens across multiple sequences. The
skip-time interaction mechanism utilizes these vari-
able tokens to capture dependencies in the skip-
time dimension. Additionally, skip-time interac-
tion is employed to learn dependencies between se-
quences missed by multiple skip time steps. The
Skip-Timeformer model demonstrates state-of-the-
art performance on various real-world datasets, fur-
ther enhancing the long sequence forecasting ca-
pabilities of the Transformer variations and better
adapting to arbitrary lookback windows.

1 Introduction
Long sequence time-series forecasting (LSTF) holds sig-
nificant practical relevance in complex real-world scenarios
[Demirel et al., 2012; Angryk et al., 2020; Patton, 2013;
Zhang et al., 2023b; Wang et al., 2023]. For instance, stock
prices are influenced by factors such as the company’s per-
formance reports over the past few months, industry trends,
news events, and investor sentiment, making the advance
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prediction of stock prices crucial [Liu et al., 2022]. Given
its immense practical value, long sequence time-series fore-
casting has garnered widespread research interest [Lim and
Zohren, 2021]. Diverging from other sequential data types,
such as language or video, time series distinguishes itself
by its continuous record, where each time step stores only
limited scalar information. Since individual time steps often
fall short in providing sufficient semantic information for in-
depth analysis, researchers have shifted their focus towards
the temporal dynamics. This temporal evolution encapsu-
lates richer information, more authentically reflecting the in-
herent properties of time series, such as continuity, period-
icity, and trendiness. Real-world time series variations fre-
quently involve intricate temporal patterns, encompassing di-
verse forms of changes (e.g., ascent, descent, fluctuation) that
intertwine and overlap, posing a substantial challenge in mod-
eling temporal dynamics. Confronted with this complexity,
in-depth exploration of time series forecasting methods, espe-
cially in the realm of long sequence forecasting model design,
becomes an imperative need to address practical challenges.
This necessitates delving into the underlying deep patterns to
enhance the accuracy of forecasting future trends.

In recent years, deep learning has not only demonstrated
outstanding performance in predictive tasks but has also ex-
celled in representation learning. It can extract abstract rep-
resentations and transfer them to various downstream tasks,
such as classification and anomaly detection, yielding state-
of-the-art performance. Notably, Transformer-based models
have achieved tremendous success in natural language pro-
cessing [Kalyan et al., 2021] and computer vision [Khan et
al., 2022; Zhang et al., 2023a; Zhang et al., 2024a], show-
ing great potential in capturing time dependencies in the
field of time series [Zhou et al., 2021; Wu et al., 2021;
Nie et al., 2022; Zhang et al., 2024b].

Recently, researchers have raised concerns about the ef-
fectiveness of Transformer-based models in long sequence
forecasting [Zeng et al., 2023]. Existing studies leveraging
Transformer for long-term multivariate time series forecast-
ing have exhibited suboptimal performance. This is largely
due to the fact that most existing LSTF methods primarily
focus on reducing the computational cost of univariate pre-
dictions, lacking research specifically tailored to the char-
acteristics of LSTF data. Applying Transformer models to
long-term sequence forecasting faces two main challenges.
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Figure 1: Illustration of Skip-Timeformer embeddings with a skip
step of 4. Unlike Transformer, which embeds each time step into
time tokens, Skip-Timeformer embeds multivariate long sequence
time-series into multiple variable subsequence tokens with different
skip steps. This allows the model to more easily capture long-term
trends.

Initially, the Transformer was originally designed for lan-
guage analysis [Devlin et al., 2018], where each word could
be regarded as an individual sequence of data. However, in
the context of time series forecasting, as illustrated in Fig-
ure 1, there are periodic and irregular fluctuations between
long-term time sequences. Tokens represented at single time
step interval struggle to unveil valuable information, and the
model’s performance may even decline due to irregular, un-
foreseen events. Consequently, the model’s ability to ana-
lyze interactions between different data sequences is limited.
Secondly, LSTF is more susceptible to overfitting compared
to short-term predictions. Transformer-based models are not
suitable for training on longer sequences at once. After mul-
tiple rounds of training, these models tend to memorize intri-
cate details from the training data, failing to accurately cap-
ture real trends and patterns.

