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Abstract

Task-oriented matching is one of the core aspects of
few-shot Action Recognition. Most previous works
leverage the metric features within the support and
query sets of individual tasks, without considering
the metric information across different matching
tasks. This oversight represents a significant lim-
itation in this task. Specifically, the task-specific
metric feature can decrease the generalization abil-
ity and ignore the general matching feature appli-
cable across different tasks. To address these chal-
lenges, we propose a novel meta-distillation frame-
work for few-shot action recognition that learns the
task-agnostic metric features and generalizes them
to different tasks. First, to extract the task-agnostic
metric information, we design a task-based self-
distillation framework to learn the metric features
from the training process progressively. Addition-
ally, to enable the model with fine-grained match-
ing capabilities, we design a multi-dimensional dis-
tillation module that extracts more detailed rela-
tions from the temporal, spatial, and channel di-
mensions within video pairs and improves the rep-
resentative performance of metric features for each
individual task. After that, the few-shot predic-
tions can be obtained by feeding the embedded
task-agnostic metric features to a common feature
matcher. Extensive experimental results on stan-
dard datasets demonstrate our method’s superior
performance compared to existing state-of-the-art
methods.

1 Introduction
Few-shot action recognition aims to learn new unseen ac-
tions with only a few data samples and thus has gained in-
creasing attention[Perrett et al., 2021; Li et al., 2022]. It is
promising to decrease the effort required for collecting exten-
sive training data and address the issue of decreased accuracy
that numerous effective action recognition models[Feichten-
hofer et al., 2019; Feichtenhofer, 2020; Arnab et al., 2021;
Selva et al., 2023] encounter when presented with unfamil-
iar real-life situations. However, few-shot action recognition

remains a challenging task that requires models to general-
ize to many unseen video tasks with only a limited number
of labeled samples. Existing approaches adopt metric-based
learning paradigms[Vinyals et al., 2016; Snell et al., 2017;
Sung et al., 2018]. These paradigms enable the learning
of video correlation features from multiple individual tasks,
which consist of support and query videos. However, these
learning frameworks have limitations. They utilize task-
oriented models that hinder the sharing of relative metric fea-
tures among diverse tasks. Additionally, the reliance on task-
specific metric features can decrease the models’ generaliza-
tion ability and overlook the general matching feature embed-
ding applicable across different tasks. Some methods[Wang
et al., 2023a] employ large-scale data pre-trained models
to enhance feature performance, which contradicts the few-
shot learning problem. To address these problems, entropy-
based unbiased initial model[Jamal and Qi, 2019] and deep
transformer-based distillation[Xu et al., 2022] have been pro-
posed.

Entropy-based unbiased initial model[Jamal and Qi, 2019]
learns an unbiased initial model with the largest uncertainty
over the output labels by preventing it from over-performing
in classification tasks, this meta-based method is challeng-
ing to capture complex visual information[Li et al., 2023].
Deep transformer-based distillation utilizes relation distil-
lation to align the attention distributions between the pre-
trained teacher and sampled student subnetworks[Xu et al.,
2022], which requires massive parameters and computational
resources. Recently, Self-distillation has achieved stunning
results in Domain Adaptation[Yoon et al., 2022; Cardace et
al., 2023] and self-supervised representation learning[Caron
et al., 2021; Song et al., 2023]. These methods utilize
momentum updating networks to acquire more comprehen-
sive and universally applicable representations of consistency
knowledge from a substantial volume of training data[Caron
et al., 2021; Zhou et al., 2021]. However, in few-shot action
recognition, the intricate multi-dimensional semantics of ac-
tion instances may result in a decline in the student model’s
ability to learn metric features from the teacher model for
each individual task. There is a crucial need for a global
perspective to learn universal metric features across multi-
ple episodes. Therefore, designing a reasonable distillation
strategy to take full advantage of self-distillation to acquire
few-shot metric features from historical episodes throughout
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the training process remains a challenge.
To address this issue, we introduce momentum-based

knowledge distillation[Caron et al., 2021] into the task-
oriented training paradigm to enable the learning of general
task-agnostic metric features from historical tasks, thereby
enhancing the generalization ability of few-shot action clas-
sification on new tasks. Specifically, we propose a novel
task-agnostic self-distillation framework for few-shot action
recognition, along with a multi-dimensional distillation mod-
ule. In general, our study revolves around two key ideas.
First, we learn the task-agnostic metric feature by the momen-
tum update self-distillation framework. Second, we enforce
the representative performance of metric features for each in-
dividual task by a multi-dimensional distillation module. No-
tably, to the best of our knowledge, our method is the first
to task agnostic metric feature compared to existing few-shot
action recognition work that typically uses the task-oriented
training paradigm.

