
Efficient Multi-view Unsupervised Feature Selection with Adaptive Structure
Learning and Inference

Chenglong Zhang1 , Yang Fang2 , Xinyan Liang3 , Han Zhang4 , Peng Zhou5 , Xingyu Wu6 ,
Jie Yang7 , Bingbing Jiang1,∗ and Weiguo Sheng1

1Hangzhou Normal University, Hangzhou, China
2Chongqing University of Posts and Telecommunications, Chongqing, China

3Shanxi University, Taiyuan, China
4Northwestern Polytechnical University, Xi’an, China

5Anhui University, Hefei, China
6Hong Kong Polytechnic University, Hong Kong SAR, China

7University of Technology Sydney, NSW, Australia
{clzhang123,liangxinyan48}@163.com, fangyang@cqupt.edu.cn, zhanghan9937@gmail.com,

zhoupeng@ahu.edu.cn, xingy.wu@polyu.edu.hk, jie.yang-1@uts.edu.au, jiangbb@hznu.edu.cn,
w.sheng@ieee.org

Abstract

As data with diverse representations become high-
dimensional, multi-view unsupervised feature se-
lection has been an important learning paradigm.
Generally, existing methods encounter the follow-
ing challenges: (i) traditional solutions either con-
catenate different views or introduce extra parame-
ters to weight them, affecting the performance and
applicability; (ii) emphasis is typically placed on
graph construction, yet disregarding the clustering
information of data; (iii) exploring the similarity
structure of all samples from the original features
is suboptimal and extremely time-consuming. To
solve this dilemma, we propose an efficient multi-
view unsupervised feature selection (EMUFS) to
construct bipartite graphs between samples and an-
chors. Specifically, a parameter-free manner is de-
vised to collaboratively fuse the membership ma-
trices and graphs to learn the compatible structure
information across all views, naturally balancing
different views. Moreover, EMUFS leverages the
similarity relations of data in the feature subspace
induced by l2,0-norm to dynamically update the
graph. Accordingly, the cluster information of an-
chors can be accurately propagated to samples via
the graph structure and further guide feature selec-
tion, enhancing the quality of selected features and
the computational costs in solution processes. A
convergent optimization is developed to solve the
formulated problem, and experiments demonstrate
the effectiveness and efficiency of EMUFS.

∗Corresponding author.

1 Introduction
As information technology develops rapidly, data collected
from heterogeneous sources often contains multiple repre-
sentations [Hu et al., 2019; Zhong and Pun, 2020; Liang et
al., 2022b; Liang et al., 2022a; Zhao et al., 2023; Peng et
al., 2023]. To process this kind of data, multi-view learn-
ing has been proposed in recent years [Hu et al., 2021;
Liu et al., 2022; Yang et al., 2024; Xu et al., 2024; Liang
et al., 2024]. As a special case, multi-view feature selection
that aims to select representative features from the original
feature space has become a fundamental task. Depending
on the availability of data class labels, current methods can
be realized in supervised, semi-supervised, and unsupervised
ways [Bai et al., 2021; Jiang et al., 2022; Zhang et al., 2023b;
Li et al., 2024b; Zhao et al., 2024]. Considering the expensive
cost of manually labeling data, several researchers have de-
voted to the multi-view unsupervised feature selection, which
utilizes the intrinsic data structure to select informative fea-
tures without the guidance of label information.

To select a feature subset from multi-view data, existing
methods can be mainly categorized into two manners. The
first kind of method directly concatenates the features from
different views and then invokes single-view models on the
concatenated features. Typical methods include feature selec-
tion with graph learning [Nie et al., 2016; Chen et al., 2023;
Tang et al., 2023] and spectral feature selection [Zhao and
Liu, 2007; Li and Tang, 2015; Zhou et al., 2023]. Consid-
ering that different views have specific properties and con-
tribute variously to final models, this kind of method treats
different views equally and neglects the difference between
them, causing performance deterioration in practical domains
[Tang et al., 2019; Zhong and Pun, 2021]. Instead of sim-
ply concatenating different views, another kind of method
exploits the underlying correlations among views and intro-
duces weights to balance the contributions of different views.
Representative methods include feature selection with adap-
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Figure 1: Schematic illustration of EMUFS. Concretely, EMUFS generates anchors and utilizes Fuzzy C-Means (FCM) clustering to mine
the view-specific cluster structures of anchors by membership matrices. Afterward, the aligned membership matrices and the bipartite graphs
between samples and anchors are collaboratively fused to effectively explore the cluster and similarity structure compatible across all views.
Moreover, the cluster information of anchors can be propagated to samples via the bipartite graph, so as to guide the feature selection process
and reduce computational costs. Finally, the l2,0-norm constraint is imposed on the feature projection matrix to identify the top-k features.

tive similarity and view weight (ASVW) [Hou et al., 2017],
multilevel projections with adaptive neighbor graph for multi-
view feature selection (MAMFS) [Zhang et al., 2021], and
robust feature selection via multi-group adaptive graph rep-
resentation (MGAGR) [You et al., 2023]. Commonly, these
methods follow two separate steps, i.e., constructing a graph
on each view to explore view-specific structures and perform-
ing feature selection based on the weighted combination of
multiple graphs. To avoid the trivial solution of view weights,
an extra weight-related parameter that needs to be manually
determined is introduced, weakening their applicability [Li et
al., 2022]. Moreover, they suffer from a higher computation
due to constructing graphs on all samples. Recently, [Chen et
al., 2023] proposed to learn a bipartite graph between samples
and anchors to reduce computational costs. However, they
focus on learning graphs to characterize similarity structures,
yet are incapable of capturing the inherent cluster structure of
data that can positively guide feature selection.

