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Abstract
Federated learning (FL) facilitates collaborative
model training across distributed clients while
maintaining privacy. Federated noisy label learn-
ing (FNLL) is more of a challenge for data inac-
cessibility and noise heterogeneity. Existing works
primarily assume clients are either noisy or clean,
which may lack the flexibility to adapt to diverse
label noise across different clients, especially when
entirely clean or noisy clients are not the major-
ity. To address this, we propose a general noise-
robust federated learning framework called Feder-
ated Early-Stopping (FedES), which adaptively up-
dates critical parameters of each local model based
on their noise rates, thereby avoiding overfitting to
noisy labels. FedES is composed of two stages:
federated noise estimation and parameter-adaptive
local updating & global aggregation. We introduce
a signed distance based on local and global gradi-
ents during a federated round to estimate clients’
noise rates without requiring additional informa-
tion. Based on this measure, we employ various de-
grees of early-stopping during local updating on the
clients, and further, a noise-aware global aggrega-
tion is employed to achieve noise-robust learning.
Extensive experiments conducted on varying syn-
thetic and real-world label noise demonstrate the
superior performance of FedES over the state-of-
the-art methods.

1 Introduction
Federated learning (FL) empowers collaborative deep learn-
ing model training without the need to share sensitive data,
making it particularly valuable in privacy-centric domains
such as healthcare and finance [McMahan et al., 2017; Dayan
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et al., 2021; Rieke et al., 2020]. Many FL systems utilize
datasets with associated labels, but labeling data is an expen-
sive and resource-intensive endeavor [Song et al., 2022]. Dif-
ferences in multi-source labeling skills and class distribution
result in varying noise rates, known as noise heterogeneity
[Fang and Ye, 2022]. For example, doctors in different hos-
pitals may face varying cases and have differing diagnostic
skills, leading to varying misdiagnosis rates [Ju et al., 2022;
Bernhardt et al., 2022; Karimi et al., 2020].

Existing federated noisy label learning (FNLL) addresses
noise heterogeneity by distinguishing noisy clients from clean
ones. Some methods discard clients based on specific crite-
ria, assuming that the number of clients needed for training
is smaller than the total participating clients (S < N ) [Na-
galapatti and Narayanam, 2021; Deng et al., 2021]. How-
ever, discarding clients, even if noisy, may result in the
loss of valuable information since they could contain clean
data. Furthermore, the clients who are retained may not
be entirely clean. Alternatively, other methods detect noisy
clients and employ de-noise strategies like pseudo-labeling
or knowledge distillation to them [Xu et al., 2022; Wu et al.,
2023]. Nevertheless, these approaches still treat clients as ei-
ther noisy or clean, potentially leading to suboptimal perfor-
mance. One straightforward way to address noise heterogene-
ity adaptively is to tailor de-noise strategies for each client,
such as data selection. However, removing the noisy sam-
ples in each client may still lose valuable information and
leave residual noise [Tuor et al., 2021; Zeng et al., 2022;
Zeng et al., 2023]. So far, there has been limited exploration
of adaptive approaches to handling noise heterogeneity in the
context of FNLL.

In the landscape of federated learning systems, the ques-
tion arises: How can a de-noise strategy be adapted to clients
with varying noise rates without causing information loss or
noise residue? For example, early-stopping explores the dy-
namic optimization policies during the training of deep neu-
ral networks (DNNs) [Rolnick et al., 2017; Li et al., 2020;
Nguyen et al., 2019; Tanaka et al., 2018], focusing on the
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Figure 1: Overview of the proposed two-stage framework FedES.

memorization effect that DNNs tend to first memorize clean
labels and then memorize noisy ones [Arpit et al., 2017]. Al-
though stopping training at a certain time point has shown
promising results, it remains difficult to avoid memorizing
noisy labels from the beginning [Han et al., 2020].

Early-stopping on a non-critical segment of DNNs has
arisen to prevent DNNs from memorizing noisy labels [Bai et
al., 2021; Xia et al., 2020]. Some methods involve stopping
the training of noise-sensitive layers, while other methods in-
volve stopping the training of non-critical parameters. How-
ever, these methods all require some prior knowledge, such
as the noise rate of training data. Unfortunately, in federated
learning, noise rates remain unknown and exhibit variations
among heterogeneous clients.

