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Abstract
Graph-based consistency principle has been success-
fully applied to many semi-supervised problems in
machine learning. Its performance largely depends
on the quality of augmented graphs, which has been
recently proven that revealing graph properties and
maintaining the invariance of graphs are crucial for
good performance. However, existing topology- or
feature-based augmentation methods are spectrally
non-localized – important spectrums are disturbed
throughout the entire frequency range, and their
invariance may not be well preserved. Efforts on
this issue remain to be limited. This paper pro-
poses a simple yet effective model called Localized
SPectral AugmentatioN (LSPAN), which perturbs a
concentrated part of graph spectrum with equivalent
intensity using Fourier orthogonality, so as to en-
hance graph spectrum preservation as well as model
prediction. Moreover, it also avoids the significant
training time of inverse Fourier transform. Extensive
empirical evaluation on real-world datasets clearly
shows the performance gain of spectrally localized
augmentation, as well as its good convergence and
efficiency compared to existing graph methods.

1 Introduction
Graph machine learning receives considerable attention in
recent years due to its ability of exploiting rich information
encoded in non-Euclidean data and has been applied to many
real-world applications [Fout et al., 2017; Yao et al., 2019;
Wu et al., 2020a]. One of the main focuses of this field, graph
semi-supervised learning [Zhu et al., 2003; Kipf and Welling,
2017], aims to classify unlabeled nodes in a scarcely labeled
graph [Wu et al., 2020b]. However, although Graph Neural
Networks (GNNs) [Gori et al., 2005; Scarselli et al., 2008;
Kipf and Welling, 2017; Veličković et al., 2018; Hamilton
et al., 2017] are introduced to provide powerful solutions for
this task, unlabeled nodes that are abundant and informative
in practical scenarios [Zhou, 2018; Li et al., 2019; Miyato et
al., 2018] are usually not well used – GNNs are trained only
over predictions of labeled nodes and the unlabeled nodes are
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not involved. Recently, graph consistency learning [Park et al.,
2021; Bo et al., 2022; Feng et al., 2020] shows a promising
framework for utilizing unlabeled nodes by minimizing the
predictions divergence of them across different augmented
graphs [Zhao et al., 2022; Ding et al., 2022].

Designed for exploiting invariant information with aug-
mented graphs, the performance of graph consistency learning
highly relies on the quality of adopted graph augmentation
methods. Existing graph augmentation approaches are usu-
ally divided into two categories: topology-based approaches
[Rong et al., 2020; Zhao et al., 2021; Lin et al., 2023] generate
different graph structures by perturbing the adjacency matrix;
feature-based approaches [Deng et al., 2019; Feng et al., 2019;
Kong et al., 2020; Liu et al., 2022b] perturb node attributes
within the feature matrix. In general, previous approaches
typically define graph augmentation in the spatial domain (i.e.,
they work by perturbing either graph structures or node fea-
tures). Note that although there are recent works like SPAN
[Lin et al., 2023] considering spectral information, the spec-
tral knowledge is only used for supervising edge or feature
perturbations and they still fall into spatial augmentations.

In this paper, we suggest existing spatial-based augmenta-
tion methods can be improved from a new spectral perspective.
Specifically, the structure of graph spectrum proves critical
in revealing significant graph properties both structurally and
semantically [Chung, 1997; Kahale, 1995; Lee et al., 2014;
Hammond et al., 2013]. Therefore, preserving the informa-
tive spectrum structure is crucial to ensure a good model per-
formance. However, in spatial-domain-based augmentation
approaches, the spectrum of an input graph is perturbed at
all range of graph frequencies. For example, when an edge
is dropped, the spectrum on all Fourier bases can be modi-
fied. We define this kind of augmentation as spectrally non-
localized. In such cases, the relative intensity and location
between different spectrum components can be significantly al-
tered and structure of graph spectrum can be largely changed,
which may lead to notable information loss in augmented
graphs and therefore hinder graph learning. To this end, we
hope to design a graph augmentation approach that is able to
enhance the preservation of the graph spectrum structure, so
as to improve the performance of graph consistency learning.