To address the aforementioned issues, we focus is on en-
hancing the capabilities of transformer-based models in long
sequence forecasting at the sequence data level. In the context
of long sequence time-series problems, capturing substantial
historical information is crucial, especially in the LSTF set-
ting. Specifically, we introduce the multi-skip sequence to-
ken embedding, as depicted in Figure 1, where sequences
in each dimension are segmented and then embedded into
feature vectors. The output of the multi-skip sequence to-
ken embedding is a one-dimensional array of multiple se-
quences. Subsequently, we propose skip-time interaction
forecasting to capture dependencies between different skip-
ping times among multiple subsequences based on features
at various scales. Utilizing skip-time interaction conditional
layer normalization, we combine multi-skip sequence tokens
with original sequence tokens to analyze dependencies and
global patterns missed by multi-skip time steps. Here, we
employ a dynamic Dropout scheme, progressively introduc-
ing Bernoulli noise to the training data to prevent model over-

fitting and enhance robustness. Our contributions are as fol-
lows:

• We conducted a critical examination of the Transformer
architecture and identified that the inherent capabilities
of the native Transformer structure for long sequence
time-series have not been fully explored. These mod-
els embed data points for all dimensions at each time
step, sequentially aggregating them into a single vector,
focusing on capturing dependencies between variables
across different time steps. Without explicitly and ade-
quately mining and utilizing the dependencies between
different time steps in long sequences, their predictive
capabilities are limited. To address this, we propose the
method of multi-skip sequence token embedding.

• We introduce Skip-Timeformer, a Transformer-based
model designed for long sequence forecasting that lever-
ages the dependency on skip-time dimensions. Skip-
Timeformer is one of the few Transformer models ex-
plicitly exploring and utilizing skip-time dependencies
for long sequence forecasting.

• Extensive experimental results on eight real-world
benchmarks demonstrate that Skip-Timeformer consis-
tently achieves state-of-the-art performance on real-
world prediction benchmarks. We conduct in-depth
analyses of token embedding methods and architecture
choices, providing new insights for the future devel-
opment of Transformer-based models in long sequence
forecasting.

2 Related Work
In recent years, Transformer-based models have achieved
state-of-the-art results in numerous time series tasks [Zeng et
al., 2023], particularly in long short-term forecasting (LSTF)
problems [Wu et al., 2020; Wu et al., 2021; Jin et al., 2023].
Here, we summarize some of the mainstream models. Log-
Trans [Li et al., 2019] utilizes convolutional self-attention
layers with LogSparse design to capture local information,
reducing spatial complexity. Informer [Zhou et al., 2021] in-
troduces ProbSparse self-attention, effectively extracting the
most important keywords using extraction techniques. Auto-
former [Wu et al., 2021] incorporates decomposition and au-
tocorrelation ideas from traditional time series analysis meth-
ods. FEDformer [Zhou et al., 2022] employs a Fourier-
enhanced structure to achieve linear complexity. Pyraformer
[Liu et al., 2021] applies pyramid attention modules with
both inter- and intra-scale connections, also maintaining lin-
ear complexity. These models predominantly focus on de-
signing novel mechanisms to reduce the complexity of the
original attention mechanism, thereby achieving better pre-
dictive performance, especially for longer prediction hori-
zons. PatchTST [Nie et al., 2022] takes a different approach
by segmenting time series into subsequence-level patches,
serving as input tokens for the Transformer. This enhances
the local semantic information of the sequence.

It is noteworthy that, unlike previous approaches, we an-
alyze the applicability of Transformer in handling long se-
quence time-series. Our approach aims to make the Trans-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5500



former suitable for long sequence time-series forecasting by
exploring sequence token embeddings.

3 Skip-Timeformer
In the context of multivariate long sequence time series fore-
casting, given historical observations X = {x1, ..., xT } ∈
RT×D with T time steps and D variables, we aim to predict
the future U time steps Y = {yT+1, ..., yT+U} ∈ RU×D. For
convenience, let’s denote x1:T as the set of T time steps rep-
resenting recorded multivariate variables and ȳT :T+U as the
set of multiple variables predicting the future U time steps.

3.1 Multi-skip Sequence Token Embedding
For the Transformer, tokens embedded in it are formed only
by single time steps, resulting in weaker interaction capa-
bility for long sequential data. To address this limitation,
we decided to partition the time series into multiple subse-
quences based on different time intervals, as illustrated in Fig-
ure 1. We propose a method for embedding tokens, known
as multi-skip sequence token embedding. This method in-
volves dividing the multi-variable long sequence into various
subsequences based on a skip step length µ. Subsequently,
to emphasize edge semantic information, we use padding to
generate a series of sequences S1, S2, ..., Sµ. This transfor-
mation converts tokens formed by a single time step into to-
kens formed by multiple skip time steps. It enables the trans-
former to capture time-related dependencies at different time
scales when processing long sequential data. For instance,
certain subsequences can aid in capturing short-term varia-
tions, while others may be more helpful in capturing long-
term trends. The tokens with multiple skip time steps not
only assist the model in adapting to variations across various
time scales but also enhance the model’s generalization abil-
ity, helping prevent performance degradation on other time
scales while overfitting to a specific one.

