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Abstract
Multi-armed bandit is a simple but powerful algo-
rithmic framework, and many effective algorithms
have been proposed for various online models. In
numerous applications, the decision-maker faces
diminishing marginal utility. With non-linear ag-
gregations, those algorithms often have poor re-
gret bounds. Motivated by this, we study a bandit
problem with diminishing marginal utility, which
we termed the bandits with concave aggregated re-
ward(BCAR). To tackle this problem, we propose
two algorithms SW-BCAR and SWUCB-BCAR.
Through theoretical analysis, we establish the ef-
fectiveness of these algorithms in addressing the
BCAR issue. Extensive simulations demonstrate
that our algorithms achieve better results than the
most advanced bandit algorithms.

1 Introduction
Multi-Armed Bandit (MAB) is one of the most classical
frameworks for making decisions sequentially under uncer-
tainty. In this setting, an agent chooses an action and re-
ceives a reward in each round. The agent aims to maxi-
mize her/his cumulative reward during the game by captur-
ing the exploration-exploitation tradeoff. Based on the ba-
sic bandits model, many studies have proposed a number of
variants, and a large number of algorithms have emerged to
tackle related problems [Gittins, 1979; Agrawal et al., 1988;
Auer et al., 2002a; Maillard et al., 2011; Li et al., 2023].
These bandit models have been applied across various do-
mains, such as advertisements [Li et al., 2010; Li et al., 2011],
dynamic procurement [Badanidiyuru et al., 2012; Badani-
diyuru et al., 2013] and crowdsourcing platforms [Slivkins
and Vaughan, 2014].

The classical bandit problems often assume that the pulls of
arms are independent and the cumulative reward of the pulled
arms is a linear function of all actions over the time hori-
zons T . However, due to the diminishing marginal utility, in
many application domains, the agent collects a concave ag-
gregated reward: 1) the marginal utility of each arm gradually
decreases, 2) the value generated by a selected arm in each
round will impact the subsequent rounds’ rewards. For ex-
ample, an advertiser wants to promote a new product. There

are several different advertisements to choose from, and dif-
ferent advertisements have different effects on the product’s
popularity. The advertiser has to decide which advertisement
to use on each day. In this scenario, each arm corresponds
to an advertisement, and the total reward corresponds to the
product’s popularity or the number of registered users. Since
the decay of Click-Through-Rate(CTR) is largely due to the
amount of repeat exposure[Agarwal et al., 2009], the longer
the advertising time, the more people learn about the product,
and the diminishing marginal utility leads to a decline in the
growth rate of the product’s popularity. The advertiser aims to
the expose product to more people, i.e., to maximize the ag-
gregated reward over the total T rounds. In this problem, due
to diminishing marginal rewards, even if the increase in prod-
uct popularity on the first day is more significant than that on
the second day, it cannot be concluded that the advertisement
quality of the first day is higher than that of the second day.
The quality of the advertisement is a hidden “value” and the
increase in product popularity is an observable “reward”. The
agent’s goal is to select options with higher “values” based on
observable “rewards” to maximize his total reward. Besides
advertising, the establishment of datasets for large-scale mod-
els and the employment of personnel also exhibit the property
of diminishing marginal utility.

In this work, we consider the situation where an agent
faces a concave aggregated reward function. We define it
as the bandits with concave aggregated reward(BCAR) prob-
lem. In this model, the reward of pulling any arm decays over
time. In our setting, there are agent-unknown random val-
ues v(t) and real marginal rewards r(t). The agent-unknown
random values v(t) are similar to the rewards in the clas-
sic MAB model and sampled in the range (0, 1]. These two
values are correlated by an increasing and concave function
f(·), i.e., r(t) = f(

∑
j≤t v(j)) − f(

∑
j≤t−1 v(j)). The

objective of the agent is to maximize his expected total re-
ward E

[
f
(∑T

j=1 vaj (j)
)]

in a time horizon T by carefully
pulling arms in each round.