In this paper, we introduce a general noise-robust FL
framework to handle clients with varying noise rates, as de-
picted in Figure 1. To ensure privacy, we introduce a signed
distance to estimate clients’ noise rates by measuring the dis-
tribution of criticality of parameters (CoP) of local models.
Extensive experiments have shown a positive correlation be-
tween the amount of clean data and critical parameters [Fran-
kle and Carbin, 2018; Xia et al., 2021], suggesting more clean
data need more critical model parameters to memorize them.
Hence, clients with more clean data will exhibit more large
CoP values. The computation of CoP is related to the parame-
ter and its gradient, thus no additional information needs to be
requested from clients. Based on this measure, we then em-
ploy various degrees of early-stopping during local updating
on clients. To enhance training stability and mitigate negative
noise impact, we introduce a noise-aware global aggregation
using weights based on estimated noise rates.

The primary contributions of our work can be summarized
as follows:

1. We present a general noise-robust framework, FedES, to
handle noise heterogeneity where clients have varying

noise rates instead of a binary noisy-vs-clean problem.

2. We present a general noise-generation approach for
modeling federated label noise, incorporating varying
noise rates for clients with a continuous spectrum.

3. We estimate each client’s noise rate via a signed EMD
based on the local and global gradient, without requiring
additional information from clients.

4. We demonstrate that FedES outperforms state-of-the-art
FL methods on both varying synthetic federated label
noise and real-world label noise.

2 Related Work
2.1 Federated Methods
Detecting noisy clients and then handling them separately
from clean ones is a common practice for addressing the
FNLL problem. For example, S-FedAvg [Nagalapatti and
Narayanam, 2021] discards clients with lower Shapley-based
marginal contribution. Similarly, Fair [Deng et al., 2021]
discards clients with lower loss differences. However, these
methods assume clients are either highly clean or noisy,
leading to information loss in the ’noisy’ clients and noise
residue in the ’clean’ clients. Without discarding clients,
[Xu et al., 2022] conducts pseudo-labeling for detected noisy
clients. FedNoRo [Wu et al., 2023] employs knowledge
distillation for better noisy label learning on detected noisy
clients. They somewhat alleviate the information loss but
still, handle clients with varying noise rates in a binary way.
A more general way is to conduct data selection for each
client. [Tuor et al., 2021] filters out noisy training sam-
ples early before training, while [Zeng et al., 2022] itera-
tively removes them. However, both methods may cause in-
formation loss and leave some noise residues. Recently, an
FNLL library named FedNoisy [Liang et al., 2023] has orga-
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nized multiple centralized de-noise strategies that can be em-
ployed by clients locally [Zhang et al., 2017; Han et al., 2018;
Wang et al., 2019]. However, such centralized strategies face
limitations in estimating label noise in small client data and
do not produce a noise-robust weighting scheme for global
aggregation.

2.2 Criticality of Parameters (CoP)
The memorization effect reveals that DNNs tend to first mem-
orize clean labels and then memorize noisy ones [Arpit et al.,
2017]. Based on this, the parameters that contribute to op-
timality at an early stage are important for clean labels. In-
formally, CoP [Xia et al., 2021] is a metric for quantifying
the criticality of model parameters, which can be computed
as follows:

gi = |∇l (wi)× wi| , i ∈ [m], (1)

where wi denotes the parameter, l(wi) denotes the loss func-
tion such as cross entropy, ∇l(wi) denotes the gradient of
l(wi) and m is the number of all parameters. If gi is large,
wi is viewed as a critical parameter. ∇l(wi) indicates how
much the output of the network would change in the parame-
ter. However, a large gradient alone doesn’t necessarily imply
that the parameter is critical if the parameter itself is small. In
other words, even though the gradient is large, the small value
of the parameter means that it doesn’t have a substantial im-
pact on the output of a DNN. Generally, more clean labels
require more critical model parameters in the early stage.

3 Problem Definition
3.1 Preliminaries
Let’s consider a federated learning system that has N clients
and a distributed dataset D = {Dn}Nn=1. Here, Dn ={(

xi
n, y

i
n

)}|Dn|
i=1

represents the local dataset for client n, and
Wn denotes the model parameters of client n. Each client has
a noise rate of τn, which is defined as:

τn =
|yin ̸= y∗in |
|Dn|

, i ∈ [1, |Dn|] (2)

where y∗in represents the correct label for instance xi
n. In this

way, data quality is defined as:

qn = 1− τn, (3)

which is the proportion of clean labels to total data. To esti-
mate the noise rates and support the parameter-adaptive up-
dating, two major foundations are used: the federated noise
model and FedAvg updating process. In the following subsec-
tions, we will provide more details on these two foundations.