In summary, our contribution can be summarized as fol-
lows:

• we propose a novel meta-distillation framework for few-
shot action recognition that enables the model to learn
task-agnostic metric features and generalize to different
tasks by ensemble and summarizing the training process.

• we propose an efficient relation feature that uses a multi-
dimensional distillation module to represent video met-
ric information that enables the network to align video
action instances from temporal, spatial, and channel per-
spectives.

• We conduct extensive experiments on three benchmark
datasets to verify the effectiveness of the proposed
method. The experimental results demonstrate the su-
perior performance of our method compared to existing
state-of-the-art methods.

2 Related Works
2.1 Few-Shot Action Recognition
Few-shot action recognition refers to the process of train-
ing a model capable of recognizing new classes with a lim-
ited number of labeled samples. Unlike few-shot image
classification, few-shot action recognition focuses on the
alignment of the temporal features in videos. The main-
stream few-shot action recognition methods employ a metric-
based meta-learning paradigm[Vinyals et al., 2016] and per-
form frame-to-frame temporal matching[Cao et al., 2020;
Wang et al., 2022; Wang et al., 2023b] to search for the
most similar categories. These methods require temporal
or spatial matching to predict the query labels. For in-
stance, OTAM[Cao et al., 2020] enforces the alignment of
video frames between query and support videos in the tem-
poral dimension. ITANet[Zhang et al., 2021] introduces
a decomposed self-attention mechanism to alleviate intra-
class variability in video features. TRX[Perrett et al., 2021]
utilizes Cross Transformers[Doersch et al., 2020] to con-
struct query-specific prototype representations. Following the
matching method of TRX, STRM[Thatipelli et al., 2022] en-
hances local and global features to effectively capture spatio-

temporal contextual information in videos. MoLo[Wang et
al., 2023b] introduces a long-short contrastive loss to en-
force local frame feature prediction with global context and
perceives motion details through frame-wise difference re-
construction. SloshNet[Xing et al., 2023] adaptively inte-
grates spatial features from different levels and integrates
long-term and short-term temporal features for rich spatio-
temporal characteristics. Besides, some research has utilized
the task-level information in few-shot action recognition, for
example, HyRSM[Wang et al., 2022] introduces task-aware
video relation learning to customize task-specific features and
utilizes a set-matching metric. However, the above researches
focus on frame-level spatio-temporal relationships between
videos from a single task, without fully leveraging multi-
dimensional information across different tasks which may
cause a decrease in the model’s generalization capability on
low-shot scenarios.