Challenges. (1) Potential sublinear reward: The cumulative
reward may not increase linearly with T , so the algorithm
with a sublinear regret upper bound may not achieve a reward
of (1 − o(1))OPT. (2) Indirect connection between r(t) and
v(t): The thorniest one stems from the particular aggregated
reward function, namely that the rewards r(t) obtained by
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sampling cannot reflect the value v(t) of the arms. (3) Non-
independence among selections: The agent’s past selections
will impact the rewards of future selected arms due to the
implicit dependence between arms. As the total reward is not
a simple sum of all arm’s values in each round, the selection
of arms in different rounds is no longer independent.
Contributions. (1) To the best of our knowledge, this is the
first work to investigate the bandits with concave aggregated
reward. This model formulates the bandit problem associated
with diminishing marginal utility. Our algorithms achieve re-
wards of (1 − o(1))OPT, which existing approaches cannot
attain. (2) To tackle this problem, we propose a sliding win-
dow based algorithm SW-BCAR with provable regret bound.
We prove that the algorithm SW-BCAR attains a regret as
Õ(K1/3T−1/3)OPT, where K, T and OPT are the number
of arms, the number of rounds and the best-arm benchmark.
(3) We also study an extended case of the BCAR, where the
agent knows that the maximum of the arms’ mean values µ∗

is in the range [ 1σ , 1] and σ > 1. We call this case the pa-
rameter case. We propose a UCB based algorithm SWUCB-
BCAR with a provable regret guarantee Õ(K1/2T−1/2)OPT.
(4) We validate the performance of our algorithms via numer-
ical simulations.

2 Problem Formulation and Preliminaries
We formally define the bandits with concave aggregated re-
ward(BCAR) as follows. There is an unknown monotoni-
cally increasing concave reward function f : R+ → R+.
Let K be the set of alternative arms and K = {1, 2, ...,K}.
Each arm a is associated with a value distribution Da. Let
µ(a) = EX∼Da [X]. All the value distributions are supported
in (0, 1]. The game is played T rounds. When the agent
chooses one of the arms, the arm will generate a value sam-
pled from its distribution. Formally, the problem protocol at
each round t = 1, ..., T is as follows:

• The agent chooses one arm at ∈ K and the arm generates
a value vt = vat

(t) which is unknown to the agent.
• The agent receives a reward rt = rat

(t) =

f
(∑t

j=1 vaj
(j)

)
− f

(∑t−1
j=1 vaj

(j)
)

for this selection.
The objective of the agent is to maximize his expected total

reward E
[
f
(∑T

j=1 vaj
(j)

)]
. Figure 1 illustrates the model

of BCAR.
Regret. An algorithm is optimal if it maximizes the ex-
pected total reward. We define the optimal expected total
reward as OPT = maxa1,...,aT

E
[
f
(∑T

j=1 vaj
(j)

)]
.

The suboptimal algorithm A are evaluated via the expected
total regret: E [RA(T )] = OPT− EA

[
f
(∑T

j=1 vaj
(j)

)]
.

Since the reward function may not increase linearly with
T in this problem, if an algorithm B attains a sublinear
regret E [RB(T )], E [RB(T )] may be Θ(f(T )) and the
agent may attain a reward of Θ(1)OPT, which signifies a
considerably undesirable outcome. For example, f(x) =

log x and E [RB(T )] = O(
√
T ) . To eliminate the ef-

fects of the concave aggregated reward function, we con-
sider the ratio of the algorithm’s regret and the best-arm

𝑣1 𝑣2 𝑣3
……

𝑣T
𝑥

𝑦

𝑦 = 𝑓(𝑥)

𝑟1
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Figure 1: Graphical representation of the BCAR model.