One promising solution is to keep the majority of graph
spectrum unchanged by only perturbing a concentrated part
of it, which is named by Localized SPectral AugmentatioN
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Figure 1: Original spectrum of the CORA graph and the ones augmented in LSPAN and non-localized methods. Red lines indicate unchanged
spectrum components and blue lines indicate the changed ones. Unlike existing augmentation methods that are oftentimes non-localized in
spectral domain, which perturb the important graph spectrum throughout the entire frequency range and can cause a large variation to graph
spectrum, the proposed localized spectral augmentation only perturbs the informative graph spectrum within a small localized “block”. In this
way, the change in graph spectrum can be less dominant and the original graph spectrum structure is mostly retained. LSPAN therefore ensures
a better preservation of graph information.

Figure 2: The performance of graph learning decreases significantly
with graphs augmented by non-localized augmentations. By contrast,
LSPAN better preserves the graph information and maintains a good
performance.

(LSPAN). Specifically, in LSPAN approach, graph spectrum
is not perturbed in the entire frequency range. By contrast,
only a small localized “block” of spectrum is modified. In this
way, the informative graph spectrum is mostly retained and
the graph information can be better preserved, which ensures
a better generalization performance for model prediction. This
is illustrated in Figure 1 – the graph spectrum is only per-
turbed within a small scope and is mostly retained in LSPAN
method, but the overall spectrum structure is largely changed
in non-localized ones. Figure 2 shows the prediction accu-
racy of GCN on original CORA graph, CORA perturbed by
non-localized methods and LSPAN (respectively with drop
node/edge probability around 0.5 and spectral perturbation rate
around 1/20, which are used in prior works [Feng et al., 2020;
Liu et al., 2022b] and ours to report final results to ensure fair
comparison). We observe that the performance of graph learn-
ing decreases significantly with non-localized augmentations
while LSPAN still maintains a good performance, which veri-
fies that the graph information is lost much in non-localized
augmentations but well preserved in the proposed LSPAN.

To implement LSPAN, we directly define graph augmen-
tation in the spectral domain. To avoid the time-consuming
inverse Fourier transform during training, we introduce the
Fourier basis orthogonality, which enables LSPAN to be effi-
ciently performed by simple feature concatenation. Extensive
empirical evaluation on real-world benchmarks clearly shows

the significant performance gain of our method, as well as
good convergence properties compared to existing ones.

We summarize our main contributions as follows:

• We identify that existing graph augmentations can cause
graph information loss because they are non-localized in
spectral domain – graph spectrums that contain important
graph information are perturbed over the entire frequency
range and their structures can be largely changed.

• We propose a novel spectrally localized augmentation
method called LSPAN, which only perturbs the graph
spectrum within a small frequency scope and therefore
ensures a better preservation of the graph information.

• We conduct extensive empirical studies on six real-world
benchmark datasets across four domains, which clearly
show the advanced performance of our proposed method.

2 Preliminaries
Notations. Let G = (X,A) be a connected undirected
graph with N nodes and E edges. X ∈ RN×F denotes
the feature matrix, where F indicates the number of node
features. A ∈ {0, 1}N×N denotes the adjacency matrix,
where Aij = 1 if edge exists between node i and j and
Aij = 0 otherwise. Then, the graph Laplacian is defined as
L = D−A ∈ RN×N , where D indicates the diagonal degree
matrix, namely Dii =

∑
j Aij . The symmetric normalized

adjacency matrix is further defined as Â = D̃− 1
2 ÃD̃− 1

2 ,
where Ã represents the adjacency matrix for a graph with
added self-loops and D̃ is the diagonal degree matrix of Ã.

Consistency-Based GNN Methods. Consistency-based
graph semi-supervised learning [Park et al., 2021; Bo et al.,
2022; Feng et al., 2020] provides powerful framework for
exploiting unlabeled nodes by minimizing the prediction di-
vergence of them across different augmented graphs G′ =
(X′,A′) [Zhao et al., 2022; Ding et al., 2022], where X′ and
A′ indicate the augmented feature and adjacency matrix. They
generally expand the loss function as: L = Lsup + γLcon,
where Lsup indicates the supervised loss calculated on differ-
ent graph views, Lcon indicates the consistency regularization
loss used for smoothing the label predictions across augmented
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graph samples and γ controls the strength of it. Augmented
graphs are significantly involved in the calculation of Lsup

and Lcon. Therefore, the performance of graph consistency
learning highly relies on the quality of adopted augmentation
approaches. Our work focuses on designing an augmentation
method that is spectrally localized and improves the graph
spectrum preservation, so as to enhance the model perfor-
mance. Next, we briefly review the graph spectrum theory.