3.2 Federated Noise Model
We propose a federated noise model to simulate label noise
in FL systems. Our model captures varying noise rates across
clients, avoiding binary classification of clients as clean or
noisy [Xu et al., 2022]. With a bell-like shape N (µ, σ), our
model characterizes the noise rate distribution among clients.
Using τ ∼ N (µ, σ) offers insights into the central tenden-
cies and variabilities in noise rates across clients. Addition-
ally, the independence of clients allows us to apply the central

limit theorem (CLT) [Fischer, 2011], suggesting that the dis-
tribution of noise rates across independent clients is likely to
approximate a normal distribution.

The generation of noise rates for N clients can be ex-
pressed as:

τn = min(max(τ, 0), 1), τ ∼ N (µ, σ), (4)

where τn represents the n-th client and is clipped by the range
[0, 1]. With a specified noise rate, one can easily create both
symmetric and asymmetric label noise [Wang et al., 2019].
In the case of symmetric label noise, instances undergo ran-
dom label flipping, with an equal probability determined by
the noise rate, ensuring an even likelihood for each class.
Conversely, for asymmetric label noise, instances are more
inclined to receive class-conditioned labels, introducing a bi-
ased likelihood for incorrect labels, again based on the speci-
fied noise rate.

3.3 FedAvg Updating Process
FedAvg proposes a standard round of federated learning that
involves local updating and global aggregation [McMahan et
al., 2017]. LetW(t) be the global model (i.e., DNN) at round
t and distribute it to each client. The local update process for
client n is expressed as:

Wn(t+ 1) =W(t)− η∇Ln(W(t)), (5)

where η is the learning rate and ∇Ln(W(t)) represents the
local gradient on W(t). The global update process can then
be expressed as:

W(t+ 1) =

N∑
n

|Dn|
|D|
Wn(t+ 1)

=W(t)− η
N∑ |Dn|
|D|
∇Ln(W(t)),

(6)

where the weight of each local model is determined by the
data size |Dn|. It can be stated that the aggregation of the
model parameters is equal to the weighted average of local
gradients.

4 Methodology
To address clients with varying noise rates, we propose a gen-
eral noise-robust framework named FedES (see Algorithm 1).
Our method comprises two stages: federated noise estimation
and parameter-adaptive updating. In the first stage, a global
model is pre-trained by FedAvg, which is used to calculate
the global and local parameter-wise CoPs. Then, the distance
between global and local parameter-wise CoPs is used to esti-
mate clients’ noise rates. In the second stage, according to the
noise estimation results, different degrees of early-stopping
are employed during local updating. Moreover, a noise-aware
global aggregation is deployed to maintain the updating sta-
bility and reduce the negative impact of noise.

4.1 Federated Noise Estimation
In Section 2.2, we discussed the positive correlation between
the amount of clean data and critical parameters. To estimate
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Algorithm 1: FedES: Federated Early-Stopping
Input: N (number of clients ), T (number of training
rounds), D = {Dn}Nn=1 (dataset),Wpre(s1) (global
model before the last pre-training round),
Wpre

n (s1 + 1) (local model after the last pre-training
round),W(1) (initialized global model in the second
stage)

Output: GlobalW(T )

Wpre(s1 + 1) =
∑N

n=1
|Dn|∑
k|Dk|W

pre
n (s1 + 1)

// Federated noise estimation
gs ← |(Wpre(s1 + 1)−Wpre(s1)) ∗Wpre(s1)| //
global CoP

for each client n = 1 to N in parallel do
gn ← |(Wpre

n (s1 + 1)−Wpre(s1)) ∗Wpre(s1)| //
local CoP

dn ← EMDsigned (gn,gs) // signed EMD
ρn ← dn−min(d)

max(d)−min(d) // estimated data quality
end
// Parameter-adaptive local updating
for each round t = 1, ..., T do
Wn ←W(t)
for each client n = 1, ..., N in parallel do

for each local iteration t′ = 1, 2, ...E do
Dn ← select a minibatch of size B ⊆ Dn

Wn ←Wn − ηρnMn∇L (Dn,Wn)
//Mn obtained in Eq. 15

end
end
// Noise-aware global aggregation
W(t+ 1) =

∑N
n=1

|Dn|ρn∑
k|Dk|ρk

Wn

end
returnWn(T )

noisy clients, we examine the distribution of CoP for each
client. For a more accurate computation of CoP, we first pre-
train a global modelWpre(s1 + 1) for s1 rounds by FedAvg
(s1 will be discussed in Section 5.4).