To explore the cluster structure information, [Feng et
al., 2013] proposed to learn the feature projections and the
pseudo cluster labels of data (i.e., the cluster indicator matrix)
by a linear regression model. Inheriting from [Feng et al.,
2013], many variants have been developed in recent years.
For example, [Dong et al., 2018] incorporated graph learn-
ing into the framework of [Feng et al., 2013], such that the
similarity graph can be updated in the feature selection pro-
cess. Instead of the orthogonal constraint, [Shi et al., 2023]
imposed a binary hash constraint on the cluster indicator ma-
trix to improve the discrimination. Despite achieving some
progress, these methods still face the following limitations:
i) the similarity graph directly derived from the original fea-
tures is susceptible to poor-quality features since the original

data usually contains irrelative features, impairing the graph
reliability and finally affecting the effectiveness of selected
features; ii) their focus lies in learning the cluster indicator
matrix of all samples, such that the optimization procedure in-
volves the decomposition or inverse operations of high-order
matrices, leading to expensive computational complexity.

Motivated by the aforementioned issues, we propose an ef-
ficient multi-view unsupervised feature selection with adap-
tive structure learning and inference (EMUFS). Fig. 1 illus-
trates the basic framework of EMUFS. The main contribu-
tions of this paper are summarized as follows:

• We propose an efficient multi-view unsupervised feature
selection method that simultaneously leverages member-
ship matrices and bipartite graphs to capture the cluster
information of anchors and the similarity structure be-
tween samples and anchors, facilitating the ultimate fea-
ture selection and reducing computational costs.

• We design a collaborative fusion manner for member-
ship matrices and graphs to learn the compatible struc-
tures, so that the cluster information of samples can be
inferred via the similarity between samples and anchors,
balancing different views without extra parameters.

• We utilize the neighbor relations of data in the selected
feature subspace to adaptive learn a unified bipartite
graph, reducing the impact of poor-quality features.

2 Our Proposed Methodology
2.1 Notations
Throughout the paper, vectors are written in bold lowercase
letters, and matrices are written in bold uppercase letters. Be-
sides, mi represents the i-th row of a given matrix M, Tr(M)

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5444



Notation Description
n , m The numbers of samples and anchors, respectively
c, V The number of classes and views, respectively
k The number of selected features
dv The dimension of v-th view
d =

∑V
v=1 dv The total dimension of V views

xv
i ∈ Rdv×1 The i-th sample in v-th view

zvj ∈ Rdv×1 The j-th anchor in v-th view
xi = [x1

i ; ...;x
V
i ] ∈ Rd×1 The i-th sample

zj = [z1j ; ...; z
V
j ] ∈ Rd×1 The j-th anchor

X = [x1, ...,xn] ∈ Rd×n The concatenated feature matrix of samples
Z = [z1, ..., zm] ∈ Rd×m The concatenated feature matrix of anchors
{Uv}Vv=1 ∈ Rm×c The initialized membership matrices of anchors
{Ũv}Vv=1 ∈ Rm×c The aligned membership matrices of anchors
W ∈ Rd×c The feature projection/selection matrix
1 ∈ Rc×1 The all-one vector

Table 1: Description of Notations

denotes the trace of M and ‖M‖F =
√

Tr(MTM) denotes
the Frobenius norm. ‖M‖2,1 =

∑
i ‖mi‖2 and ‖M‖2,0 =∑

i ‖mi‖02 denote the l2,1-norm and l2,0-norm of M, respec-
tively. Table 1 lists the frequently used notations.

2.2 Similarity Structure Learning and Fusion
Most methods construct n-order graphs to mine the similarity
relations among samples, leading to high computational costs
[Hu et al., 2022; Li et al., 2024a]. To this end, our proposed
EMUFS learns bipartite graphs between samples and anchors
to improve the efficiency of graph construction. Specifically,
the alternate sampling strategy proposed by [Li et al., 2022]
is used to generate a consistent anchor set on different views.
Then, the view-specific similarity structures between samples
and generated anchors can be captured by solving:

min
Sv1=1,Sv≥0

n∑
i=1

m∑
j=1

‖xvi − zvj ‖22svij + τ‖Sv‖2F , (1)

where Sv ∈ Rn×m is the bipartite graph on the v-th view, and
svij measures the similarity between sample xi and anchor zj
in v-th view. Eq.(1) can be directly solved by the adaptive
neighbor strategy [Nie et al., 2014].