Introduction to Graph Spectrum. Digital Signal Process-
ing converts a signal into spectral domain and is adopted for
graphs by Graph Fourier transform (GFT) [Shuman et al.,
2013]. Specifically, In GFT, the real symmetric matrix L is
orthogonally diagonalized by: L = UΛUT . We define the
eigenvalues {λi}Ni=1 in Λ as graph frequencies (we assume
that λ1 ≤ λ2 · · · ≤ λN ). They reveal the distribution of graph
spectrum and decide where spectrum components are located.
We further define the graph Fourier transform as: X̃ = UTX

and inverse graph Fourier transform as: X = UX̃, where X

indicates the input graph feature matrix and X̃ the feature ma-
trix projected into the spectral domain. In particular, the i-th
column ui of U is defined as the Fourier basis at frequency
λi and x̃i = uT

i X is the projection of the graph features on
this basis, which therefore reveals the strength of spectrum
at frequency λi. Overall, frequencies {λi}Ni=1 decide where
components of spectrum are located and feature projections
{x̃i}Ni=1 reveal the strength of them. The graph spectrum
encoded in {λi}Ni=1 and {x̃i}Ni=1 significantly reveals graph
properties and is highly desired to be preserved for good learn-
ing performance [Chung, 1997; Kahale, 1995; Lee et al., 2014;
Hammond et al., 2013].

3 LSPAN: Spectrally Localized Augmentation
on Graphs

In this section, we introduce the proposed Localized SPectral
AugmentatioN (LSPAN) to preserve important graph spectrum
structure for graph consistency learning. Specifically, we first
view graph augmentations from the spectral perspective and
define spectrally localized graph augmentation based on this.
Then, we implement the localized graph augmentation with
orthogonality of Fourier bases, which totally avoids the time-
consuming training time Fourier inverse transform and makes
our method easily applicable.

3.1 Viewing Graph Augmentation from the
Spectral Perspective

To define spectrally localized augmentation on graphs, we first
formalize the graph augmentations in the spectral domain by
viewing them as perturbations to graph frequencies and feature
projections.

Specifically, as mentioned in Section 2, the spectrum of a
graph is encode in {λi}Ni=1 and {x̃i}Ni=1, where {λi}Ni=1 are
eigenvalues of graph Laplacian L = D−A and are defined
as graph frequencies, which reveal the location distribution
of spectrum components. On the other hand, {x̃i}Ni=1 are
projections of input graph feature matrix on Fourier bases
{ui}Ni=1, namely x̃i = uT

i X. ui is the i-th eigenvector of
graph Laplacian and defined as the Fourier basis at frequency

λi. Therefore, x̃i is the feature projection on this basis and
reveals the strength of spectrum component at frequency λi.

By this, graph augmentations in the spectral domain can
be defined by perturbations on graph frequencies {λi}Ni=1 and
feature projections {x̃i}Ni=1 as follows:

Definition 1 (Spectral Augmentation on Graphs). Given
a graph with frequencies {λi}Ni=1 and feature projections
{x̃i}Ni=1, the spectral augmentation on it is defined as:

AUG(λi, x̃i) = (λi +∆λi, x̃i +∆x̃i), i ∈ P, (1)

where constant ∆λi and vector ∆x̃i denote the perturba-
tions on the i-th graph frequency and i-th feature projection.
P is a set of numbers indicating the locations of perturbed
spectrum components.

Based on this, spatial graph augmentations can be formal-
ized in spectral domain as follows:

Topo-based : AUG(λi, x̃i) = (λi +∆λi, x̃i +∆x̃i),

i = 1, 2, · · · , N ;

Feature-based : AUG(λi, x̃i) = (λi, x̃i +∆x̃i),

i = 1, 2, · · · , N. (2)

The proofs are deferred to Appendix A. We observe that,
feature augmentation only perturbs strength of spectrum com-
ponents revealed by projections x̃i while topology augmenta-
tion also perturbs locations of spectrum components revealed
by frequencies λi. However, regardless of the kind of per-
turbation, the entire range of spectrum components can be
perturbed (i = 1, 2, · · · , N ) and the spectrum structure may
deviate from the original one – usually ∆λi ̸= ∆λj and
∆x̃i ̸= ∆x̃j , which means the relative intensity and location
of spectrum components can be significantly altered. There-
fore, we propose to better retain the spectrum structure by
narrowing and localizing the range of perturbation.