Based on the global update process described in Eq. 6, the
parameter-wise global CoP expressed as the product of the
parameter and its gradient is given by:

gs ← |(Wpre(s1 + 1)−Wpre(s1)) ∗Wpre(s1)|, (7)

where the global gradient is essentially the average of all lo-
cal gradients. Similarly, based on the local update process
described in Eq. 5, the local CoP is given by:

gn ← |(Wpre
n (s1 + 1)−Wpre(s1)) ∗Wpre(s1)|, (8)

where the parameter-wise local gradient denoted by
Wpre

n (s1 + 1) − Wpre(s1) can be easily obtained in a fed-
erated round. The learning rate η can be omitted for clarity as
it only serves as a scaling factor. This method allows us to ob-
tain both local and global CoPs by computing parameter-wise
gradients during a federated round. It eliminates the need for
additional information.

Considering that higher data quality is associated with a
CoP distribution having many large values, and the shape of

distributions with varying noise rates differs from the global
distribution, Earth Mover’s Distance (EMD) is suitable for
measuring the shape difference between local and global CoP
[Rubner et al., 2000]. As EMD quantifies the mass required
to transition between distributions, the distance concerning
the CoP of a low-data-quality client may be the same as that
of a high-data-quality client (a horizontally flipped version of
a low-data-quality client).

To resolve this conflict, a signed EMD is required. We first
gather N + 1 parameter-wise local CoPs and global CoP as
G = [g1, ...,gN ,gs]. Then, we use an N + 1-component
Gaussian Mixture Model (GMM) to fit and predict G. We
exploit the vector of means of predicted results of G, which
is denoted as [µ1, ...µN ,µN+1]. Thus, the signed EMD be-
tween local and global CoP can be calculated by:

dn = sgn
(
µn − µN+1

)
· EMD(gn,gs)

= sgn
(
µn − µN+1

)
· inf
π∈Π(gn,gs)

E(x,y)∼π[d(x, y)]
(9)

where EMD(·, ·) denotes the minimum-cost transportation
plan π∗ of moving the distribution mass from one to another,
and the cost is a ground distance metric d(x, y). sgn(·) is
the sign of the difference between µn and µN+1, which is
expressed as

sgn(x) = −[x < 0] + [x > 0], (10)

where [·] is the Iverson bracket.

In this way, clients with high data quality have a large pro-
portion of critical model parameters that can be reflected in a
large dn (positive). Conversely, clients with low data quality
have a large proportion of non-critical model parameters that
can be reflected in a small dn (negative). Based on this, the
data quality can be generated by:

ρn =
dn −min(d)

max(d)−min(d)
, (11)

where the dn is scaled to the range of [0, 1] using min-max
scaling. The experimental results on data quality estimation
will be presented in Section 5.4.

4.2 Parameter-adaptive Updating
With the data quality ρn, different degrees of early-stopping
are employed for local updating. The CoP ranking for each
client is computed as follows:

g↓
n =

[
g↓n[1], . . . , g

↓
n[m

c
n], . . . , g

↓
n[m]

]
, (12)

g↓n[1] ≥ . . . ≥ g↓n[m
c
n] ≥ . . . ≥ g↓n[m] (13)

where g↓n[i] is the sorted CoP for each parameter, mc
n is the

number of critical model parameters which is given by:

mc
n = ρn ∗m, (14)

where m is the number of model parameters.
The critical and non-critical parameters are then deter-

mined as follows:

Mn[i] =

{
1, if g↓n[1] ≥ g[i] ≥ g↓n[m

c
n]

0, otherwise
, (15)
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which is a parameter-wise indicator. For each client, only
critical model parameters undergo gradient decay. The pro-
cess of selective gradient decay (SeGD) for each client is car-
ried out in the following manner:
Wn (t

′ + 1)←Wn (t
′)− ηρnMn ⊙∇L (Wn (t

′)) , (16)
where t′ represents the current iteration, the gradient decay
coefficient ρn is set to prevent overconfident descent steps.
It can be seen that clients with low data quality have fewer
critical model parameters and should be stopped early. Con-
versely, clients with high data quality have more critical
model parameters and should be updated.