To learn a consensus similarity graph, the view-specific
graphs can be coalesced in the following fusion manner:

min
S,φ

V∑
v=1

φηv‖S−Sv‖2F s.t. φ≥0,φT1=1,S1=1,S≥ 0, (2)

where S denotes a unified graph that compatibly crosses mul-
tiple views, and the exponential parameter η controls the dis-
tribution of the view weights {φv}Vv=1. To further reveal the
underlying relation between S and {Sv}Vv=1, we fix φ and set
the derivation of Eq. (2) w.r.t. S to zero:

V∑
v=1

φηv
(
S−Sv

)
=0 =⇒ S=

V∑
v=1

αvSv;αv=φ
η
v/

V∑
v=1

φηv , (3)

where αv can be regarded as the weight since αv ≥ 0 and∑V
v=1 αv = 1. In Eq. (3), the equality relation of S and∑V
v=1 αvSv can be further relaxed by introducing a flexible

regression residue (i.e., S−
∑V
v=1 αvSv) to measure the mis-

match between them, achieving a new fusion paradigm as:

min
S1=1,S≥0,α≥0,αT 1=1

‖S−
V∑
v=1

αvSv‖2F . (4)

Clustering centers

Bipartite graph

Anchors

Samples

SU

Figure 2: Information propagation illustration, where colored ar-
rows represent the clustering information propagating from anchors
to samples.

Eq. (4) can fuse multiple graphs without the exponential pa-
rameter η. Further, considering that the poor-quality features
in the original space can undermine graph structures, we pro-
pose to dynamically update the graph S according to the rela-
tions of samples and anchors in the selected feature subspace:

min
W,S,α

n∑
i=1

m∑
j=1

‖WTxi −WT zj‖2F sij + λ‖S−
V∑
v=1

αvSv‖2F

s.t. S1 = 1,S ≥ 0,α ≥ 0,αT1 = 1, ‖W‖2,0 = k. (5)

In contrary to previous methods [Nie et al., 2016; Hou et
al., 2017] that applied an l2,1-norm on the feature projection
matrix W, the l2,0-norm constraint is imposed on W to au-
tomatically select salient features without sorting features in
advance. Moreover, the graph learned from the selected fea-
tures can accurately explore the similarity structure and alle-
viate the impacts of low-quality features.

2.3 Cluster Information Inference on Graph
A membership matrix that contains the cluster structure of
data is widely used since it can be regarded as the latent dis-
criminative information in unsupervised scenarios [Zhang et
al., 2023a; Lu et al., 2023]. For convenience, existing models
often generate membership matrices on each view indepen-
dently and coalesce them for further analyses. Nevertheless,
the clusters preserved in the membership matrices might be
mismatched between different views, which means that dif-
ferent membership matrices are not aligned column-widely
[Wang et al., 2022]. As a result, the direct fusion of member-
ship matrices might suffer from inconsistent cluster informa-
tion across views. To solve this limitation, the membership
matrices on different views are first generated by the FCM
[Bezdek et al., 1984] to mine the view-specific cluster struc-
tures, then different membership matrices can be aligned by
solving the following problem:

min
Tv

‖U1 −UvTv‖2F s.t. TT
v Tv = TvT

T
v = I, (6)

where the permutation matrix Tv makes U1 and Uv con-
sistent at the level of clusters and can be directly solved by
performing the SVD on UT

1 Uv . We exploit membership ma-
trices on anchors instead of all samples to explore the latent
cluster structure of data, which avoids the decomposition or
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inverse operations of high-order matrices in the subsequent
solution process. To capture the consensus cluster structure
of anchors, the same fusion approach as Eq.(4) can be em-
ployed to merge the aligned membership matrices:

min
U1=1,U≥0,α≥0,αT 1=1

‖U−
V∑
v=1

αvŨv‖2F , (7)

where Ũv (i.e., UvTv) denotes the aligned membership ma-
trix, serving as the label guidance for feature selection. With
the learned bipartite graph S, the label guidance (i.e., clus-
ter information) of samples can be directly inferred from an-
chors, as shown in Fig. 2. Therefore, the final optimization
objective of the proposed EMUFS is obtained as:

min
‖W‖2,0=k,F≥0,S≥0,U≥0,α≥0

‖XTW − F‖2F + λ‖F− SU‖2F

+ β(‖S−
V∑
v=1

αvSv‖2F + ‖U−
V∑
v=1

αvUv‖2F )

+ γ

n∑
i=1

m∑
j=1

‖WTxi −WT zj‖22sij

s.t. F1 = 1,S1 = 1,U1 = 1,αT1 = 1, (8)

where F denotes the cluster labels of samples and simulta-
neously leverages the similarity and cluster information. In
Eq. (8), the membership matrix and the bipartite graph are
collaboratively fused to facilitate the cluster information in-
ference on the graph. Moreover, the similarity structure is
also guided by the relations between samples and anchors in
the selected feature subspace, enhancing the graph quality.
Consequently, similarity structure learning, cluster informa-
tion inference and feature selection are incorporated into a
unified framework and can benefit from each other, such that
the discriminative features can be selected under the guidance
of the learned structure compatible across all views.