3.2 Defining Spectrally Localized Augmentation
To improve the preservation of graph spectrum, we propose to
use spectrally localized augmentation where we only perturb
a concentrated part of the spectrum. In this way, we restrict
the range of perturbable spectrum to a localized “block” and
the informative spectral-domain structure is mostly retained.
Specifically, the localized augmentation is defined as follows:

Definition 2 (Localized Spectral Augmentation on Graphs).
Given a graph with frequencies {λi}Ni=1 and feature projec-
tions {x̃i}Ni=1, the localized spectral augmentation on it is
defined as:

AUGloc(λi, x̃i) =

{
(λi, x̃i +∆x̃i), i ∈ [m, m+ n− 1];
(λi, x̃i), i /∈ [m, m+ n− 1],

(3)
where vector ∆x̃i denotes the perturbation on the i-th fea-

ture projection.

We ensure m ≥ 1 and m+ n ≤ N + 1. As can be seen, in
proposed localized augmentation, frequencies {λi}Ni=1 remain
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unchanged and feature projections {x̃i}Ni=1 are only perturbed
within a concentrated frequency range (i ∈ [m, m+ n− 1]).
In this way, only n spectrum components are perturbed and
the structure of graph spectrum is better preserved as shown
in Figure 1.

After performing augmentation in the spectral domain, we
then transform the perturbed graph back to spatial domain
for graph consistency learning. Specifically, we aim to re-
cover the graph G′ with adjacency matrix A′ and feature ma-
trix X′ from augmented frequencies and feature projections
{λ′

i, x̃
′
i}Ni=1 = {AUG(λi, x̃i)}Ni=1. As frequencies {λi}Ni=1

remain unchanged, we simply let A′ = A to preserve the
graph Laplacian. Then, the feature matrix is recovered by
inverse Fourier transform: X′ = UX̃′. Remind that U is the
eigenvector matrix of graph Laplacian, namely L = UΛUT .
X̃′ denotes the augmented feature projection matrix composed
of {x̃′

i}Ni=1, namely X̃′ =
[
x̃′T
1 , x̃′T

2 , · · · , x̃′T
N

]T
. Overall, we

let A′ = A and X′ = U
[
x̃′T
1 , x̃′T

2 , · · · , x̃′T
N

]T
.

However, in this augmentation, although matrix U and
vectors {x̃i}Ni=1 are pre-calculated, the application of Fourier
inverse transform X′ = UX̃′ is time-consuming. To address
this issue, we simplify the localized augmentation and use the
orthogonality of Fourier bases to implement it.

3.3 Implementing Localized Augmentation with
Fourier Orthogonality

To avoid time-consuming Fourier inverse transform at training
time, we implement localized spectral augmentation with the
orthogonality of Fourier bases. By this, the proposed aug-
mentation can be performed by simple feature concatenation
in spatial domain and the training time Fourier transform is
totally avoided. Specifically, we first redefine the localized
augmentation as:

AUGloc(λi, x̃i) =

{
(λi, [x̃i ; T ]), i ∈ [m, m+ n− 1];
(λi, [x̃i ; 0]), i /∈ [m, m+ n− 1],

(4)
where two simplification tricks are applied. First, the per-

turbation to feature projection is redefined as (x̃i +∆x̃i) →
[x̃i ; T ] where [· ; ·] indicates vector or matrix concatenation
and the constant T acts as the “temperature” that controls
the intensity of perturbation. Second, the spectrum com-
ponents are perturbed with same intensity constant T , but
∆x̃i ̸= ∆x̃j could happen in previous definitions. This is
equivalent to introducing a new graph signal that has and
only has components of the same intensity T at frequencies
λ = {λm, λm+1, · · ·λm+n−1}.