In the following analysis, we show how parameter-adaptive
local updating based on ρn is equivalent to adapting the un-
derlying loss function across clients in FL.

Theorem 1. LetWn and Ŵn refer to two sets of model pa-
rameters that use selective gradient decay and standard one,
respectively. When an update is performed at iteration t′, two
different model parameters are obtained: Wn(t

′ + 1) and
Ŵn(t

′ + 1). The extent of regularization, i.e., the loss differ-
ence at the next iteration, is controlled by ρn as follows:

L(Wn(t
′ + 1))− L(Ŵn(t

′ + 1))

= η(
∑

Mn[i]=1

(1− ρn)∇l2i +
∑

Mn[i]=0

1 ∗ ∇l2i ), (17)

where∇li represents a specific entry in∇L(Wn(t
′)). For the

sake of clarity, the proof can be found in Appendix A.
The following corollaries illustrate the extent of regular-

ization on varying ρn:
Corollary 1. For ρn = 1, ∀i,Mn[i] = 1: all model param-
eters are critical and updated in a standard way, therefore
L(Wn(t

′ + 1))− L(Ŵn(t
′ + 1)) = 0.

Corollary 2. For ρn = 0, ∀i,Mn[i] = 0: all model pa-
rameters are non-critical and early stopped, therefore the
L(Wn(t

′+1))−L(Ŵn(t
′+1)) = η∥∇L(Wn(t

′))∥2, which
is the maximum of L(Wn(t

′ + 1))− L(Ŵn(t
′ + 1)).

Corollary 3. For ρn ∈ (0, 1): apparently, L(Wn(t
′ + 1))−

L(Ŵn(t
′ + 1)) ∈ (0, η∥∇L(Wn(t

′))∥2). Decreasing ρn in-
creases the loss difference from the traditional update pro-
cess, as it multiplies a larger proportion of gradients by 1 and
the remaining small proportion by the increased (1-ρn). ρn
controls the regularization effect that prevents the model from
memorizing noise, so a small ρn exactly suggests stronger
regularization.

In global aggregation, we assign different weights to mod-
els based on their noise rates. High-quality data from clients
with large ρn leads to significant updates. To maintain the in-
fluence of substantial updates in the right direction while re-
ducing the negative impact of noise, we propose noise-aware
aggregation (NaAgg):

W(t+ 1) =
N∑

n=1

|Dn| ρn∑
k |Dk| ρk

Wn(t+ 1). (18)

This ensures that clients contributing significantly to the up-
date maintain their influence after global aggregation, empha-
sizing the importance of cleaner data in guiding the optimiza-
tion direction.

5 Experimental Results
5.1 Dataset
Two groups of datasets are used for evaluation: CIFAR-
10/100 with synthetic label noise and Clothing1M with real-
world label noise:

1. CIFAR-10/100 datasets [Krizhevsky et al., 2009]:
CIFAR-10 has 60,000 32x32 color images in 10 cat-
egories, with each category having 6,000 images.
CIFAR-100 has 60,000 32x32 color images in 100 cat-
egories, grouped into 20 supercategories with 5 specific
categories each. Both datasets are divided into train/test
sets with a ratio of 5:1.

2. Clothing1M dataset [Xiao et al., 2015]: Clothing1M has
1M clothing images in 14 classes. The dataset contains
real-world label noise due to it being collected from mul-
tiple online shopping websites. As commonly practiced,
Clothing1M is divided into train/test sets with a ratio of
4:1.

Note that for both datasets, 20% of the test set is reserved as a
benchmark dataset so that some comparison methods can use
it as a reference to evaluate noisy clients.