2.2 Self Distillation
The self-distillation scheme is a specific method within
knowledge distillation that is widely applied in domain adap-
tation and self-supervised learning. [Hinton et al., 2015] first
propose Knowledge Distillation (KD) technique for training
lightweight models to achieve comparable performance to
deep models, which is achieved by compressing the informa-
tive knowledge from a large model (i.e., teacher model) to a
small model (i.e., student model). Unlike previous knowl-
edge distillation approaches[Hu et al., 2022], the roles of
the student and teacher networks in self-distillation are dy-
namic throughout the iterative training process. This sug-
gests that the student and teacher networks can interchange
roles, or the student networks can learn from themselves.
Teacher Free Knowledge Distillation (Tf-KD)[Yuan et al.,
2020] showcases Knowledge Distillation (KD) as a form of
label smoothing regularization, implying that label smoothing
regularization can be seen as a virtual teacher, building upon
these insights, Teacher-free Knowledge Distillation is pro-
posed, allowing a student to acquire knowledge from itself or
a manually-designed regularization distribution. Online sub-
class knowledge distillation (OSKD)[Tzelepi et al., 2021] un-
covers similarities within each class to grasp shared semantic
information among subclasses. Throughout the online distil-
lation process, every sample gradually converges toward rep-
resentations of the same subclass while simultaneously mov-
ing away from representations of different subclasses. Semi-
supervised domain adaptation (SSDA)[Yoon et al., 2022]
adapts a model to the target domain using self-distillation
with sample pairs and generates an assistant feature by trans-
ferring an intermediate style between the teacher and the stu-
dent. DINO[Caron et al., 2021] introduces self-distillation
into self-supervised learning by creating various distorted
views or crops of an image using a multi-crop strategy, the
student network processes all these crops, whereas only the
global views are processed by the teacher network, thereby
reinforcing ”local-to-global” correspondences. iBOT[Zhou
et al., 2021] performs momentum-based self-distillation on
masked patch tokens and takes the teacher network as the
online tokenizer, along with self-distillation on the class to-
ken to acquire visual semantics. Our method is inspired
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Figure 1: Illustration of our Task Agnostic Self-Distillation for Few-Shot Action Recognition. The input of the teacher is the support video
set, the input of the student is the support set and query set, and the parameters of the teacher network which is visualized in orange are
Exponentially Moving Averaged (EMA) updated by the student network which is visualized in blue, Multi Dimension Distillation (MDD)
includes temporal Pooling (TP), Channel Pooling (CP), and Spatial Pooling (SP) to create a Multi Dimension Mask (MDM) for distillation,
Pixel Relation (PR) module capture global pixel relations, ”sg” denotes stop gradient.

by momentum-based self-distillation [Caron et al., 2021;
Zhou et al., 2021] method. Through momentum updates, the
teacher network iterative ensembles the training process, en-
abling the extraction of task-agnostic metric features from the
training process.

3 Method
3.1 Self Distillation for Few-Shot Action

Recognition
Following the knowledge distillation method[Gou et al.,
2021; Hu et al., 2022], our framework comprises two net-
works: the student network S and the teacher network T .
Unlike traditional approaches that use pre-trained networks
with complex parameters as teachers, we adopted a self-
distillation approach[Yuan et al., 2020]. This method im-
plies that both the student and teacher networks share iden-
tical network structures and initial parameters. To enhance
the networks’ ability for task-agnostic semantic metric fea-
tures in episodic, few-shot learning across various tasks, we
implemented a momentum-based update method inspired by
DINO[Caron et al., 2021]. This updated approach retains the
updated network parameters within each task, the update pro-
cess can be formulated as:

θt = (1− λ) · θt + λ · θs (1)
Where λ denotes the coefficient for momentum update, while
θt and θs denote the network parameters of the teacher and
student models, respectively. Unlike in self-supervised im-
age classification, where different data augmentations are ap-
plied to the same image to create local and global views, our

method in few-shot action recognition divides data into sup-
port and query sets. To ensure the student network’s met-
ric branch accurately learns metric features among different
videos within the same task, we input different images of the
same class from the support and query sets into the student
network for learning. Simultaneously, the support set is fed
into the teacher network. Leveraging the features extracted
from the teacher network for the support set features (As) and
the query set features (Aq) from the student network through
a projection layer, we map them into hyperspace and train the
network using cross-entropy loss as KD loss. Especially, tak-
ing the N-way 1-shot task as an example, within each task,
videos are divided into support and query sets. The support
set S = {s1, s2, ..., sN} comprises N action categories, each
containing one video, where si ∈ RT,C,H,W , and T denotes
the number of sparsely sampled video frames used to obtain
the video representation.

Given a query set video q ∈ RT,C,H,W , the process begins
by extracting frame-level features FS

S for the support set S
and frame-level features FS

q for the query set video q using
the student backbone network S . Subsequently, the teacher
backbone network T extracts frame-level features F T

S for
the support set S. We calculate the similarity between video
features among F T

S shares the same class as FS
q by cross-

entropy loss after a multi-layer projection network, this pro-
cess can be formulated as:

LCE = −
C∑
i

F T s
i log FSq

i (2)

Where F T s
i denotes projected feature of F T

s on the ith chan-
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nel, FSq
i denotes projected feature of FS

q on the ith channel.
Further, AS

S and AS
q are passed into the metric module to

acquire metric features among videos. These metric features
guide the gradient updates within the network for the cur-
rent task. Following the gradient update, the parameters of
the current student network are passed to the teacher network
through momentum updates.