3 Optimization and Analyses
To solve the problem in Eq. (8), an iterative optimization is
devised to solve one variable by fixing other variables. Con-
sidering that the l2,0-norm optimization problem is compli-
cated, an auxiliary variable E = W is introduced to transform
Eq. (8) into the following equivalent problem:

min
‖E‖2,0=k,W,F≥0,S≥0,U≥0,α≥0

‖XTW − F‖2F + λ‖F− SU‖2F

+ β(‖S−
V∑
v=1

αvSv‖2F + ‖U−
V∑
v=1

αvUv‖2F )

+ γ

n∑
i=1

m∑
j=1

‖WTxi −WT zj‖22sij +
µ

2
‖E−W +

Π

µ
‖2F

s.t. F1 = 1,S1 = 1,U1 = 1,αT1 = 1, (9)

where µ ∈ R1×1 and Π ∈ Rn×c denote the penalty parame-
ter and Lagrange multipliers, respectively. The solution pro-
cedures are given as follows:
• U subproblem: When fixing other variables, the prob-

lem of Eq. (9) is simplified into:

min
U1=1,U≥0

λ‖F− SU‖2F + β‖U−
V∑
v=1

αvŨv‖2F . (10)

Algorithm 1 Optimization procedures for EMUFS

Input: Multi-view data X = [X1, · · · ,XV ]
T , the cluster

number c, and the parameters λ, β and γ;
1: Initialize the view-weights αv = 1/V , a random feature

selection matrix W, E = Π = 0, µ = 1 and ρ = 1.1;
2: Generate the anchor set {Zv}Vv=1, and initialize the mem-

bership matrices {Uv}Vv=1 by FCM;
3: Learn the permutation matrix Tv by solving Eq. (6);
4: repeat
5: Update U by Eq. (10);
6: Update α by Eq. (13);
7: Update W by Eq. (15);
8: Update E by Eq. (16);
9: Update S by Eq. (19);

10: Update F by Eq. (19);
11: Update Π and µ by Eq. (20);
12: until Eq. (9) converges;
Output: Feature selection matrix W with k nonzero rows.

For computational efficiency, we first ignore the constraints
to calculate the latent solution U∗ and then project U∗ into
the constrained space. Specifically, setting the derivative of
Eq. (10) w.r.t. U to zero, the latent solution of U is obtained
as: U∗ = (λSTS + βI)−1(λSTF + β

∑V
v=1 αvŨv). Subse-

quently, the optimal solution of U can be derived by solving:

min
U1=1,U≥0

‖U−U∗‖2F . (11)

Eq. (11) can be solved with a closed-form solution [Huang
et al., 2015]. Unlike previous methods that directly learn the
cluster information of all samples and need the O(n2) com-
putational complexity at least, EMUFS explores the cluster
structure of anchors first and then uses the learned bipartite
graph to propagate the cluster information, avoiding the de-
composition or inverse operations of n-order dense matrices.
• α subproblem: By fixing the other variables, the opti-

mization subproblem w.r.t. α is:

min
αT 1=1,α≥0

‖S−
V∑
v=1

αvSv‖2F + ‖U−
V∑
v=1

αvŨv‖2F . (12)

Setting ψ = vec(S) ∈ Rnm×1, ω = vec(U) ∈ Rmc×1,
Ψ = [vec(S1),· · · ,vec(SV )] ∈ Rnm×V and Ω =
[vec(Ũ1),· · · ,vec(ŨV )] ∈ Rmc×V ), thus Eq. (12) becomes:

min
α≥0,αT 1=1

αTQα− 2αTp, (13)

where Q = ΨTΨ + ΩTΩ, p = ΨTψ + ΩTω. Since Q is
semi-definite, Eq. (13) is a quadratic convex problem and can
be solved efficiently [Jiang et al., 2023].
•W subproblem: By fixing other variables except for W,

Eq. (9) is simplified into:

min
W
‖XTW−F‖2F+γ

n∑
i=1

m∑
j=1

‖Wxi−Wzj‖22sij

+
µ

2
‖E−W+

Π

µ
‖2F . (14)

Setting the derivative of Eq. (14) w.r.t. W to zero, we have:
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W =(XXT + γM +
µ

2
I)−1(XF +

µ

2
E +

Π

2
), (15)

where M = XXT + ZΛZT −XSZT − ZSTXT .
• E subproblem: By fixing the other variables except for

E, we have the following subproblem:

min
‖E‖2,0=k

‖E−W +
Π

µ
‖2F . (16)

E can be directly solved by setting the d− k rows of W− Π
µ

with the smallest l2-norm to zeros.
• S subproblem: By fixing the other variables except for

S, we have the following subproblem:

min
S
λ‖F− SU‖2F + γ

n∑
i=1

m∑
j=1

‖WTxi −WT zj‖22sij

+ β‖S−
V∑
v=1

αvSv‖2F s.t. S1 = 1,S ≥ 0. (17)

Noting that the optimization problem in Eq. (17) is indepen-
dent for each row (i.e., si), we can calculate S by rows:

min
si1=1,si≥0

λ‖fi − siU‖22 + β‖si − ai‖22 + γsid
T
i (18)

where fi and ai denote the i-th row of F and A =
∑V
v=1 αvSv,

and di is a row vector with dij = ‖WTxi −WT zj‖22. Setting
the derivative of Eq. (18) w.r.t. si to zero, the latent solution
of si is obtained as: s∗i = (λfiU

T+βai− γ
2
di)(λUUT+βI)−1.

Thus, the optimal solution of si can be obtained by solving:
min

si1=1,si≥0
‖si − s∗i ‖22, (19)

which can be effectively solved by [Huang et al., 2015].
• F subproblem: Fixing other variables, we can optimize

F by rows:
min

fi1=1,fi≥0
‖xTi W − fi‖22 + λ‖fi − siU‖2F . (20)

Eq. (20) can be solved with a closed-form solution.
•Update ALM parameters: In each iteration, the penalty

parameter µ and the Lagrange multipliers Π are updated as:
Π = Π + µ(E−W)

µ = ρµ. (21)

where ρ is a constant updated rate. During the optimization,
EMUFS separately optimizes each subproblem, decreasing
the objective value monotonically until convergence.