Notation Description

f(·) the unknown reward function.

at the arm chosen by at time t, at ∈ {1, ...,K}.
µ(a) the expectation of arm a’s value distribution.

vt the value generated by the arm at at time t.

rt the reward generated by the arm at at time t.

a∗ the arm with the largest mean value.

f ′
end f ′

end = f ′(
∑T

j=1 vaj
(j)).

RA(T ) the regret of the algorithm A.

OPT the best arm benchmark.

Table 1: Description of commonly-used notations.

benchmark OPT, i.e., E [RA(T )] /OPT, to measure the al-
gorithm performance. For example, if f(x) = log x and
E [RA(T )] /OPT = O(

√
T/T ), the algorithm A attains a re-

gret of O(T−1/2 log T ). And the algorithm A is better than
an algorithm B that attains a regret of E [RB(T )] = O(

√
T ).

In [Bubeck and Cesa-Bianchi, 2012], Bubeck et al. proved
that in the Stochastic MAB problem, fix round number T
and arm number K, for any bandit algorithm, there exists
a problem instance such that E[R(T )] ≥ Ω(

√
KT ) and

E[R(T )]
OPT = E[R(T )]

O(T ) ≥ Ω
(
K1/2T−1/2

)
. Because the stochas-

tic MAB is equivalent to the case where f(x) = x in the
BCAR problem, it is a sub-problem of our model. The algo-
rithm designed for the BCAR problem should also apply to
the stochastic MAB. We can prove the following theorem:

Theorem 1. In the BCAR problem, fix round number T and
arm number K, for any bandit algorithm, there exists a prob-
lem instance such that

E [R(T )] /OPT ≥ Ω
(
K1/2T−1/2

)
. (1)

We summarize key notations used throughout this paper in
Table 1.
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3 Fundamental Case
The model is a variant of the classical stochastic multi-armed
bandit problem [Lai et al., 1985], motivated by diminish-
ing rewards. In this problem, the learner cannot observe the
value sampled from the selected arm’s distribution. However,
the observed diminishing reward is a concave function of the
value of the action currently chosen and the values generated
by the past actions. The learner’s goal is to design a policy to
find the optimal arm quickly from observed rewards to maxi-
mize the aggregated reward or minimize the regret.

In this problem, even if the aggregated reward function is a
Lipschitz function, i.e., ∃L ∈ R s.t. |f(x+y)−f(x)| ≤ L·|y|,
∀x, y ∈ R, existing algorithms, for example UCB1[Auer et
al., 2002a], can only attain a regret as Õ

(√
KTL

)
. How-

ever, the reward function does not correlate linearly with the
round number T . So, if an algorithm attains the regret sub-
linear in T , the algorithm may achieve a regret of Θ(1)OPT,
which signifies a considerably undesirable outcome.

In order to address the BCAR problem, we propose the
SW-BCAR algorithm. Our algorithm aims to detect arms
with small mean values through a period of exploration, after
which these “bad” arms will be abandoned and excluded from
further selection. The arms that have not been abandoned are
referred to as reserved arms. For further convenience, we in-
troduce the following definitions:

Definition 1. Let Kend be the set of arms reserved at the end
and a∗end be the arm with the maximum mean value in Kend.
Let µ∗

end = µ(a∗end). We define bad arms to be the arms
whose mean values are less than µ∗

end and good arms to be
the arms whose mean values are not less than µ∗

end.

Definition 2. Let weight wt in round t be the ratio between
the reward obtained in round t and the value generated by the
chosen arm in round t, i.e. wt =

rat (t)

vat (t)
.

Key idea. Initially, we use a round-robin approach to se-
lect arms from the arm set, and a sliding window approach
to reduce the impact of the concave aggregated reward func-
tion on our assessment of arm mean values. When an arm
is selected, the reward is determined by both the value gen-
erated by the chosen arm and the weight determined by the
aggregated function. As the value of the aggregated function
increases, the slope may gradually decrease, indicating that
the weight may decrease as the selection process progresses.
If the weights of an arm at different rounds vary significantly,
our evaluation of the arm’s mean value may be imprecise. To
address this, we employ a sliding window-based approach to
ignore the rewards in the early rounds, thereby reducing the
impact of weight differences on arm assessment. We assume
that there are two arms a and a′, where µ(a) > µ(a′). If
the agent is unable to determine which arm has a lower mean
value, he can deduce that the lower bound of the change rate
of weights is linearly related to µ(a)−µ(a′). In this way, the
agent can ensure that the regret is bounded even when more
rounds of exploration are undertaken.