3.2 Skip-Time Interaction Forecasting
To further enhance the outstanding performance of our pro-
posed method of multi-skip sequence token embedding in
long sequence time series forecasting tasks, we introduce
skip-time interaction forecasting. This conceptual framework
is specifically designed for Transformer models in the con-
text of long sequence forecasting. Our objective is to aug-
ment the Transformer’s ability to handle the data complexity,
prolonged temporal dependencies, and the identification of
hidden temporal patterns within multiple highly similar long
sequences. Hence, we propose skip-time interaction forecast-
ing, as illustrated in Figure 2.

Given the output S ∈ Rµ×T×D of a multi-skip sequence
token embedding layer as input to the skip-time interaction,
where µ and D represent the number of subsequences and di-
mensions, respectively. For simplicity, we use Sµ

i in the fol-
lowing text to denote the vector of all dimensions of the i-th
sub-sequence at time step t. In skip-time interaction forecast-
ing, we directly apply multi-head self-attention (MSA) to all
dimensions of each sub-sequence:

Sskip−time = Si
t +MSAskip−time

(
Si
t , S

i
t , S

i
t

)
(1)

To further refine the concept of skip-time interaction fore-
casting, combining the obtained information with the origi-
nal sequence input helps analyze the dependencies between
sequences missed by multi-skip time steps. We employ skip-
time at the task level to adapt to time series characteristics.
The connection of time interaction information to the original
sequence input is achieved through the skip-time interaction
conditional layer normalization (STICLN) layer. The general
formula for this connection can be expressed as:

STICLN
(
hl,MSA

(
Sl−1

))
(2)

Here, STICLN (·) represents skip-time interaction condi-
tional layer normalization, MSA (·) denotes the attention
layer in the encoder block, and Sl−1 signifies the output state
of the preceding layer l−1 and S0 indicates the multiple sub-
sequences obtained in the embedding layer S1, S2, ..., Sµ. hl

represents the embedding token of the original sequence.

3.3 Skip-Time Interaction Conditional Layer
Normalization

The conditional layer normalization of skip time interaction
integrates the multi-skip sequence tokens into the encoder. In
this context, the encoder’s input comprises the output from
the self-attention layer of the multi-skip sequence tokens and
the embedding token information provided from the origi-
nal sequence. Longer sequences often encompass more time
steps, and the model can benefit from global statistical infor-
mation across the entire sequence. By considering the entire
sequence when computing mean and variance, the model can
better adapt to the global characteristics of the sequence, aid-
ing in capturing long-term dependencies within the sequence.
We normalize the features of the entire sequence information
to ensure each temporal feature carries the same weight for
generating predictions.

Within STICLN , we update α and β based on the multi-
skip sequence token embedding, as they are the two most cru-
cial parameters for normalization. For each time step t and
each sample S

(i)
t,j with D feature dimensions, the proposed

ST is expressed as follows:

αt = α+ kl
(
Sl
)

βt = β + kl
(
Sl
)

θ =
1

l ·D

l∑
i=1

D∑
j=1

S
(i)
t,j

σ =
1

l ·D

l∑
i=1

D∑
j=1

(
S
(i)
t,j − θ

)2

(3)

Here, k (·) represents the linear layer. Scaling and shifting are
applied to the normalized values:

STICLN
(
hl−1, Sl

)
= αt ⊙

hl−1 − θ

σ
+ βt (4)

Where θ and σ represent the mean and standard deviation of
hl−1.

Taking the above considerations into account, the modeling
process for predicting the future sequence of each specific
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Figure 2: Skip-time interaction layer. Used to process arrays of vectors representing multiple subsequence segments of long sequence time-
series, where each vector denotes a fragment of the original sequence. The entire vector array undergoes skip-time interaction to obtain
corresponding dependencies (left). Multi-head self-attention (MSA) is employed within the skip-time interaction to establish connections
between multiple subsequences (right).

variable based on backtracking sequences can be succinctly
described as follows:

h0
t ,
[
S0
1 , S

0
2 , ..., S

0
n

]
= Embedding (x1:T )

H l = STICLN
(
MSA

(
Sl, H l−1

)
, hl

)
H l = Droput

(
H l

)
+ Sl

yT :T+U = Project
(
hL
t

) (5)

Where H = {h1, ..., ht} , H ∈ Rt×D consists of t embed-
ding tokens with D dimensions, hl is the embedding token of
the original sequence, the superscript denotes the layer in-
dex,