Computational Complexity
The steps for solving the problem (9) are summarized in Al-
gorithm 1. Specifically, selecting m anchors takes O(nm),
calculating {Uv}Vv=1 by FCM requires O(mdcV ), and learn-
ing the permutation matrices needsO(mc2V ). Afterward, up-
dating U, W and S involve the inverses of matrices, requiring
O(nmd+m2c+m3), O(nd2+nmd+d3) and O(nm2+ndc+m3).
Besides, calculating α takes O(nmV 2), and the optimization
of E and F respectively take O(dk+dc) and O(nc). Since c
and V are small constants, the computational complexity of
EMUFS in each iteration is O

(
nm2+nd2+m3+d3

)
, which is

linearly related to the sample scale.

Dataset Classes Data size Feature size
flower-17 17 1360 3011(512/630/1239/630)
Leaves 100 1600 192(64/64/64)
NUS 12 2400 1134(64/144/73/128/225/ 500)
Scene 8 2688 1248(512/432/256/48)
ALOI 100 10800 279(77/13/64/125)
Youtube 31 24800 832(113/322/110/287)

Table 2: Detailed information on multi-view datasets.

Methods Total computational complexity
SOGFS O(n2d + d2c)
MVCSS O(nd + d3)
ASVW O(n2d + d3)
NSGL O(n2d + d3)
MAMFS O(nd2 + n2d + d3)
MGAGR O(n2d + d3)
EMUFS O(nm2 + nd2 + m3 + d3)

Table 3: The computational complexity of multi-view methods.

4 Experiments
4.1 Experimental Settings
In this section, six real-word datasets are employed, including
flower-171, Leaves2, NUS3, Scene4, ALOI5 and Youtube6.
The details of each dataset are listed in Table 2. To compre-
hensively verify the superiority and effectiveness of EMUFS,
we conduct experiments with six state-of-the-art competitors,
including (1) Unsupervised Feature Selection with Structured
Graph Optimization (SOGFS) [Nie et al., 2016]; (2) Multi-
View Clustering and Feature Learning via Structured Sparsity
(MVCSS) [Wang et al., 2013]; (3) Multi-view Unsupervised
Feature Selection with Adaptive Similarity and View Weight
(ASVW) [Hou et al., 2017]; (4) Multi-view Feature Selection
via Nonnegative Structured Graph Learning (NSGL) [Bai et
al., 2020]; (5) Multilevel Projections with Adaptive Neigh-
bor Graph for Unsupervised Multi-View Feature Selection
(MAMFS) [Zhang et al., 2021]; (6) Robust Unsupervised
Feature Selection via Multi-Group Adaptive Graph Repre-
sentation (MGAGR) [You et al., 2023]. To ensure compari-
son fairness, the parameters of all competitors are tuned fol-
lowing their respective works. The regularization parameters
for EMUFS are searched in a grid of {10−3, 10−2, · · · , 103},
with the number of anchors set as m = 10% × n. The K-
means clustering is independently executed 20 times on the
selected feature subsets, and the average results, including the
clustering accuracy (ACC) and the normalized mutual infor-
mation (NMI), are reported to evaluate the performance.

4.2 Comparison Results
The means and standard deviations of ACC and NMI are
presented in Tables 4 and 5, where the optimal and second-
best results are prominently indicated in bold and under-
lined formatting, respectively. The following conclusions can

1https://www.robots.ox.ac.uk/ vgg/data/flowers/
2https://archive.ics.uci.edu/dataset/
3https://lms.comp.nus.edu.sg/wp-

content/uploads/2019/research/nuswide/NUS-WIDE.html
4http://people.csail.mit.edu/torralba/code/spatialenvelope/
5https://aloi.science.uva.nl/
6https://archive.ics.uci.edu/dataset/269/
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Datasets Feature ratio 10% 15% 20% 25% 30% 35%

flower-17

SOGFS 18.12±0.59 18.35±0.78 18.08±0.35 18.49±0.59 19.76±0.70 19.22±0.56
MVCSS 23.20±0.98 23.34±1.21 23.51±1.30 24.50±1.17 25.33±1.55 24.95±0.83
ASVW 22.21±1.04 22.49±0.91 22.28±0.71 22.37±0.81 21.40±0.90 21.68±0.69
NSGL 26.62±0.79 25.81±2.04 26.40±1.56 26.54±1.04 26.76±1.53 27.65±1.21

MAMFS 22.18±1.07 24.70±0.95 25.32±1.09 26.36±1.25 26.59±1.20 27.98±1.22
MGAGR 25.82±1.33 25.29±1.15 25.09±0.89 25.36±1.35 26.51±0.79 26.47±1.09
EMUFS 30.49±1.30 31.51±1.87 30.82±1.59 30.05±1.15 31.20±1.14 29.15±0.99

Leaves

SOGFS 43.91±1.57 50.64±1.29 52.84±1.88 55.29±1.33 60.39±1.58 60.51±1.98
MVCSS 36.51±0.84 42.84±0.75 49.13±1.54 53.09±0.85 54.12±1.34 57.98±1.72
ASVW 46.88±0.94 53.11±1.25 60.11±1.37 62.70±1.59 65.98±1.45 68.32±1.51
NSGL 35.41±0.86 44.43±1.26 48.07±1.45 52.22±1.60 54.41±1.54 58.22±1.78