To minimize the regret upper bound according to its ex-
pression, we choose an appropriate length of the sliding
windows denoted as m. We can prove that when m =

Algorithm 1: SW-BCAR
Input: K,T

1 Initialize the set of arms K;
m← ⌈(T/K)2/3 log1/3 T ⌉;

2 Build a circular linked list B on A, a vector
C ∈ NK×K , count vectors D,E,N ∈ NK ;

3 Initialize all items in C and D,E,N to 0, a1 = 1;
4 for round t = 1, 2, ...,Km do
5 pick arm at in B, receive rt; Nat

← Nat
+ 1;

r
Nat
at ← rt; at+1 ← next(at) in B;

6 end
7 for arm j ∈ [1,K] do
8 rj ← 1

m

∑Nj

n=Nj−m+1 r
n
j ;

9 end
10 for round t = Km+ 1,Km+ 2, ..., T do
11 pick arm at in B, receive rt; Nat

← Nat
+ 1;

r
Nat
at ← rt; rat

← 1
m

∑Nat

n=Nat−m+1 r
n
at

;
12 for arm j ∈ B do
13 if Cat,j ̸= m and rat

> rj then
14 Cat,j ← Cat,j + 1;
15 if Cat,j = m then
16 Dat ← Dat + 1; Ej ← Ej + 1;

Remove-Arms(D,E,B);
17 end
18 end
19 if Cat,j ̸= m and rat ≤ rj then
20 Cat,j ← 0;
21 end
22 end
23 at+1 ← next(at) in B;
24 end

⌈(T/K)2/3 log1/3 T ⌉, we can minimize the regret upper
bound.

Arm a and a′ are two arms in the arm set K. For all
i ∈ {1, ..., T}, we define that a′ is i-better than a if the fol-
lowing requirements are met: 1) for all j ∈ {1, ..., i}, we
denote the weight multiplied by the value of arm a in it’s j-th
latest selection as ŵj . We denote the weight multiplied by
the value of arm a′ in it’s j-th latest selection as ŵ′

j . For all
j ∈ {1, ..., i}, ŵj ≥ ŵ′

j ; 2) when the event in 1) occurs, we
compare the mean reward of the latest i selections of arm a
and that of arm a′. We call these comparisons as i-mean value
comparisons. For these comparisons, there are i consecutive
comparisons satisfy that the mean reward of the latest i selec-
tions of arm a is lower than that of arm a′. For arms a and
a′, we define that a is i-worse than a′ if a′ is i-better than
a. When an arm a is m-better than half of the other reserved
arms, the agent will abandon all the arms that are m-worse
than a; when an arm is m-worse than more than half of the
other reserved arms, the agent will abandon the arm a.

The details of SW-BCAR are shown in Algorithm 1. It is
composed of three phases:

• Initial phase (line 1-3): Let the parameter m =
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Algorithm 2: Remove-Arms
Input: D,E,B

1 flag ← 1;
2 while flag = 1 do
3 flag ← 0;
4 for arm j, a ∈ B do
5 if Dj ≥ |B|/2 and Cj,a = m then
6 remove a from circular linked list B;

Update D,E; flag ← 1;
7 end
8 if Ej ≥ |B|/2 then
9 remove j from circular linked list B;