[
S0
1 , S

0
2 , ..., S

0
n

]
represents the generated n multi-skip

sequence tokens. These tokens are connected through a fully
connected layer in the embedding, transitioning from RT to
RD, and from RD to RC in the projection. The multi-skip se-
quence tokens and the output of the previous layer STICLN
interact through an MSA layer, and the obtained information
is passed into the l-th layer along with the original sequence
tokens. We propose an approach that gradually introduces
Bernoulli noise to the training data through dropout, progres-
sively increasing the difficulty of the training task and the di-
versity of the data. This can effectively reduce overfitting and
enhance model performance. The output of the L-th layer is
linearly projected, denoted as hL

t to obtain the final predic-
tion. The overall framework is illustrated in Figure 3, where
the proposed Skip-Timeformer leverages the simpler encoder
architecture of Transformer [Vaswani et al., 2017], consist-
ing of embedding, STICLN , projection, and Transformer
blocks.

4 Experiments
We thoroughly evaluated the proposed Skip-Timeformer
across various time series forecasting applications, validat-
ing the framework’s generality. Additionally, we conducted
an in-depth investigation into the impact of the Transformer
components’ skip-time interaction on the long sequence time-
series dimension.

4.1 Datasets
In our experiment, we extensively incorporated eight real-
world datasets, comprising four ETT datasets employed by
Autoformer [Wu et al., 2021] (ETTh1, ETTh2, ETTm1,
ETTm2), as well as datasets related to Weather, Electricity,
Exchange and Traffic. These datasets have been widely uti-
lized for benchmarking.

4.2 Baselines
We meticulously selected eight widely recognized predictive
models as our benchmarks, encompassing (1) Transformer-
based approaches: Informer [Zhou et al., 2021], Autoformer
[Wu et al., 2021], FEDformer [Zhou et al., 2022], ETSformer
[Woo et al., 2022], PatchTST [Nie et al., 2022], Crossformer
[Zhang and Yan, 2022]; (2) Linear-based methods: DLinear
[Zeng et al., 2023]; (3) TCN-based approaches: TimesNet
[Wu et al., 2022a].

4.3 Main Results
The comprehensive prediction results are presented in Table
1, with the superior outcomes highlighted in red. Lower val-
ues of MSE and MAE indicate more accurate predictions.
The proposed Skip-Timeformer achieves consistently state-
of-the-art performance. It is noteworthy that PatchTST, con-
sidered the current best model for time series forecasting,
falls short on multiple datasets compared to our model. This
discrepancy can be attributed to the high-frequency fluctu-
ations in long sequences of the datasets, and the patching
mechanism of PatchTST may emphasize local attention, lead-
ing to failures in predicting long-term trends.

In contrast, our proposed approach, leveraging an
aggregation-based representation of the entire series varia-
tion, proves more adept at handling such scenarios. Addition-
ally, as a representative explicitly designed to capture period-
icity, TimesNet’s performance still lags behind that of Skip-
Timeformer. This suggests that representing time series as a
2D structure still falls short in effectively capturing the long
sequence trends and patterns in the sequences.

Therefore, Transformer-based components demonstrate
competence in long sequence time-series modeling, and the
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Figure 3: Overall framework of Skip-Timeformer. Our model comprises three main elements: (1) Multiple subsequences embedded into
tokens based on time intervals. (2) Applying multi-head self-attention to multi-skip sequence token embedding to enhance interpretability
and reveal correlations among multiple subsequences. (3) Employing skip-time interaction conditional layer normalization (STICLN) to
reduce differences between subsequences. Dropout is used to introduce Bernoulli noise to training data, effectively reducing overfitting.
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proposed Skip-Timeformer’s architecture with skip-time in-
teractions proves effective in real-world long sequence time-
series forecasting scenarios.

4.4 Skip-Timeformer Generality
In this section, we evaluate the Skip-Timeformer by applying
our framework to Transformer and its variants, which com-
monly deal with the secondary complexity of self-attention
mechanisms, including Transformer, Informer, Flowformer
[Wu et al., 2022b], and FlashAttention [Dao et al., 2022].
Surprising and promising findings are demonstrated, indicat-
ing that skip-time forecasting can enhance the performance
and efficiency of transformer-based predictors, generalize to

unseen variables, and better utilize historical observations.
We assess the Transformer and the corresponding Skip-

Timeformer based on the performance improvements re-
ported in Table 2 and 3. It is noteworthy that the frame-
work continuously improves various Transformers. Over-
all, the average enhancement rates for Transformer, Informer,
Flowformer, and Flashformer on the ETTh1, Weather, and
Exchange datasets are 57.3%, 42.6%, 28.5%, 57.8%, and
47.8%, respectively, revealing the inappropriate use of the
Transformer architecture in time series forecasting. Further-
more, due to the skip-time interaction forecasting structure,
our framework makes it easier for attention mechanisms to
capture periodic patterns and trends between long sequences.
Therefore, the idea of Skip-Timeformer can be widely ap-
plied to transformer-based predictors to leverage the flourish-
ing efficient attention mechanisms.