MAMFS 54.53±1.25 60.05±1.63 63.57±1.58 64.59±1.27 66.45±1.14 67.83±2.19
MGAGR 53.16±1.61 59.51±1.49 61.79±1.72 63.58±2.17 66.96±1.65 68.71±1.45
EMUFS 56.31±1.08 62.92±1.34 67.06±1.76 69.95±1.47 71.45±1.64 72.34±1.50

NUS

SOGFS 19.08±0.24 19.22±0.56 20.53±0.27 20.63±0.24 19.35±0.25 20.32±0.43
MVCSS 23.93±0.56 24.62±0.80 25.44±0.72 25.43±0.98 25.98±0.84 26.21±0.58
ASVW 23.08±0.63 24.21±0.79 23.75±0.85 23.62±0.41 23.33±0.46 23.94±0.59
NSGL 23.18±1.09 24.58±1.47 25.51±0.76 25.58±0.66 26.00±0.87 25.76±0.90

MAMFS 23.65±0.56 22.60±0.74 23.18±0.86 23.69±0.22 23.62±0.42 23.36±0.67
MGAGR 22.35±0.35 24.63±1.05 24.81±0.88 25.04±0.73 24.81±0.61 25.79±0.51
EMUFS 25.70±0.78 26.50±0.92 27.31±0.94 27.29±0.69 27.68±1.18 27.26±1.02

Scene

SOGFS 36.46±0.12 37.72±0.22 37.61±0.31 38.41±0.10 39.45±0.16 39.75±0.15
MVCSS 42.66±0.35 41.78±0.19 42.85±0.42 44.36±0.30 44.58±0.60 44.82±0.43
ASVW 42.63±0.24 41.51±0.22 42.24±0.50 42.56±0.21 43.38±1.52 44.26±0.10
NSGL 40.33±0.47 41.78±0.46 40.76±0.16 40.36±0.18 40.31±0.36 40.57±0.37

MAMFS 41.78±0.74 41.74±0.84 44.25±0.33 43.77±0.27 44.19±0.30 45.63±0.22
MGAGR 42.93±0.60 44.59±0.12 44.13±0.85 44.27±0.18 44.06±0.09 45.51±0.95
EMUFS 44.08±0.15 45.18±0.21 45.53±0.17 46.09±0.23 46.30±0.24 46.53±0.35

ALOI

SOGFS 51.34±1.05 53.07±1.17 55.30±1.37 57.53±0.95 57.78±1.07 60.95±1.17
MVCSS 56.52±0.64 59.75±1.39 61.85±0.90 64.13±1.36 64.02±1.34 64.11±1.67
ASVW 58.94±1.19 59.71±1.13 61.21±1.90 63.29±1.18 63.56±1.43 64.42±1.75
NSGL 29.35±0.73 45.87±1.23 48.26±1.36 48.74±1.46 50.31±1.26 55.44±1.67

MAMFS 47.59±0.59 50.28±0.88 54.36±2.16 57.44±1.43 57.50±1.51 61.60±1.78
MGAGR 59.45±1.09 61.59±0.82 61.08±1.07 61.48±0.69 62.97±1.36 62.27±1.63
EMUFS 61.53±1.40 62.29±1.32 61.56±1.27 64.66±1.15 64.06±1.24 64.27±1.26

Youtube

SOGFS 16.79±0.65 19.57±1.26 21.73±1.78 23.63±1.74 24.75±2.38 27.50±3.20
MVCSS 20.21±0.80 24.86±1.08 25.20±1.52 27.97±2.20 28.24±2.21 32.54±2.71
ASVW 16.68±1.66 17.03±1.47 17.73±1.48 25.69±2.83 26.47±2.34 26.94±2.44
NSGL 21.91±0.74 25.97±1.80 26.73±1.60 28.41±1.33 28.58±1.49 31.56±2.28

MAMFS 20.59±0.86 27.01±1.34 26.47±1.11 27.66±1.30 28.43±2.16 31.08±1.81
MGAGR 21.12±0.92 21.01±1.06 22.62±1.41 22.16±1.30 23.88±2.23 25.22±1.67
EMUFS 22.78±1.04 26.59±1.80 26.92±0.91 28.04±1.84 28.21±1.48 33.22±2.75

Table 4: ACC of different methods with different numbers of features. The best and second results are in bold and underlined.
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Figure 3: Running time versus the number of samples.

be drawn: (1) Across varying numbers of selected features,
EMUFS consistently exhibits competitive or superior results,
fully demonstrating its effectiveness in multi-view feature se-
lection. (2) The ACC and NMI scores achieved through the
EMUFS outperform those of the single-view methodology.
This underscores the assertion that harnessing distinct infor-
mation from multiple views enhances the selection of infor-
mative features. (3) Compared with other multi-view fea-
ture selection methods, EMUFS consistently attains superior
performance, highlighting the effectiveness of collaborative

utilization of the cluster structure and the similarity struc-
ture. Meanwhile, to assess the efficiency of EMUFS, Ta-
ble 3 summarizes the computation complexity of each method
and Fig. 3 shows the running times versus the training sam-
ple scale on the ALOI and Youtube datasets. We find that
the running times of EMUFS exhibit a linear increase, while
other methods emerge an exponentially increasing trend with
the increased sample scale, fully validating the efficiency of
propagating cluster information on the bipartite graph.