Update D,E; flag ← 1;
10 end
11 end
12 end

𝒂𝒊

𝑥 =  1𝑖>𝑗,  ∃ 𝑠 ∈ ℕ, 𝑠 ≥ 𝑚 + 1

ҧ𝑟𝑖
𝑠−𝑥+1 ҧ𝑟𝑗

𝑠+1<

ҧ𝑟𝑖
𝑠−𝑥 ҧ𝑟𝑗

𝑠<

ҧ𝑟𝑖
𝑠−𝑥+𝑚−1 ҧ𝑟𝑗

𝑠+𝑚−1<

…      …   …

𝑎𝑗 𝑚-better than 𝑎𝑖

𝒂𝒋
𝑎𝑖 𝑚-worse than 𝑎𝑗

definition of m-better and m-worse

mechanism of removing arms

𝒂𝒊

𝑚-better 
than

arms in
arm set 𝑨𝒊

If |𝑨𝒊| ≥ |reserved arms|/2,
remove the arms in 𝑨𝒊 .

𝒂𝒊

𝑚-worse 
than

arms in
arm set 𝑨𝒊

If |𝑨𝒊| ≥ |reserved arms|/2,
remove the arm 𝒂𝒊 .

Figure 2: An illustration of SW-BCAR.

⌈(T/K)2/3 log1/3 T ⌉. The agent maintains a count vector
C ∈ NK×K , where Ca,a′ is used to record the number of
consecutive comparisons satisfy that the mean reward of the
latest m selections of arm a is larger than that of arm a′ for
the m-mean value comparison. When Ca,a′ = m, it will no
longer change. In addition to this, the agent maintains three
other vectors D,E,N ∈ NK . Da, where a ∈ K, is the num-
ber of the reserved arms which is m-worse than arm a. Ea,
where a ∈ K, is the number of the reserved arms which is
m-better than arm a. Na, where a ∈ K is the number of arm
a has been pulled. The agent initializes all items in all vectors
to 0. B is a circular linked list of reserved arms.

• Exploration phase (line 4-9): The agent uses round robin
to select each arm m times and calculates the mean reward for
each arm in this phase.

• Sliding window phase (line 10-24): The agent puts all
the arms that have not been abandoned yet into the reserved
arm set and then uses round robin to select arms from this set
in future. When the agent selects an arm at, he will calculate
the mean reward of the arm at’s latest m selections and then

compare it with the other reserved arms’ mean rewards of
their latest m selections and update Cat,a′ , Dat and Ea′ for
all a′ in the reserved arms, where a′ ̸= at. When an arm a is
m-better than half of the other reserved arms, the agent will
abandon all the arms that are m-worse than a; when an arm is
m-worse than more than half of the other reserved arms, the
agent will abandon the arm a. By removing the arms in this
way, we can have a good performance guarantee for µ∗

end and
limit regret due to abandoning the largest mean value among
the reserved arms.

In the rest of this section, we will prove the regret bound
of Algorithm 1. Let va(t) and ra(t) be the value and reward
generated by the arm a ∈ K when it is selected for the t-th
time. Let wa(t) = ra(t)/va(t) and wt = wat

(t). We can
know that ∀t1 < t2, t1, t2 ∈ {1, · · · , T}, wt1 ≥ wt2 .

Let ra(t), where t ≥ m, be the mean reward gen-
erated by the latest m choices of the arm a (from its
(t − m + 1)-th choice to its t-th choice), i.e. ra(t) =
1
m

∑t
i=t−m+1 ra(i). Let va(t), where t ≥ m, be the mean

value generated by the latest m choices of the arm a, i.e.
va(t) = 1

m

∑t
i=t−m+1 va(i). We then estimate the devi-

ation of the average from the true expectation. By defin-

ing the confidence radius δ̂t(a) = 2wa(t)
√

2 log T
m , we have

∀i ∈ {t − m + 1, ..., t}, ra(i) ≤ wa(i) ≤ wa(t − m + 1),
i.e. ra(i) ∈ (0, wa(t − m + 1)]. From Azuma-Hoeffding’s
inequality, we can show that

P
[∣∣rNa

a − E
[
rNa
a

]∣∣ ≤ δ̂Na
(a)

]
≥ 1− 2

T 4
. (2)

Similarly, let δ′ =
√

2 log T
m , from Hoeffding’s inequality,

we have

P
[∣∣vNa

a − E
[
vNa
a

]∣∣ ≤ δ′
]
≥ 1− 2

T 4
. (3)

Definition 3. We define the good event to be the event that
(2) and (3) hold for all arms and all rounds simultaneously.
Let “bad event” be the complement of the good event.