4.5 Increasing Lookback Length
Some previous studies have found that the predictive perfor-
mance of the Transformer may not necessarily improve with
an increase in lookback length [Nie et al., 2022; Zeng et al.,
2023]. This can be attributed to the continuous growth of
data, making it challenging for attention mechanisms to cap-
ture true trends when dealing with long sequences. Existing
research focuses on performance improvement, usually based
on linear predictions, with theoretical statistical support [Box
and Jenkins, 1968], utilizing expanded historical information
to enhance predictive performance. As we partition the se-
quence into multiple subsequences controlled by skip-time
length, we evaluate the performance of both the Transformer
and Skip-Timeformer as the lookback length increases, as
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Models Skip-Timeformer PatchTST TimesNet DLinear ETSformer Crossformer FEDformer Autoformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1

96 0.322 0.362 0.332 0.370 0.338 0.375 0.345 0.372 0.375 0.398 0.374 0.400 0.379 0.419 0.505 0.475
192 0.366 0.387 0.371 0.385 0.374 0.387 0.380 0.389 0.408 0.410 0.400 0.407 0.426 0.441 0.553 0.496
336 0.395 0.408 0.404 0.406 0.410 0.411 0.413 0.413 0.435 0.428 0.438 0.438 0.445 0.459 0.621 0.537
720 0.454 0.443 0.462 0.456 0.478 0.450 0.474 0.453 0.499 0.462 0.527 0.502 0.543 0.490 0.671 0.561
Avg 0.384 0.400 0.392 0.404 0.400 0.405 0.403 0.406 0.429 0.424 0.434 0.436 0.448 0.452 0.587 0.517

ETTm2

96 0.177 0.258 0.180 0.262 0.187 0.267 0.193 0.292 0.189 0.280 0.209 0.308 0.203 0.287 0.255 0.339
192 0.241 0.301 0.252 0.313 0.249 0.308 0.284 0.362 0.253 0.319 0.311 0.382 0.269 0.328 0.281 0.340
336 0.300 0.339 0.318 0.350 0.321 0.351 0.369 0.427 0.314 0.357 0.442 0.466 0.325 0.366 0.339 0.372
720 0.400 0.390 0.411 0.405 0.408 0.403 0.554 0.522 0.414 0.413 0.675 0.587 0.421 0.415 0.433 0.432
Avg 0.279 0.322 0.290 0.332 0.291 0.332 0.350 0.400 0.292 0.342 0.409 0.435 0.304 0.349 0.327 0.370

ETTh1

96 0.372 0.396 0.376 0.400 0.384 0.402 0.386 0.400 0.494 0.479 0.305 0.367 0.376 0.419 0.449 0.459
192 0.416 0.424 0.422 0.427 0.436 0.429 0.437 0.432 0.538 0.504 0.475 0.462 0.420 0.448 0.500 0.482
336 0.451 0.444 0.464 0.454 0.491 0.469 0.481 0.459 0.574 0.521 0.518 0.488 0.459 0.465 0.521 0.496
720 0.470 0.471 0.471 0.476 0.521 0.500 0.519 0.516 0.562 0.535 0.547 0.533 0.506 0.507 0.514 0.512
Avg 0.427 0.433 0.433 0.439 0.458 0.450 0.455 0.451 0.542 0.509 0.461 0.462 0.440 0.459 0.496 0.487

ETTh2

96 0.287 0.338 0.302 0.348 0.340 0.374 0.333 0.387 0.340 0.391 0.297 0.349 0.358 0.397 0.346 0.388
192 0.359 0.385 0.388 0.400 0.402 0.414 0.477 0.476 0.430 0.439 0.520 0.504 0.429 0.439 0.456 0.452
336 0.406 0.425 0.426 0.433 0.452 0.452 0.594 0.541 0.485 0.479 0.626 0.559 0.496 0.487 0.482 0.486
720 0.411 0.434 0.431 0.446 0.462 0.468 0.831 0.657 0.500 0.497 0.863 0.672 0.463 0.474 0.515 0.511
Avg 0.365 0.395 0.386 0.406 0.414 0.427 0.558 0.515 0.438 0.451 0.576 0.521 0.436 0.449 0.449 0.459