5.2 Experimental Setup
Data Partition and Noise Generation
We consider the Dirichlet distribution [Liang et al., 2023;
Li et al., 2021] and the Federated noise model described in
Section 3.1 to generate the N = 20 heterogeneous-noise
clients. We consider both IID and non-IID data partitions
in our work. In the case of IID partitions, we randomly dis-
tribute the entire dataset D among N clients [Kairouz et al.,
2021]. For non-IID partitions, we sample pk ∼ DirN (β) and
assign a proportion pk,j of instances of class k to client j,
where Dir(β) is the Dirichlet distribution with a concentra-
tion parameter β (default = 0.5). For evaluation under dif-
ferent settings of label noise, we use N ∼ (0.3, 0.2) and
N ∼ (0.5, 0.2) to generate the varying noise rates of clients.
As detailed in Section 3.1, both symmetric and asymmetric
label noise are considered. Note that for the Clothing1M
dataset, the noise is in its original form and not artificially
generated.
Implementation Details
The ResNet-18 [He et al., 2016] model serves as the back-
bone for both the CIFAR-10/100 and Clothing1M datasets.
For the CIFAR-10/100 dataset, the local epoch is 10. For the
Clothing1M dataset, the local epoch is set to 5. The learning
rate is 0.01 for the CIFAR-10/100 dataset and 0.001 for the
Clothing1M dataset. The batch size is 128 for CIFAR-10/100
and 32 for Clothing1M. Other settings remain the same for
both datasets, including 10 rounds for pre-training, a total of
200 communication rounds, and an optimizer of SGD with a
weight decay of 5e-4 and momentum of 0.9.

5.3 Comparison with SOTA Methods
We have categorized state-of-the-art methods into two groups
based on whether they treat clients as either noisy or clean
(i.e., in a binary manner). The first group is the binary de-
noise methods, which includes S-FedAvg [Nagalapatti and

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5420



IID Non-IID

Category Method Symmetric Asymmetric Symmetric Asymmetric
µ = 0.3 µ = 0.5 µ = 0.3 µ = 0.5 µ = 0.3 µ = 0.5 µ = 0.3 µ = 0.5

Baseline FedAvg 78.32±0.36 55.59±0.72 81.62±0.32 50.28±0.03 58.75±0.06 32.56±0.82 63.06±0.66 32.52±0.82

Binary De-noise
S-FedAvg 85.42±0.28 63.72±0.95 88.94±0.62 58.82±0.04 66.55±0.17 41.27±0.53 70.62±0.52 40.72±0.98
Fair 83.56±0.08 64.35±0.83 87.60±0.22 58.35±0.76 64.04±0.58 41.27±0.18 68.32±0.97 40.64±0.97
FedNoRo 87.55±0.29 71.00±0.11 83.79±0.14 48.16±0.38 59.36±0.61 35.36±0.27 53.97±0.76 47.62±0.68

General De-noise
Fed-SCE 90.19±0.21 83.00±0.34 84.77±0.10 52.50±0.67 83.66±0.38 65.33±0.56 70.92±0.04 23.63±0.30
Fed-Mixup 88.72±0.15 74.19±0.69 87.77±0.20 54.61±0.52 70.72±0.48 40.07±0.15 66.71±0.17 31.56±0.83
Fed-Coteaching 85.38±0.17 73.67±0.20 87.15±0.09 58.20±0.59 76.64±0.73 54.77±0.12 72.25±0.78 22.26±0.71

Ours FedES 93.09±0.93 85.40±0.34 90.79±0.91 60.34±0.36 85.74±0.99 68.11±0.48 74.54±0.65 50.59±0.41

Table 1: Test Accuracy (%) comparison results on CIFAR-10 datasets under varying synthetic federated label noise

IID Non-IID

Category Method Symmetric Asymmetric Symmetric Asymmetric
µ = 0.3 µ = 0.5 µ = 0.3 µ = 0.5 µ = 0.3 µ = 0.5 µ = 0.3 µ = 0.5

Baseline FedAvg 46.22±0.60 30.94±0.87 53.01±0.80 31.66±0.63 42.11±0.36 25.84±0.12 51.72±0.83 33.04±0.01

Binary De-noise
S-FedAvg 53.29±0.00 39.78±0.44 60.33±0.88 40.56±0.53 49.60±0.45 34.22±0.24 58.74±0.06 41.07±0.36
Fair 51.71±0.19 39.92±0.64 58.54±0.43 39.83±0.05 47.11±0.72 34.44±0.04 56.99±0.79 41.45±0.91
FedNoRo 59.76±0.38 47.14±0.40 61.13±0.13 33.22±0.75 42.73±0.64 30.40±0.15 50.43±0.06 44.97±0.29