We will analyze the regret for the good event and the bad
event separately. We note that if a lousy arm is preserved, the
slope of the reward function will change fast. Then, we have
the following result:
Theorem 2. There are K alternative arms and T rounds.
For the bandits with concave aggregated reward, SW-BCAR
algorithm achieves regret for the BCAR bounded by

E [RSW−BCAR(T )]

OPT
= O

(
(K log T )1/3 logK

T 1/3

)
. (4)

Proof Sketch. From the properties of concave functions, we
can infer that f(µ∗T ) ≥ OPT. We first analyze the difference
between the total revenue and f(µ∗T ), and then convert the
result to a bound on the regret.

Although the proof for Theorem 2 is complicated, the key
is to divide the regrets generated by SW-BCAR into three cat-
egories and analyze them separately: 1) In good events, the
regrets generated by the algorithm as the agent selects the
bad arms, denoted as R̂1; 2) In good events, the regrets gen-
erated by the algorithm as the agent removes the good arms,
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denoted as R̂2; 3) In bad events, the regrets generated by the
algorithm, denoted as R̂3.

First, we give the upper bound of E[R̂1]. We prove that
if a lousy arm is not abandoned on time, E[rat (t)]

µ(at)
changes

fast as selections progress. Then we prove that the regret
bound for BCAR generated by the “bad arms”, E

[
R̂1

]
=

O
(
T−1/3(K log T )1/3 logK

)
f(µ∗T ). Second, we give the

upper bound of E[R̂2]. We prove that in good events
µ∗ − µ∗

end < O(δ′ logK). Then, we prove that the regret

bound for BCAR generated by the “good arms”, E
[
R̂2

]
=

O
(
T−1/3(K log T )1/3 logK

)
f(µ∗T ). Then, we give the

upper bound of E[R̂3]. Since the probability of bad events
happening is O( 1

T 2 ), we can prove that the regret bound for

BCAR generated by the “bad events”, E
[
R̂3

]
= O

(
1
T

)
.

By summing up the above results and converting them to an
analysis of the regret, we are able to complete the proof.

4 Parametric Case
In the previous section, we discuss the fundamental case.
Since both the reward function and the value distribution of
each arm are unknown, it is difficult for us to analyze the
slope range of the function and the actual distribution of arms.
In many applications, although we do not know the mean
value of the optimal arm, we know that it has a constant lower
bound.

In this section, we consider the parametric case. In the
BCAR model, assume that there is a parameter σ > 1. We
define the optimal arm a∗ as the arm with the largest mean
value and µ∗ = µ(a∗), where µ∗ is in the range of [ 1σ , 1].

We propose a variant of Algorithm 1 named SWUCB-
BCAR to solve the problem in this situation. This algorithm
also uses the upper/lower confidence bound method and at-
tains a regret as Õ(K1/2T 1/2) f(µ

∗T )
µ∗T . Since E[R̂(T )] ≥

Ω(
√
KT ), Algorithm 3 is asymptotically optimal. The

pseudo algorithm for this method is given by Algorithm 3.
Similar to the proof of Theorem 2, we can prove the fol-

lowing theorem:
Theorem 3. For the bandits with concave aggregated reward
in the parametric case, SWUCB-BCAR algorithm achieves
regret for the BCAR bounded by

E
[
RSWUCB−BCAR(T )

]
OPT

= O

(
K1/2σ log T

T 1/2

)
. (5)