Electricity

96 0.181 0.271 0.195 0.285 0.168 0.272 0.197 0.282 0.187 0.304 0.219 0.314 0.193 0.308 0.201 0.317
192 0.186 0.275 0.199 0.289 0.184 0.289 0.196 0.285 0.199 0.315 0.231 0.322 0.201 0.315 0.222 0.334
336 0.207 0.296 0.215 0.305 0.198 0.300 0.209 0.301 0.212 0.329 0.246 0.337 0.214 0.329 0.231 0.338
720 0.247 0.326 0.256 0.337 0.220 0.320 0.245 0.333 0.233 0.345 0.280 0.363 0.246 0.355 0.254 0.361
Avg 0.205 0.292 0.216 0.304 0.192 0.295 0.211 0.300 0.207 0.323 0.244 0.334 0.213 0.326 0.227 0.337

Exchange

96 0.079 0.197 0.080 0.199 0.107 0.234 0.088 0.218 0.085 0.204 0.116 0.262 0.148 0.278 0.197 0.323
192 0.167 0.291 0.173 0.296 0.226 0.344 0.176 0.315 0.182 0.303 0.215 0.359 0.271 0.380 0.300 0.369
336 0.316 0.407 0.323 0.412 0.367 0.448 0.313 0.427 0.348 0.428 0.377 0.466 0.460 0.500 0.509 0.524
720 0.787 0.666 0.836 0.688 0.964 0.746 0.839 0.695 1.025 0.774 0.831 0.699 1.195 0.841 1.447 0.941
Avg 0.337 0.390 0.353 0.398 0.416 0.443 0.354 0.413 0.410 0.427 0.384 0.446 0.518 0.499 0.613 0.539

Weather

96 0.171 0.212 0.174 0.214 0.172 0.220 0.196 0.255 0.197 0.281 0.158 0.230 0.217 0.296 0.266 0.336
192 0.219 0.254 0.221 0.254 0.219 0.261 0.237 0.296 0.237 0.312 0.206 0.277 0.276 0.336 0.307 0.367
336 0.274 0.295 0.278 0.296 0.280 0.306 0.283 0.335 0.298 0.353 0.272 0.335 0.339 0.380 0.359 0.395
720 0.353 0.346 0.358 0.349 0.365 0.359 0.345 0.381 0.352 0.288 0.398 0.418 0.403 0.428 0.419 0.428
Avg 0.254 0.276 0.257 0.278 0.259 0.286 0.265 0.316 0.271 0.308 0.258 0.315 0.308 0.360 0.337 0.381

Traffic

96 0.492 0.326 0.544 0.359 0.593 0.321 0.650 0.396 0.607 0.392 0.522 0.390 0.587 0.366 0.613 0.388
192 0.491 0.324 0.540 0.354 0.617 0.336 0.598 0.370 0.621 0.399 0.530 0.393 0.604 0.373 0.616 0.382
336 0.505 0.327 0.551 0.358 0.629 0.336 0.605 0.373 0.622 0.396 0.558 0.405 0.621 0.383 0.622 0.337
720 0.543 0.350 0.589 0.375 0.640 0.350 0.645 0.394 0.632 0.396 0.589 0.428 0.626 0.382 0.660 0.408
Avg 0.507 0.331 0.556 0.361 0.619 0.335 0.624 0.383 0.620 0.395 0.549 0.404 0.609 0.376 0.627 0.378

Table 1: Full results of multivariate forecasting. We follow the configuration of TimesNet and compare a variety of competitive models at
different prediction lengths. The input sequence length for all baselines is t = 96, and the prediction lengths are s ∈ {96, 192, 336, 720}.
For the ETT, Electricity, Weather, and Traffic datasets, µ is set to 2, while for the Exchange dataset, µ is set to 4, “Avg” represents the average
results across all four prediction lengths.

Models Transformer Informer Flowformer Flashformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1
Original 1.003 0.807 0.558 0.513 1.046 0.751 0.987 0.799

Skip-time 0.427 0.433 0.431 0.434 0.425 0.427 0.444 0.442
Promotion 57% 46.30% 22.70% 15.30% 59.30% 43.10% 55% 44.60%

Weather
Original 0.657 0.572 0.633 0.548 0.632 0.569 0.658 0.574

Skip-time 0.254 0.276 0.257 0.278 0.261 0.280 0.257 0.279
Promotion 61.30% 51.70% 37.60% 49.20% 58.70% 50.70% 60.90% 51.30%

Exchange
Original 1.208 0.88 1.361 0.922 1.461 0.952 1.254 0.884

Skip-time 0.337 0.39 0.349 0.396 0.342 0.393 0.355 0.400
Promotion 72.10% 56% 74.30% 57% 76.50% 58.70% 71.60% 54.70%

Table 2: Our skip-time interaction forecasting framework achieves
significant performance improvement. Detailed results in the Table
3.

shown in Table 4.
The results surprisingly validate the rationale of utilizing

multi-skip sequence embeddings in the time dimension. This
allows the Transformer to benefit from an extended lookback
window, leading to more accurate predictions.