4.3 Ablation Study
To investigate the significance of adaptive structure learning
and inference, an ablation study is conducted to design three
variants of EMUFS: EMUFS1, wherein the similarity struc-
ture is only derived from original data, overlooking the in-
formation from projection space; EMUFS2, a variation of
EMUFS that excludes the collaborative fusion model, guiding
feature selection by fixed graphs and membership matrices;
and EMUFS3 employs the unaligned membership matrices to
learn the cluster structure. The results of EMUFS and its dis-
tilled versions are depicted in Fig. 4. We can conclude that:
(1) The ACC of EMUFS1 is inferior to EMUFS, indicating
that the dynamic graph learning on selected feature space has
an effective influence on the overall performance; (2) EMUFS
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Datasets Feature ratio 10% 15% 20% 25% 30% 35%

flower-17

SOGFS 14.92±0.63 15.41±0.81 15.69±0.53 16.11±0.62 17.51±0.97 17.48±0.51
MVCSS 21.48±0.96 21.98±1.11 22.95±0.59 23.28±0.70 24.56±0.96 24.33±1.01
ASVW 20.83±0.78 21.51±0.72 21.29±0.84 21.16±0.93 20.43±0.67 21.45±0.45
NSGL 24.50±0.80 25.57±1.57 25.21±1.14 27.12±0.77 25.42±1.51 25.66±1.19

MAMFS 19.88±0.50 21.88±0.97 23.56±0.74 24.48±0.82 25.63±1.01 26.81±0.70
MGAGR 24.07±0.84 23.82±0.90 24.29±0.73 25.02±1.15 25.97±0.61 26.26±0.89
EMUFS 29.96±0.86 30.94±1.09 30.51±1.36 30.00±0.96 30.81±0.74 28.49±0.85

Leaves

SOGFS 70.99±0.49 75.51±0.57 77.70±0.61 78.50±0.51 81.89±0.50 82.12±0.64
MVCSS 65.57±0.52 69.22±0.35 74.21±0.63 76.71±0.34 77.57±0.73 80.08±0.51
ASVW 72.20±0.45 77.60±0.42 80.92±0.49 82.31±0.62 84.24±0.47 86.14±0.49
NSGL 65.72±0.39 71.96±0.55 74.64±0.48 77.36±0.55 79.13±0.52 81.26±0.52

MAMFS 76.81±0.41 80.84±0.49 82.56±0.50 83.55±0.48 84.16±0.38 85.85±0.89
MGAGR 74.79±0.35 80.23±0.67 81.83±0.59 83.14±0.80 85.10±0.54 86.62±0.56
EMUFS 78.18±1.41 82.33±0.39 84.96±0.37 86.74±0.53 88.06±0.50 88.96±0.47

NUS

SOGFS 8.59±0.31 8.95±0.40 11.74±0.25 11.91±0.14 12.28±0.19 13.04±0.24
MVCSS 12.03±0.11 14.15±0.31 13.58±0.23 15.56±0.54 15.55±0.56 15.27±0.33
ASVW 12.27±0.25 12.86±0.29 12.80±0.31 13.02±0.19 12.99±0.24 13.32±0.26
NSGL 12.74±0.44 13.63±0.56 14.33±0.76 14.48±0.45 14.59±0.53 14.64±0.40

MAMFS 11.97±0.20 12.19±0.44 11.83±0.76 12.16±0.37 12.45±0.36 12.27±0.74
MGAGR 11.31±0.16 12.97±0.46 12.71±0.66 13.27±0.16 13.21±0.36 15.13±0.24
EMUFS 13.82±0.32 14.77±0.54 14.94±0.51 15.21±0.30 16.13±0.57 15.41±0.33

SCENE

SOGFS 26.63±0.14 27.92±0.13 28.18±0.21 28.24±0.26 28.33±0.10 30.49±0.21
MVCSS 32.20±0.15 33.53±0.26 33.49±0.23 33.96±0.30 35.65±0.35 36.24±0.27
ASVW 30.99±0.18 29.77±0.28 31.66±0.26 32.26±0.16 33.09±0.59 34.37±1.11
NSGL 27.56±0.12 30.54±0.18 31.00±0.11 31.59±0.14 33.09±0.11 34.18±0.21

MAMFS 27.75±0.42 28.08±0.10 30.36±0.13 31.13±0.11 31.40±0.68 33.28±0.43
MGAGR 31.49±0.65 32.56±0.02 32.68±0.12 33.46±0.34 32.67±0.38 35.84±0.57
EMUFS 32.78±0.18 33.80±0.17 34.16±0.11 33.53±0.14 36.13±0.17 36.46±0.18

ALOI

SOGFS 71.37±0.28 72.27±0.27 73.76±0.45 75.02±0.19 75.56±0.26 77.39±0.30
MVCSS 73.75±0.48 75.81±0.41 77.72±0.33 79.53±0.63 79.57±0.90 80.70±0.75
ASVW 77.56±0.23 77.42±0.38 77.92±0.52 79.38±0.40 80.13±0.35 81.00±0.54
NSGL 53.33±0.40 67.72±0.49 69.33±0.37 70.19±0.73 72.12±0.45 75.15±0.70