3.2 Multi Dimension Distillation
Building upon the Attention-guided Distillation
method[Zhang and Ma, 2023], we propose a multi-
dimensional Attention-guided Distillation that focuses on
the intricate multi-dimensional information inherent in video
data. This aims to enhance the learning process of the
self-distillation method mentioned in section 3.1 for few-shot
action recognition, allowing for a better understanding of
information across spatial, channel, and temporal dimensions
within videos. We use A ∈ RC,T,H,W to denote the feature
of the backbone in an action recognition model, where
C, T, H, W denotes its channel number, frame number,
height, and width, respectively. Then, the generation of the
spatial attention map, channel attention map, and temporal
attention map is equivalent to finding the mapping function,
Gs : RC,T,H,W → RH,W , Gc : RC,T,H,W → RC and
Gt : RC,T,H,W → RT , respectively.

Given that the absolute value of each element in the fea-
ture conveys its significance, we create Gs by computing the
average of absolute values across the channel and temporal
dimensions. Additionally, Gc is constructed by averaging the
absolute values across the width, height, and temporal dimen-
sion, while Gt is formed by averaging the absolute values
across the width, height, and channel dimensions. This pro-
cess can be mathematically expressed as follows:

Gc(A) =
1

THW

i=1∑
T

j=1∑
H

k=1∑
W

|A·,i,j,k| (3)

Gs(A) =
1

CT

l=1∑
C

i=1∑
T

|Al,i,·,·| (4)

Gt(A) =
1

CHW

l=1∑
C

j=1∑
H

k=1∑
W

|Al,·,j,k| . (5)

Suppose we denote l, i, j, k as the indices referring to the lth,
ith, jth, and kth slice of A in the channel, temporal, height,
and width dimensions respectively, the spatial attention mask
Ms, the temporal attention mask Mt and the channel attention
mask Mc used in attention-guided distillation are obtained by
summing the attention maps derived from both the teacher
and student detectors. This process can be formulated as:

Ms = HW · softmax
((
Gs

(
AS)+ Gs

(
AT )) /T ) (6)

M t = T · softmax
((
Gt

(
AS)+ Gc

(
AT )) /T ) (7)

M c = C · softmax
((
Gc

(
AS)+ Gc

(
AT )) /T ) . (8)

Where the superscripts S and T are used to differentiate be-
tween the student (S) and teacher (T ) attention maps. The
hyper-parameter T in the softmax function is introduced by

[Hinton et al., 2015] to regulate the distribution of elements
in the attention masks. The attention-guided distillation loss
(LAGD) comprises two sub-modules: attention transfer loss
(LAT ) and attention masked loss (LAM ). LAT aims to
prompt the student model to imitate the multi-dimension at-
tention patterns of the teacher model. This can be formulated
as:
LAT =L2

(
Gs

(
AS) ,Gs

(
AT ))+ L2

(
Gc

(
AS) ,Gc

(
AT ))

+L2

(
Gt

(
AS) ,Gt

(
AT )) (9)

On the other hand, LAM aims to encourage the student to im-
itate the features of the teacher model using an L2 norm loss
that is masked by Ms, Mc and Mt. This can be formulated
as:

LAM = ((AT −AS)2 · (Ms ·M c ·M t))
1
2 (10)

3.3 Global Pixel Relation Distillation
Action recognition requires high attention to the foreground
subject’s motion, The relation between foreground and back-
ground features is addressed to tackle the feature imbalance
issue. The Graph Convolution module GloRe[Duan et al.,
2019], is employed to efficiently capture global pixel rela-
tions. GloRe outperforms attention mechanisms by better
capturing global context[Ni et al., 2023], leading to supe-
rior distillation effects. The procedure involves extracting
frame-level features separately from the teacher and student
backbone networks. These features are then fed into distinct
GloRe modules to grasp global pixel relations. Following
this, pixel-wise relation features undergo distillation to trans-
fer global relations from the teacher to the student, the distil-
lation loss function can be formulated as:

LPR =
1

k

k∑
i=1

∥ϕ (ti)− f (ϕ (si))∥2 (11)

where k is the number of frames. ti and si refer to the fea-
ture of the teacher and student respectively. ϕ represents the
GloRe module.f represents adaptive convolution. The GloRe
module contains three parts: graph embedding, graph convo-
lution, and reprojection.We first embed the input signal frame
feature A ∈ RC,H,W into a low-dimensional graph feature
space Ā ∈ RC1,HW the graph node features N ∈ RC1,C2

are obtained by projecting using a learnable projection ma-
trix M ∈ RHW,C2 . Then a graph convolution is applied on
graph node features N to capture the relationships features
Z ∈ RC1,C2 between nodes. Finally, the global pixel relation
features F ∈ RC1,C2 are projected back into the coordinate
feature space by a learnable projection matrix M ∈ RC2,HW .
In addition, an adaptive convolutional mechanism is inte-
grated into the student model to minimize feature disparities
between the student and teacher models. These node features
aggregate information from various regions and emphasize
significant relations via a relation filter module.

4 Experiments
4.1 Datasets and Implementation Details
Datasets
We evaluate our approach on three standard datasets,
including Kinetics[Carreira and Zisserman, 2017],
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Method Kinetics UCF101 HMDB51
1 -shot 5-shot 1 -shot 5-shot 1 -shot 5-shot

ARN[Zhang et al., 2020] 63.7 82.4 62.1 84.8 44.6 59.1
OTAM[Cao et al., 2020] 72.2 84.2 79.9 88.9 54.5 68.0

ITANet[Zhang et al., 2021] 73.6 84.3 - - - -
TRX[Perrett et al., 2021] 63.6 85.9 78.2 96.1 53.1 75.6

TA2N[Li et al., 2022] 72.8 85.8 81.9 95.1 59.7 73.9
STRM[Thatipelli et al., 2022] 62.9 86.7 80.5 96.9 52.3 77.3
HyRSM[Wang et al., 2022] 73.7 86.1 83.9 94.7 60.3 76.0

BiMHW[Thatipelli et al., 2022] 72.3 84.5 81.7 89.3 58.3 69.0
HCL[Zheng et al., 2022] 73.7 85.8 82.5 93.9 59.1 76.3

SloshNet[Xing et al., 2023] 70.4 87.0 86.0 97.1 59.4 77.5
MoLo[Wang et al., 2023b] 74.0 85.6 86.0 95.5 60.8 77.4

Ours 76.5 87.4 88.2 96.1 61.1 77.4

Table 1: Comparison with state-of-the-art few-shot action recognition methods on the Kinetics, UCF101 and HMDB51 datasets. Experiments
are performed under the 5-way task with 1-shot and 5-shot settings. The best results are denoted in bold black, the second-best results are
indicated with an underscore, and ”-” signifies that the result is not available in the published works.

UCF101[Soomro et al., 2012], and HMDB51[Kuehne
et al., 2011]. The datasets are partitioned into meta-training,
meta-validation, and meta-testing sets based on action
categories to meet the requirements of the few-shot clas-
sification setting. For Kinetics, we follow the splitting
strategy proposed by[Zhu and Yang, 2018], selecting 100
action categories, each with 100 samples, and dividing these
categories into 64, 12, and 24 for training, validation, and
testing, respectively. For UCF101, we split it into 70, 10,
and 21 categories for training, validation, and testing. In the
case of HMDB51, we split it into 31, 10, and 10 categories
for training, validation, and testing, adhering to the same
splitting strategy as in[Zhang et al., 2020].

Implementation Details
Following the common paradigm of existing few-shot ac-
tion recognition methods[Cao et al., 2020; Wang et al.,
2023b], we employ ResNet50[He et al., 2016] as the back-
bone network and initialize it with weights pre-trained on
ImageNet[Deng et al., 2009] to extract frame-level features.
We sparsely and uniformly sample 8 frames from each video,
like previous methods[Cao et al., 2020; Wang et al., 2023b].
In the network architecture, the Transformer layers of the En-
coder are configured with four layers, The teacher and student
models adopt the same structure and initialization parameters.
During training, we resize each frame in the video into 256
× 256, followed by random horizontal flips and random crop-
ping to a 224 × 224 region. In the testing phase, we first per-
form resizing and then replace random cropping with center
cropping to standardize the shape of input videos of varying
sizes. We utilize the Adam optimizer with an initial learn-
ing rate of 0.0005 to train our model. We randomly sample
30,000 episodes from the meta-training set for training. For
testing, similar to prior work[Wang et al., 2023b], we col-
lect 10,000 episodes from the meta-testing set to evaluate the
model’s performance and report the average accuracy. We
implement our framework using PyTorch and conduct train-
ing on one RTX 4090 GPU.