4.6 Model Analysis
In Table 5, we investigate the impact of multi-skip sequence
tokens and skip-time interaction forecasting. We use Times-
Net as the state-of-the-art model benchmark for long se-

quence time-series forecasting. By comparing the results
with and without the corresponding multi-skip sequence to-
kens (MST) and skip-time interaction forecasting (STIF), we
observe that both are crucial factors in improving predictive
performance.

Series Representation Analysis
To further substantiate the claim that skip-time interaction
units are more adept at extracting series representations, we
conduct representation analysis using Centered Kernel Align-
ment (CKA) similarity [Kornblith et al., 2019]. Higher CKA
values indicate a greater degree of similarity in representa-
tions. For both Transformer variants and Skip-Timeformer,
we calculate the CKA between the output features after the
first layer and those after the last layer, both embedded with
multi-skip sequence tokens.

It is important to note that previous studies have demon-
strated a preference for higher CKA similarity in time series
forecasting, considering it as a low-level generation task, to
achieve improved performance [Wu et al., 2022a; Dong et al.,
2023]. As illustrated in Figure 4, Skip-Timeformer, STIn-
former, STFlowformer, and STFlashformer, through skip-
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Models
Metric

Transformer Informer Flowformer Flashformer
MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

Original

96 0.989 0.787 0.873 0.707 0.889 0.728 0.936 0.762
192 0.886 0.743 0.416 0.424 0.798 0.688 0.879 0.737
336 0.978 0.805 0.451 0.444 0.889 0.756 0.970 0.801
720 1.159 0.895 0.494 0.48 1.608 0.833 1.165 0.899
Avg 1.003 0.807 0.558 0.513 1.046 0.751 0.987 0.799

Skip-time

96 0.372 0.396 0.382 0.404 0.373 0.391 0.382 0.404
192 0.416 0.424 0.423 0.427 0.418 0.421 0.434 0.436
336 0.451 0.444 0.458 0.445 0.448 0.437 0.467 0.451
720 0.471 0.471 0.464 0.462 0.462 0.460 0.494 0.477
Avg 0.427 0.433 0.431 0.434 0.425 0.427 0.444 0.442

Weather

Original

96 0.395 0.427 0.300 0.384 0.304 0.383 0.388 0.425
192 0.619 0.56 0.598 0.544 0.570 0.554 0.619 0.560
336 0.689 0.594 0.578 0.523 0.707 0.601 0.698 0.600
720 0.926 0.710 1.059 0.741 0.950 0.741 0.930 0.711
Avg 0.657 0.572 0.633 0.548 0.632 0.569 0.658 0.574

Skip-time

96 0.171 0.212 0.174 0.215 0.180 0.219 0.176 0.219
192 0.219 0.254 0.222 0.255 0.227 0.259 0.222 0.256
336 0.274 0.295 0.278 0.296 0.281 0.297 0.276 0.296
720 0.353 0.346 0.355 0.346 0.358 0.348 0.355 0.347
Avg 0.254 0.276 0.257 0.278 0.261 0.280 0.257 0.279

Exchange

Original

96 0.686 0.637 0.795 0.713 0.648 0.616 0.671 0.632
192 1.029 0.786 1.035 0.818 1.197 0.849 1.022 0.786
336 1.993 1.158 1.518 0.995 2.081 1.193 1.982 1.156
720 1.125 0.940 2.098 1.163 1.920 1.150 1.341 0.962
Avg 1.208 0.880 1.361 0.922 1.461 0.952 1.254 0.884

Skip-time

96 0.079 0.197 0.081 0.199 0.079 0.198 0.083 0.201
192 0.167 0.291 0.17 0.297 0.172 0.295 0.174 0.298
336 0.316 0.407 0.322 0.411 0.325 0.412 0.327 0.415
720 0.787 0.666 0.824 0.680 0.795 0.670 0.838 0.688
Avg 0.337 0.390 0.349 0.396 0.342 0.393 0.355 0.400

Table 3: The skip-time interaction forecasting framework signifi-
cantly improves the performance in several popular models.