Under this definition, the localized augmentation is actually
a perturbation on the feature projection matrix X̃ = UTX by
matrix concatenation in the spectral domain, namely:

X̃′ = [X̃ ; Tα], (5)
where α ∈ {0, 1}N represents the introduced new graph

signal where αi = 1 if i ∈ [m, m + n − 1] and αi = 0
otherwise. To achieve the spectral augmentation defined in
Equation (4) and Equation (5), a graph with adjacency matrix
A and feature matrix X is augmented in spatial domain by:

Algorithm 1 Augmentation Phase of LSPAN
Input: Original graph G = (X,A), eigenvectors of graph
Laplacian {ui}Ni=1, parameters m and n, temperature T
Output: Augmented graph G′

1: Obtain the adjacency matrix: A′ = A.
2: Compute the summation of eigenvectors: u′ = (um +

um+1 + · · ·um+n−1).
3: Generate the augmented feature matrix: X′ = [X ; Tu′].

4: return G′ = (X′,A′)

A′ = A, X′ = [X ; T (um +um+1 + · · ·um+n−1)]. (6)

Specifically, Fourier bases {ui}Ni=1 are eigenvectors of
orthogonally diagonalized real symmetric Laplacian ma-
trix. Based on their orthogonality, it can be derived
that

∑m+n−1
i=m UTui = α. By this, the spectral pro-

jection of augmented feature matrix in Equation (6) is
X̃′ = UT [X ; T (um + um+1 + · · ·um+n−1)] =

[X̃ ; T
∑m+n−1

i=m UTui] = [X̃ ; Tα], which is same as the
projection X̃′ defined in Equation (5). This means, by per-
forming the augmentation in Equation (6), the localized spec-
tral augmentation defined in Equation (4) and (5) is achieved.
More details of this are covered in Appendix A.

Overall, the proposed LSPAN method augments a graph
G = (X,A) by Equation (6), where for the feature matrix,
we first compute the summation of eigenvectors {ui}m+n−1

i=m
and then perform a matrix concatenation. The adjacency ma-
trix remains unchanged. Details of the LSPAN augmentation
method are outlined in Algorithm 1.

Efficiency of LSPAN. Note that the eigenvectors are drawn
from the original graph Laplacian and can be pre-calculated.
Therefore, during training, only matrix concatenations and
vector summations with computational cost of O(N) are re-
quired and the time-consuming Fourier inverse transform is
totally avoided, which ensures the efficiency of our method.
An empirical time analysis is conducted in Appendix C.9.

Placing LSPAN in the Context of Prior Work. Exist-
ing augmentations are mainly divided into topology-based
[Rong et al., 2020; Zhao et al., 2021; Lin et al., 2023]
and feature-based [Deng et al., 2019; Feng et al., 2019;
Kong et al., 2020] ones. We suggest that they are spectrally
non-localized and may not well preserve the graph information.
Note that the recent works [Lin et al., 2023; Liu et al., 2022a;
Ghose et al., 2023] also consider spectral information. But
they only use the spectral knowledge for supervising edge or
feature perturbations and they still fall into spatial augmenta-
tion approaches. The work of SFA [Zhang et al., 2023] has
a very different underlying principle to ours where the sin-
gular values of feature maps are perturbed and the spectrum
information is not utilized. Unlike previous works, we directly
perturb graph spectrum components in the spectral domain
and can control any specific spectrum components, so as to
perform strictly localized augmentation.
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Figure 3: A graph consistency learning framework using LSPAN as data augmentation method.

4 Spectrally Localized Augmentation on
Graph Consistency Learning

We apply the proposed LSPAN method to graph consistency
learning framework following the work of GRAND [Feng et
al., 2020], so as to show our proposal can be easily deployed
in graph consistency learning frameworks and show how the
proposed spectrally localized augmentation benefits them.

Specifically, given an input graph G with feature matrix
X and adjacency matrix A, we first generate S augmented
graphs by Equation (6) where T , n are set as hyper-parameters
and we randomly choose m from 1 to N − n + 1 for each
augmentation. Then, each of the S graphs with augmented
feature matrix X′(s) and adjacency matrix A′(s) is fed into a
GNN model to obtain corresponding outputs:

Z′(s) = GNN(X′(s),A′(s)), (7)

where Z′(s) ∈ [0, 1]N×C represents the prediction proba-
bilities on X′(s) and A′(s) with C denoting the number of
node classes. The GNN model can be GCN [Kipf and Welling,
2017], GAT [Veličković et al., 2018] or any other state-of-the-
art methods. For example, in GRAND, a mixed-order propa-
gation model performed by Z = fmlp(

1
K+1

∑K
k=0 Â

kX,Θ)

is adopted, where Â is the symmetric normalized adjacency
matrix, fmlp is a two-layer MLP and Θ are parameters. This
design eliminates nonlinearity for high-order feature propaga-
tion and helps to reduce the over-smoothing risk.