Method SD PR MDD accuracy

Baseline 86.31
Baseline + SD ✓ 87.02

Baseline + SD + PR ✓ ✓ 87.72
Ours ✓ ✓ ✓ 88.32

Table 2: Ablation study of three network components on UCF101
dataset under 5-way 1-shot settings. SD: Self-Distillation frame-
work; PR: Pixel Relation module; MDD: Multi Dimension Distilla-
tion module

4.2 Comparison with State-of-the-Art

In the 5-way task with 1-shot, and 5-shot settings, we com-
pare our method with state-of-the-art approaches, as pre-
sented in Table 1. Under the 1-shot settings, our method sur-
passes existing approaches across all three datasets. Specif-
ically, in the 1-shot setting, our method achieves signifi-
cant improvements of 2.4%, 1.8%, and 0.3% on Kinetics,
UCF1O1, and HMDB51, respectively. Our method’s perfor-
mance in the 5-shot setting on the Kinetics dataset exceeds
the previous best method by 0.4%. However, on UCF101
and HMDB51, it lags behind the TRX-based methods(e.g.
STRM[Thatipelli et al., 2022] and SloshNet[Xing et al.,
2023]).Nevertheless, our method outperforms other methods
in low-shot scenarios which could attributed to the reason that
low-shot scenarios contain fewer task-specific features, and
our method provides extra task-agnostic information learned
from the training process to assist metrics in low-shot scenar-
ios. Therefore, the task-agnostic metric features extracted by
our approach can significantly improve the recognition per-
formance of action instances with relatively low recognition
accuracy in low-shot scenarios . This problem is elaborated
in the subsequent experiments.
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Figure 2: Comparison of the per-class meta-testing accuracy of our method with OTAM and baseline under the 5-way 1-shot setting using
the Kinetics dataset.

4.3 Ablation Study
Impact of Network Components
In this subsection, we analyze the effects of three mod-
ules on the few-shot action recognition performance, Table
2 compares the performance of our method with three vari-
ants of our methods. Specifically, according to the frame-
work characteristics and previous few-shot action recogni-
tion works[Wang et al., 2022; Wang et al., 2023b], we train
a 3D backbone network[Tran et al., 2018] with a metric
module[Thatipelli et al., 2022] as the ”Baseline” for ablation
study, ”Baseline + SD” employs Self-Distillation(SD) frame-
work on the baseline, consisting of two networks with the
same architecture and a cross-entropy (CE) loss, ”Baseline +
SD + PR” employs Pixel Relation(PR) distillation module on
”Baseline + SD”, and our method(denoted as ”Ours”) further
employs Multi Dimension Distillation on ”Baseline + SD +
PR”. Starting with a comparison between the ”Baseline” and
”Baseline + SD”, we observe performance improvements of
0.71% for 1-shot tasks on the UCF101 dataset, indicating that
the introduction of the self-distillation framework can effec-
tively enhance the performance of few-shot recognition.

Compared with ”Baseline + SD”, ”Baseline + SD + PR”
integrates the Pixel Relation(PR) module, and an additional
performance improvement of 0.7% is observed for 1-shot
tasks on the UCF101 dataset, demonstrating that the pixel
relation module that enhances the perception of the video’s
action subject can effectively improve the extraction of few-
shot action.

Subsequently, our method(Ours) further incorporates
Multi-Dimension Distillation (MDD) to the ”Baseline + SD
+ PR”, MDD brings a significant improvement of 0.6%. This
suggests that multi-dimensional information enables the self-
distillation framework to perceive action metric semantics
more specifically within independent tasks, ultimately en-
hancing overall task-agnostic metric performance. Further
details on the learned metric features specifics in the teacher
and student will be provided in Section 4.4.

video pair best episode accuracy

SS 10,000 75.68
QS 10,000 75.67
CS 25,000 76.04

Table 3: Comparison experiments on the performance and overfit
situation of different input of teacher and student network on the
Kinetics datasets. ”SS” denotes the matching between support sets,
”QS” denotes the matching between query sets, and ”CS” denotes
the matching between the cross set combined with support outputs
from the teacher and the query set outputs from the student