Models STTransformer STInformer STFlowformer STFlashformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE

Weather

48 0.211 0.248 0.205 0.238 0.209 0.239 0.178 0.222
96 0.171 0.212 0.174 0.215 0.180 0.219 0.176 0.219

192 0.159 0.202 0.160 0.205 0.160 0.203 0.160 0.202
336 0.153 0.202 0.150 0.200 0.151 0.200 0.152 0.201
720 0.153 0.208 0.149 0.202 0.145 0.196 0.149 0.200

Table 4: We evaluate the predictive performance for lookback
lengths T ∈ {48, 96, 192, 336, 720} with a fixed prediction length
S = 96. While the performance of Transformer-based predictors
may not necessarily benefit from an increase in lookback length,
our skip-time forecasting framework enhances the performance of
Transformer-based models on an extended lookback window.

time interaction, learn representations more conducive to long
sequence series contexts, consequently leading to more ac-
curate predictions. The results further indicate that Skip-
Timeformer merits a fundamental reconsideration of the pre-
dictive framework.

Partial Sequence Token Analysis
In our designed Skip-Timeformer, training can become cum-
bersome and challenging when dealing with input sequences
that are excessively long, owing to the secondary complex-
ity of self-attention. To address this challenge, in addition to
introducing the skip-time interaction forecasting mechanism,
we also leverage advanced techniques from previously em-
bedded multi-skip sequence tokens. Specifically, we strate-
gically opt to train the model using only a subset of the se-
quences.

Experimental results, as demonstrated in Table 6, prove
that the performance of the model with partial sequence to-
kens is only slightly inferior to that with the full sequence
when handling exchange rate datasets. Simultaneously, this
approach successfully reduces memory consumption, provid-
ing robust support for the efficient training of the model.

Models Skip-Transformer TimesNetMST+STIF MST STIF
Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.372 0.396 0.380 0.396 0.381 0.403 0.384 0.402
192 0.416 0.424 0.432 0.428 0.429 0.435 0.436 0.429
336 0.451 0.444 0.467 0.444 0.461 0.448 0.491 0.469
720 0.471 0.471 0.490 0.474 0.494 0.480 0.521 0.500

ETTh2

96 0.287 0.338 0.292 0.342 0.433 0.424 0.340 0.374
192 0.359 0.385 0.362 0.387 0.364 0.388 0.402 0.414
336 0.406 0.425 0.424 0.439 0.414 0.429 0.452 0.452
720 0.411 0.434 0.420 0.442 0.421 0.441 0.462 0.468

Exchange

96 0.079 0.197 0.082 0.201 0.080 0.198 0.107 0.234
192 0.167 0.291 0.172 0.294 0.174 0.297 0.226 0.344
336 0.316 0.407 0.323 0.412 0.327 0.414 0.367 0.448
720 0.776 0.661 0.789 0.666 0.805 0.672 0.964 0.746

Weather

96 0.171 0.212 0.175 0.214 0.172 0.214 0.172 0.220
192 0.219 0.254 0.223 0.256 0.221 0.256 0.219 0.261
336 0.274 0.295 0.279 0.297 0.275 0.295 0.280 0.306
720 0.353 0.346 0.356 0.348 0.350 0.344 0.365 0.359

Table 5: Multi-skip sequence token embedding and skip-time inter-
action forecasting in Skip-Timeformer experimental analysis.

Models 25% 50% 75% 100%
Metric MSE MAE MSE MAE MSE MAE MSE MAE

Exchage

96 0.084 0.203 0.080 0.200 0.084 0.203 0.079 0.197
192 0.175 0.300 0.171 0.294 0.172 0.298 0.167 0.291
336 0.317 0.409 0.317 0.410 0.318 0.412 0.316 0.407
720 0.793 0.675 0.792 0.675 0.791 0.675 0.787 0.666

Table 6: The proportion of the subsequence to the entire sequence
is 25%, 50%, 75%, 100%. The performance of training variables
in each subsequence is only slightly inferior, but the memory usage
during the training process significantly decreases as the proportion
decreases.

5 Conclusion
In this paper, we highlight that the conventional architec-
ture of Transformer is not suitable for discovering fundamen-
tal sequence representations and inter-sequence correlations
in long sequence time-series forecasting. Our approach is
specifically designed to address the unique data characteris-
tics of the LSTF dataset. Specifically, the multi-skip sequence
token embedding embeds input data into a one-dimensional
vector array, preserving information across multiple time di-
mensions. The skip-time interaction forecasting aims to cap-
ture dependencies across time dimensions of the embedded
array. Through extensive experiments, we demonstrate that
skip-time interaction forecasting enhances the model’s under-
standing of long sequence patterns from highly similar train-
ing samples. Additionally, skip-time interaction forecast-
ing effectively addresses overfitting issues in LSTF. Across
eight popular datasets, Skip-Timeformer achieves state-of-
the-art performance in long sequence forecasting. Compared
to previous work, it benefits from longer lookback windows
and demonstrates remarkable framework generality in vari-
ous model scenarios. In the future, we plan to explore the
application of Skip-Timeformer in diverse time series analy-
sis tasks.
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