Then, we conduct consistency training on predictions of
S augmentations by employing the loss L = Lsup + γLcon

where Lsup is the supervised loss on the labeled nodes, Lcon

is the consistency regularization loss and hyper-parameter
γ balances them. Specifically, for a graph with M labeled
nodes, the supervised loss Lsup is defined as the average cross-
entropy loss over the S augmentations:

Lsup = − 1

S

S∑
s=1

M∑
i=1

YT
i logZ

′(s)
i , (8)

where Y ∈ {0, 1}N×C denotes the label matrix and Yi ∈
{0, 1}C is label vector of the i-th node. On the other hand,

the consistency loss Lcon minimizes the distance between
predictions on S augmentations and the distribution center of
them, namely:

Lcon =
1

S

S∑
s=1

N∑
i=1

||Z′
i − Z

′(s)
i ||22, (9)

where the label distribution center Z
′
i is calculated by

first taking the average of all distributions, i.e., Zi =
1
S

∑S
s=1 Z

′(s)
i . Then, a sharpening trick [Berthelot et al.,

2019] is adopted to enhance the sharpness of the average
distribution, where the probability of the i-th node on the j-th

class is calculated by Z
′
ij = Z

1
t

ij/
∑C

c=1 Z
1
t

ic (1 ≤ j ≤ C) and
the sharpness is controlled by the parameter t ∈ (0, 1].

Finally, during inference, to match the feature dimension of
augmented graphs during training, we expand the dimension
of feature matrix by appending a zero vector 0N and use the
graph G = ([X;0N ],A) for propagation. The framework of
graph consistency learning with LSPAN is shown in Figure 4,
where the LSPAN method is employed in the augmentation
phase for better spectrum preservation. Note that the proposal
can also be plugged into other advanced graph consistency
learning frameworks and performed in learnable manners by
approaches such as sampling from distribution [Park et al.,
2021], which is left for future work.

5 Experiments
In this section, we give a comprehensive evaluation of the
LSPAN method, including the prediction results, convergence
analysis and the ablation study. Besides, a sensitivity analysis
is conducted in Appendix C.5. We also report the results
on large and heterophilic datasets in Appendix C.6, as well
as compare other consistency learning frameworks and other
spectral methods in Appendix C.7 and Appendix C.8.

5.1 Experimental Setup
We follow the standard semi-supervised graph learning proce-
dure [Kipf and Welling, 2017; Veličković et al., 2018]. The
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Method CORA CITESEER PPI BLOGC FLICKR AIR-USA

Chebyshev 81.0±0.5 69.8±0.7 44.3±0.2 75.2±0.7 61.8±2.0 54.0±0.9
MixHop 81.9±0.4 71.4±0.8 43.7±0.5 75.9±0.3 61.9±0.4 57.2±0.7
Graph U-net 84.4±0.6 73.2±0.5 44.9±0.8 75.5±0.6 62.1±0.5 59.5±1.0
GSNN-M 83.9±0.5 72.2±0.5 43.8±0.7 69.1±2.4 35.1±2.6 59.7±1.8
S2GC 83.5±0.02 73.6±0.09 43.0±0.01 88.3±0.46 79.0±0.13 60.0±0.03
GPR-GNN 83.5±0.3 72.4±0.6 44.6±0.2 92.3±0.4 79.2±0.5 53.1±2.0
GraphSNN 83.8±1.2 73.5±1.6 45.7±1.0 75.2±0.7 61.8±0.9 56.3±1.1

BGCN 81.2±0.8 72.4±0.5 42.0±0.5 72.0±2.3 52.7±2.8 56.5±0.9
DropEdge 83.7±0.6 73.0±0.4 45.9±0.3 75.4±0.3 61.4±0.7 56.9±0.6
AdaEdge 82.0±0.6 72.8±0.7 43.6±0.2 75.3±0.3 61.2±0.5 57.2±0.8
G-GNN 83.8±0.4 71.4±0.7 45.7±0.2 75.1±0.3 61.9±0.5 60.7±0.6
GAUG-O 83.6±0.5 73.3±1.1 46.6±0.3 75.9±0.2 62.2±0.3 61.4±0.9
GCL-SPAN 85.9±0.6 72.8±0.6 46.1±0.8 75.5±0.9 59.2±0.7 60.2±0.4