MAMFS 66.97±0.25 69.25±0.16 76.43±0.53 77.97±0.60 78.01±0.56 77.95±0.41
MGAGR 76.54±0.22 77.62±0.27 77.74±0.44 78.50±0.23 78.64±0.27 78.90±0.54
EMUFS 79.71±0.35 79.76±0.52 78.25±0.62 80.57±0.56 82.23±0.46 80.76±0.44

Youtube

SOGFS 17.87±1.25 21.26±1.37 25.91±2.23 27.72±2.15 30.82±2.76 34.46±3.20
MVCSS 21.87±0.71 28.67±1.15 29.34±0.84 33.71±2.10 34.29±2.62 40.31±1.79
ASVW 16.68±1.44 17.47±1.27 20.04±1.32 29.74±1.71 33.69±2.56 33.70±2.20
NSGL 23.12±0.59 27.69±1.29 28.38±1.17 30.74±1.20 32.40±1.30 34.37±1.97

MAMFS 21.58±1.04 32.71±1.26 30.64±1.48 33.25±1.55 33.66±2.17 38.15±2.57
MGAGR 22.43±0.82 23.22±0.71 25.14±1.34 25.42±1.34 27.59±2.32 29.79±2.05
EMUFS 23.40±1.10 29.29±1.02 31.02±1.12 33.85±1.22 32.11±1.46 42.17±2.65

Table 5: NMI of different methods with different numbers of features. The best and second results are in bold and underlined.
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Figure 4: ACC of EMUFS and its simplified versions.

achieves superior results than EMUFS2, validating that the
collaborative fusion of similarity structure and cluster infor-
mation can facilitate feature selection; (3) Comparative anal-
yses between EMUFS and EMUFS3 demonstrate that sim-
ply concatenating different membership matrices impairs the
consistency of clustering centers among views.

4.4 Visualization
To visually evaluate the quality of selected features, the T-
SNE is employed to project the selected features into a two-
dimensional space [Van der Maaten and Hinton, 2008]. In

(a) View1 (b) View2 (c) View3

(d) ASVW (e) MAMFS (f) EMUFS

Figure 5: The T-SNE visualizations on the Leaves dataset.

this context, we select 320 samples from 20 clusters of the
Leaves dataset for visualization, in which each sample has
three views (i.e. View #1,#2 and #3), and each view con-
tains 64 features. Figs. 5 (a)-(c) show the results of the origi-
nal three views, while Figs. 5 (d)-(f) depict the visualizations

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5449



0

0.1

0.001

A
cc

u
ra

cy 0.2

0.01

0.3

0.1
351

3010
100 25

1000
Feature  ratio(%)10

2015

(a) λ on NUS

0

0.1

0.001

A
cc

u
ra

cy

0.2

0.01

0.3

0.1
351

3010 25100 20
Feature ratio(%)

1000 15
10

(b) β on NUS

0

0.1

0.001

A
cc

u
ra

cy

0.2

0.01

0.3

0.1
351

3010
100

25
20
Feature ratio(%)

1000 15
10

(c) γ on NUS

0

0.1

0.2

0.001

0.3

A
cc

u
ra

cy

0.01

0.4

0.5

0.1
351

3010 25100 20
Feature ratio(%)1000 15

10

(d) λ on SCENE
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Figure 6: ACC with different parameters on the NUS and SCENE datasets.
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Figure 7: Variation curves of objective function values.

of feature subsets selected by ASVW, MAMFS, and EMUFS,
respectively. To ensure a fair evaluation, the number of se-
lected features is set to 64 for each method. As depicted in
Fig. 5, the visualizations of the original views exhibit signifi-
cant overlaps between different clusters. In contrast, ASVW,
MAMFS, and EMUFS achieve separable results, highlighting
the significance of multi-view feature selection. Moreover,
the inter-cluster distance obtained by EMUFS is larger than
those of ASVW and MAMFS, demonstrating that EMUFS
can select a compact subset of discriminative features.

4.5 Parameter Sensitivity and Convergence
EMUFS encompasses three intrinsic parameters, namely λ, β
and γ. To assess the impacts of these parameters, we present
the clustering accuracies under distinct parameter settings,
alongside varying numbers of selected features, in Fig. 6.

This depiction shows that EMUFS can perform better, partic-
ularly when λ assumes a value smaller than 1. This observa-
tion effectively indicates that the adaptive structure learning
and fusion indeed contribute to identifying informative fea-
tures. Meanwhile, to illustrate the convergence behavior of
EMUFS, Fig. 7 provides the variations of the objective func-
tion values, which shows that the objective function exhibits
a rapid decrease and converges to a stable value quickly.

5 Conclusion

In this paper, we propose an efficient multi-view unsuper-
vised feature selection with adaptive structure learning and
inference (EMUFS). Unlike existing methods that exploit the
unreliable similarity structures as well as overlook the clus-
ter structures of data, EMUFS exploits the similarity struc-
ture from the selected feature space to alleviate the impacts
of low-quality features and explores the cluster structure by
membership matrices, so that the feature selection process
can be effectively guided by the collaborative cooperation of
structures. Moreover, EMUFS learns the cluster structure of
samples from anchors via the information propagation on the
bipartite graph, reducing the computational cost and strength-
ening the scalability for large-scale tasks. Extensive experi-
ments demonstrate the effectiveness of EMUFS and its supe-
riority against the state-of-the-art competitors.
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