General De-noise
Fed-SCE 57.83±0.51 48.01±0.74 58.05±0.36 33.01±0.43 63.17±0.27 50.20±0.45 57.36±0.11 34.63±0.23
Fed-Mixup 60.14±0.73 47.05±0.56 62.16±0.59 37.08±0.24 55.86±0.12 40.86±0.18 58.27±0.42 37.57±0.29
Fed-Coteaching 59.22±0.45 44.27±0.33 58.98±0.50 34.64±0.98 58.45±0.02 42.72±0.43 60.59±0.35 39.03±0.16

Ours FedES 63.13±0.32 50.59±0.68 65.11±0.09 39.58±0.37 65.51±0.75 52.96±0.76 62.72±0.89 47.05±0.11

Table 2: Test Accuracy (%) comparison results on CIFAR-100 datasets under varying synthetic federated label noise

Narayanam, 2021], Fair [Deng et al., 2021], and FedNoRo
[Wu et al., 2023]. Particularly, S-FedAvg and Fair exploit a
benchmark dataset to identify noisy clients, while FedNoRo
exploits client-wise features. The second group is the general
de-noise methods, which consist of some well-known cen-
tralized methods that can be applied to the client’s local envi-
ronment. These methods are organized by FedNoisy library
[Liang et al., 2023] and include Fed-SCE [Wang et al., 2019],
Fed-Coteaching [Han et al., 2018], and Fed-Mixup [Zhang et
al., 2017].

Tables 1, 2, and 3 show the average (5 trials) and standard
deviation of the best test accuracies on CIFAR-10/100 and
Clothing1M. FedES achieves the best performance among
comparison methods by adapting to clients with varying noise
rates. Without a specific solution to noise heterogeneity,
the six FNLL methods fail to fully improve performance.
All comparison methods suffer from performance degrada-
tion as noise rates increase and the shift from IID to Non-
IID occurs. Though general de-noise strategies exhibit bet-
ter performance than binary methods, which divide clients as
noisy or clean, simply employing these strategies on clients is
sub-optimal. Comparatively, FedES consistently outperforms
other methods by a large margin.

5.4 Ablation Study
How Each Step in Federated Noise Estimation Works
CIFAR-10/100 datasets are used to conduct experiments on
the first stage of FedES. The aim is to examine the impact
of each step on the estimation of noisy clients. Results are
summarized in Table 4. This study compares local and global
distributions using two methods: Mean and Earth Mover’s
Distance (EMD). The former uses the means of a Gaussian
Mixture Model (GMM) of all local CoPs, and the latter mea-
sures the distance between the two distributions. The Sign

(a) CIFAR-10 (b) CIFAR-100

Figure 2: Comparison on data quality estimation. Settings: CIFAR-
10 dataset (µ = 0.5, noise type: asymmetric, data partition: Non-
IID) and CIFAR-100 dataset (µ = 0.5 noise type: asymmetric, data
partition: Non-IID)

is applied to EMD to determine if a positive or negative sign
should be used. The number of training rounds in the first
stage of all methods is kept constant for fairness in compar-
isons. The methods’ effectiveness in estimating noisy clients
is evaluated using mean squared error (MSE) between the
client-wise indicator ρn and actual data quality qn.

In Table 4, the first two indicators from Fair [Deng et al.,
2021] and S-FedAvg [Nagalapatti and Narayanam, 2021] rely
on a limited dataset, leading to poor results. Using mean for
local distribution improves MSE performance, while EMD
can enhance it further by measuring the distance between lo-
cal and global distribution. FedES, a combination of Sign
and EMD, accurately estimates data quality values of noisy
clients, laying a strong foundation for parameter-adaptive up-
dating. Compared to Fair and S-FedAvg, which only identify
high and low-quality clients, FedES stands out in data quality
estimation. See Figure 2 for a visual comparison.
How pre-training Affects Federated Noise Estimation
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Baseline Binary De-noise General De-noise Ours
FedAvg S-FedAvg Fair FedNoRo Fed-Mixup Fed-Coteaching Fed-SCE Fed-ES

70.52±0.23 71.33±0.04 71.25±0.50 71.05±0.14 72.61±0.27 71.35±0.23 72.57±0.12 73.03±0.14