GCN 81.5±0.5 70.3±0.7 43.4±0.2 75.0±0.4 61.2±0.4 56.0±0.8
GRAND-GCN 84.5±0.3 74.2±0.3 45.6±0.3 75.5±0.2 61.6±0.9 60.9±0.2
LA-GCN 84.6±0.5 74.7±0.5 46.1±0.4 75.7±0.5 62.3±0.4 61.3±0.7
LSPAN-GCN 85.2±0.2 75.1±0.5 48.2±0.5 76.1±0.3 62.5±0.5 61.5±0.6

GAT 83.0±0.7 72.5±0.7 41.5±0.7 63.8±5.2 46.9±1.6 52.0±1.3
GRAND-GAT 84.3±0.4 73.2±0.4 50.3±0.2 70.2±0.4 50.8±0.6 54.9±0.1
LA-GAT 84.7±0.4 73.7±0.5 48.2±0.4 70.9±0.7 51.7±0.8 55.2±0.7
LSPAN-GAT 85.0±0.4 73.9±0.3 50.5±0.1 70.9±0.5 52.0±0.6 57.1±0.4

MOP 83.6±0.3 71.3±0.4 40.8±0.1 91.5±0.2 80.0±0.3 60.3±0.3
GRAND-MOP 85.4±0.4 75.4±0.4 48.2±0.4 91.8±0.7 80.2±0.5 61.7±0.1
LA-MOP 85.7±0.3 75.8±0.5 48.5±0.5 92.1±0.4 80.5±0.7 61.9±0.6
LSPAN-MOP 86.2±0.2 76.1±0.3 48.9±0.2 92.9±0.2 88.4±0.1 62.5±0.3

Table 1: Classification results across GNN architectures and six benchmark datasets: Mean accuracy ± std (%). Boldface letters are used to
mark the best results of consistency learning methods.

setup and implementation details of LSPAN can be found in
Appendix C.3.
Datasets. We perform evaluations on six publicly available
benchmarks across four domains: i) citation networks, in-
cluding CORA and CITESEER [Kipf and Welling, 2017]; ii)
protein-protein interactions, including PPI [Hamilton et al.,
2017]; iii) social networks, including BLOGCATALOG and
FLICKR [Huang et al., 2017]; iv) air traffic, including AIR-
USA [Wu et al., 2019]. Statistics and splits of them are
summarized in Appendix C.1.
Baselines. To show how localized augmentation benefits
graph consistency learning, the consistency learning frame-
work with LSPAN as augmentation approach is first compared
with i) GRAND [Feng et al., 2020] and LA-GNNs [Liu et
al., 2022b], which adopt the same consistency training frame-
work of ours but use spatial-based augmentations (GRAND
performs the feature augmentation and LA-GNNs conducts a
local neighbor augmentation). We respectively use GCN [Kipf
and Welling, 2017], GAT [Veličković et al., 2018] and afore-
mentioned mixed-order propagation (MOP) as backbones. We
also compare the results of ii) other spatial augmentation meth-
ods, including BGCN [Zhang et al., 2019], DropEdge [Rong
et al., 2020], AdaEdge [Chen et al., 2020], G-GNN [Zhu et
al., 2021], GAUG-O [Zhao et al., 2021] and GCL-SPAN [Lin
et al., 2023]. Furthermore, the results of iii) backbone models,
including GCN [Kipf and Welling, 2017], GAT [Veličković et
al., 2018], MOP, Chebyshev [Defferrard et al., 2016], MixHop

[Abu-El-Haija et al., 2019], Graph U-net [Gao and Ji, 2019],
GSNN-M [Wang et al., 2020], S2GC [Zhu and Koniusz, 2021],
GPR-GNN [Chien et al., 2021] and GraphSNN [Wijesinghe
and Wang, 2022] are reported.