Analysis of Per-Class Accuracy
To investigate the impact of our proposed method on per-class
classification accuracy for specific categories, we conduct a
per-class accuracy analysis on the meta-testing set of the Ki-
netics dataset under the 5-way 1-shot setting. A comparison
is made with OTAM[Cao et al., 2020] and the Baseline, fol-
lowing the previous few-shot action recognition works[Wang
et al., 2023b; Xing et al., 2023], the baseline comprises a
ResNet50 backbone followed by 4 Transformer layers, and
BiMHW[Thatipelli et al., 2022] is employed for metric learn-
ing. As illustrated in Figure 2, our method consistently ex-
hibits superior overall performance compared to the baseline
approach, emphasizing its broad applicability across various
motion patterns. Notably, our approach manifests a substan-
tial enhancement in accuracy for numerous categories char-
acterized by initially low recognition accuracy. The results
of the two previous experiments imply that the task-agnostic
metric feature can significantly enhance the recognition per-
formance of relatively low recognition accuracy action in-
stances at low-shot scenarios.

Analysis of Different Distillation Video Pairs
To better evaluate the impact of different distillation targets
within the self-distillation framework on task-agnostic metric
performance, we conducted a comparison within the distilla-
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(a) teacher attention map @500 episode

(b) student attention map @500 episode

(c) teacher attention map @15,000 episode

(d) student attention map @15,000 episode

Figure 3: visualization results of the student and teacher networks at episodes 500 and 15,000 on ”side kick” action instance

tion branch between the teacher and student models for differ-
ent input video pairs from the query and support sets. Table
3 compares the performance on three variants of input video
pair. Specifically, ”SS” denotes that the input videos of the
student network and teacher network are both the same videos
from the support set, ”QS” denotes that the input videos of the
student network and teacher network are both the same videos
from the query set and ”CS” denotes that the input videos of
students are from query set but the input videos of teacher are
from the support set that share the same categories with the
student input. The term ”best episode” refers to the point dur-
ing training when the meta-test performance is optimal, and
overfitting begins thereafter.

In Table 3, both ”SS” and ”QS” reach their optimal accu-
racy at the 10,000th episode, achieving 75.68% and 75.67%,
respectively. However, overfitting occurred after the 10,000th
episode. On the other hand, ”CS” attains its best performance
of 76.04% at the 25,000th episode, showing a 0.36% im-
provement compared to ”SS” and ”QS”.The comparison re-
sults indicate that distilling the different videos with the same
categories enables the model to learn general task-agnostic
metric features, ultimately improving the generalization ca-
pability.

4.4 Visualization Results
To further investigate the disparities in the extracted metric
features between student and teacher networks, we visual-
ize attention maps for the ”side kick” action instance in the
Kinetics dataset. We analyze and compare the feature con-
tent of the student and teacher networks at episodes 500 and
15,000. As depicted in Figure 3, at the initial 500 episodes,
the attention regions of the teacher network (a) and the stu-

dent network (b) are mainly similar, with attention areas pri-
marily focused on the subject’s body and inclined towards
the motion regions of the legs and arms. At the 15,000th
episode, significant disparities emerge in the attention regions
of the teacher (c) and student networks (d). The teacher net-
work becomes more concentrated on features that are more
universal and task-agnostic within the overall action, guid-
ing the student network to learn more during the training
phase through the self-distillation loss. In contrast, the stu-
dent network focuses on more specific action metric features
from multidimensional information in the current task . These
outcomes concurrently affirm the findings from Section 4.3:
Our task-agnostic self-distillation framework facilitates the
teacher network in learning more general task-agnostic fea-
tures from the learning process and guides the student net-
work to focus on the primary subject of motion.

5 Conclusion

In this paper, we propose a novel task-agnostic self-
distillation framework for few-shot action recognition. Our
approach learns the general task-agnostic metric feature by
distilling the learning process, thereby enhancing the general-
ization ability of few-shot action classification on new tasks.
Additionally, we employ a Multi Dimension Distillation to
enforce the representational performance of metric features
for each individual task. Extensive experiments demonstrate
that our method effectively extracts task-agnostic metric fea-
tures by the proposed framework. Consequently, our method
exhibits excellent performance and holds a performance ad-
vantage over existing few-shot action recognition methods.
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