Table 3: Test Accuracy (%) comparison results on Clothing1M datasets under real-world label noise

Indicator Mean EMD Sign CIFAR-10 CIFAR-100
q̂n ✗ ✗ ✗ 0.07 0.13
Pϕ[n] ✗ ✗ ✗ 0.05 0.11
ρn ✓ ✗ ✗ 0.03 0.09
ρn ✗ ✓ ✗ 0.02 0.05
ρn ✗ ✓ ✓ 0.01 0.02

Table 4: MSE comparison results of the first stage ablation study in
FedES. Settings: CIFAR-10 dataset (µ = 0.5, noise type: asymmet-
ric, data partition: Non-IID) and CIFAR-100 dataset (µ = 0.5 noise
type: asymmetric, data partition: Non-IID)

(a) CIFAR-10 (b) CIFAR-100

Figure 3: Ablation study of s1 for pre-training. Settings: CIFAR-10
dataset (µ = 0.5, noise type: asymmetric, data partition: Non-IID)
and CIFAR-100 dataset (µ = 0.3, noise type: asymmetric, data
partition: Non-IID)

In the first stage, the global model warms up for s1 rounds
with the FedAvg updating process before federated noise es-
timation. Due to the lack of prior knowledge on multi-source
label noise, it is hard to exactly determine the optimal set-
ting of s1. To evaluate the effect of s1, federated noise es-
timation is conducted under different settings of s1 on the
CIFAR-10 dataset (µ = 0.5, noise type: asymmetric, data
partition: Non-IID) and CIFAR-100 dataset (µ = 0.3, noise
type: asymmetric, data partition: Non-IID) as shown in Fig.
3. It can be seen that, after a small number of pre-training
rounds, federated noise estimation performance becomes sta-
ble in a certain range. In other words, the setting of s1 would
not significantly affect FedES’s performance.
How SeGD and NaAgg benefit Noise-Robust FL
Table 5 shows FedES test accuracy with different de-noise
schemes. When noisy clients are involved in federated learn-
ing without any de-noise schemes, there is a significant degra-
dation in classification performance. Although client selec-
tion (CS) can increase test accuracy by discarding clients
with data quality below 0.5, it still results in information loss
for discarded clients and noisy labels for retained clients. A
softer solution is to allow all clients to engage in and apply
SeGD to perform selective gradient decay on model param-
eters for each client, resulting in a significant improvement

CS SeGD NaAgg CIFAR-10 CIFAR-100
✗ ✗ ✗ 58.75±0.06 53.01±0.80
✓ ✗ ✗ 67.91±0.15 59.97±0.29
✗ ✓ ✗ 76.15±0.82 62.76±0.64
✗ ✗ ✓ 74.26±0.97 61.17±0.18
✗ ✓ ✓ 85.74±0.99 65.11±0.09

Table 5: Test Accuracy comparison results of the second stage ab-
lation study in FedES. Settings: CIFAR-10 dataset (µ = 0.3, noise
type: symmetric, data partition: Non-IID) and CIFAR-100 dataset
(µ = 0.3, noise type: asymmetric, data partition: IID)

in performance. NaAgg assigns updated local models cor-
responding criticality levels during aggregation, further im-
proving the global model’s performance. Using SeGD and
NaAgg can help explore valid information in noisy clients
meanwhile maintaining the criticality of model parameters
and clients, considerably outperforming the classification per-
formance when there are only high data quality clients (i.e.,
larger than 0.5).

6 Conclusion
In conclusion, this paper introduces a pioneering approach
to federated label noise modeling, departing from the binary
noisy-vs-clean clients initialization to accommodate the nu-
anced variations in noise rates among clients. The proposed
Federated Early-Stopping (FedES) framework is specifically
crafted to address the challenges posed by clients exhibiting
diverse noise rates. Our experimental results, conducted on
a diverse set of datasets containing both synthetic and real-
world label noise, unequivocally demonstrate the superior
performance of FedES compared to state-of-the-art federated
noisy label learning (FNLL) methods. This empirical evi-
dence substantiates the efficacy of our federated noise model
and the FedES framework in achieving noise-robust learn-
ing in federated settings. We anticipate that our contributions
will not only advance the field of federated learning but also
inspire further research in the development of practical and
adaptable federated learning frameworks for real-world ap-
plications.
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