5.2 Main Results
The mean node classification accuracy over 100 runs on six
real-world benchmarks are summarized in Table 1. We ob-
serve that, by adopting LSPAN augmentation, graph consis-
tency learning is improved over all three backbones. Specif-
ically, over GCN, GAT and MOP, consistency learning with
LSPAN respectively achieves an average accuracy improve-
ment (across datasets) of 1.8%, 1.6% and 2.7% compared
to GRAND. Compared to LA-GNNs, our method achieves
an average accuracy improvement of 1.2%, 1.6% and 2.2%.
Compared to baseline models, our method achieves an aver-
age accuracy improvement of 5.9%, 9.6% and 7.6%, which is
non-marginal. It is more fair to compare LSPAN with GRAND,
which shares the same consistency learning framework with
LSPAN except for the use of non-localized augmentations.
The minimum accuracy improvement of LSPAN-MOP over
GRAND-MOP is 0.7% (on CITESEER and PPI) and the max-
imum improvement is 8.2% (on FLICKR). Considering that
the minimum improvement of GRAND-MOP over the back-
bone model is only 0.2% (on FLICKR) and the maximum
improvement is only 7.4% (on PPI), the gains of LSPAN are
non-trivial. Besides, LSPAN-based approaches, especially
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Figure 4: Accuracy and loss convergence of our method and the GRAND method.

Method CORA CITESEER PPI BLOGC FLICKR AIR-USA Avg △

Full Model 86.2±0.2 76.1±0.3 48.9±0.2 92.9±0.2 88.4±0.1 62.5±0.3 0
w/o Multi-Sampling 85.8±0.2 75.7±0.3 47.6±0.2 92.5±0.4 87.9±0.4 62.4±0.2 -0.5
w/o Sharpening Trick 85.5±0.2 72.5±0.5 48.9±0.2 92.7±0.4 87.3±0.2 62.4±0.2 -0.9
w/o Localized AUG 85.4±0.4 75.4±0.4 48.2±0.4 91.8±0.7 80.2±0.5 61.7±0.1 -2.1

Table 2: Ablation study on benchmark datasets. Avg △ indicates the average change in model prediction accuracy compared to the full model
of proposal. Boldface letters are used to mark the average prediction accuracy changes of the ablated variants.

LSPAN-MOP, consistently outperform other models. This
confirms the necessity and benefits of adopting spectrally lo-
calized augmentation in graph consistency learning.

To further validate the performance gain of LSPAN, we plot
the curves of testing accuracy and loss function for consistency
learning with LSPAN and the GRAND method in Figure ??.
We test on three datasets – CORA, CITESEER and FLICKR.
We test on FLICKR because the LSPAN method is performed
by augmenting feature matrix and the FLICKR dataset has a
total number of 12,047 features, which shows the effectiveness
of LSPAN on datasets with large feature dimensions. For all
datasets, the MOP model is used as the backbone model. From
the results, we observe that by adopting localized augmenta-
tion, our method converges in a more fast and stable manner,
as well as achieving higher accuracies. This validates the good
convergence property of consistency learning with LSPAN
and verifies the benefit of our proposal.

5.3 Ablation Study
An ablation study is also conducted to verify the necessity of
the introduced localized augmentation and examine whether
it can be paired with other techniques. Specifically, we com-
pare consistency learning with LSPAN over MOP to several of
its ablated variants in Table 2. “w/o Localized AUG” means
that we use random DropNode for augmentation. This is
reasonable because LSPAN is also performed in a random
manner. The drop is 2.1% which clearly illustrates the impor-

tance of proposal. Besides, “w/o Multi-Sampling” means we
only perform augmentation once per epoch (namely S = 1)
and “w/o Sharpening Trick” means we do not use the sharp-
ening trick when calculating the distribution center (namely
t = 1). These two variants respectively witness drops of 0.5%
and 0.9%, which means multi-sampling and sharpening trick
also help when paired with LSPAN. Overall, the promising
performance of consistency learning with LSPAN is mainly
contributed by the proposed localized augmentation, and it
can be easily combined with commonly used techniques.

6 Conclusion
In this paper, we study the issue of exploring high-quality
graph augmentation methods for graph consistency learning.
We identify that existing augmentations are spectrally non-
localized, where important graph spectrums are perturbed over
the entire frequency range and can be largely changed. To
enhance the preservation of graph information, we propose
a simple but effective LSPAN method to conduct spectrally
localized augmentation. LSPAN perturbs only a small concen-
trated part of graph spectrum, improves the preservation of
spectrum structure and therefore benefits model prediction. Ex-
tensive empirical evaluation on real-world benchmarks shows
that, by leveraging localized augmentation, graph consistency
learning achieves considerable performance gains and always
outperforms previous state-of-the-art methods.
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