Proof Sketch. For each arm a ∈ K, let ∆(a) = µ∗−µ(a)
µ∗

be the difference between the mean value of the optimal
arm a∗ and the mean value of the arm a(a ̸= a∗). Let
ma = ⌈ 8 log Tσ2

∆(a)2 ⌉. For each arm a ∈ K, let Ra(T ) be the
regret generated by the difference between the arm a and a∗.
Let fa be the reward generated by arm a. Similar to the proof
of Theorem 2, we have E[Ra(T )] ≤ O

(
σ2µ∗ log2 T

∆(a)

)
f(µ∗T )
µ∗T .

Let us fix some ϵ > 0; then regret consists of two parts:
1) All arms a with ∆(a) ≤ ϵ contributes at most a total

Algorithm 3: SWUCB-BCAR
Input: K,T

1 Initialize the set of arms K;
2 Build a circular linked list B on A, a count vector

C ∈ NK×K×T , a count vector N ∈ NK ; Initialize all
items in C and N to 0, a1 = 1, lmin = 1;

3 for round l = 1, 2, ..., T do
4 δ′l ←

√
2 log T

l σ;
5 if δ′l ≥ 1 then
6 lmin = l + 1;
7 end
8 end
9 for round t = 1, 2, ..., T do

10 pick arm at in B, receive rt;
11 Nat

← Nat
+ 1; rNat

at ← rt;
12 for l = lmin, lmin + 1, ..., Nat do
13 rat,l ← 1

l

∑Nat

n=Nat−l+1 r
n
at

;
14 for arm j ∈ B do
15 if Nj ≥ l then
16 if rat,l > rj,l · 1+δ′l

1−δ′l
then

17 Cat,j,l ← Cat,j,l + 1;
18 if Cat,j,l = l then
19 remove j from circular linked

list B;
20 end
21 end
22 if rat,l ≤ rj,l · 1+δ′l

1−δ′l
then

23 Cat,j,l ← 0;
24 end
25 end
26 end
27 end
28 at+1 ← next(at) in B;
29 end

of ϵµ∗Tf ′
end; 2) each arm a with ∆(a) > ϵ contributes at

most a total of O
(

µ∗Kσ2 log2 T
ϵ

)
· f(µ

∗T )
µ∗T . Combining these

two parts, in good events we have E[R(T )] ≤ O(ϵµ∗T +
µ∗Kσ2 log2 T

ϵ ) f(µ
∗T )

µ∗T . Let ϵ =
√
TKσ log T . By summing up

the above results, we can complete the proof.

5 Evaluation By Simulation
In this section, we evaluate our algorithms’ effectiveness in
terms of regrets. We compare the performance of SW-BCAR
and SWUCB-BCAR with benchmark algorithms.

We use UCB1 [Auer et al., 2002a] and exp3 [Auer et al.,
2002b] for comparison. Both of them are the most clas-
sic bandits algorithms. Besides, we use Rless [Metelli et
al., 2022] and AAEAS [Lykouris et al., 2020] for compari-
son. Both of them are the algorithms for the non-stationary
bandits. The algorithm AAEAS is used to tackle the ban-
dits with adversarial scaling. The algorithm Rless is used
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Figure 3: Regret with different round numbers.

to tackle the stochastic rising bandits. These bandit models
are similar to the BCAR model. All of the four algorithms
require a range of rewards in each round. Although our al-
gorithms do not require such a setting, to facilitate the com-
parison, we use the aggregated reward functions satisfying
the Lipschtiz assumption. Specifically, we use the follow-
ing reward functions with different parameters: (1)f1,c(x) =
c − c · e(−x/c), c > 0; (2)f2,c(x) = [log(1 + cx)]/c, c > 0;
(3)f3,c(x) = (1 + x)1/c − 1, c ≥ 1. Here we mainly con-
sider the truncated normal distributions and the reward func-
tion f3,c(·) to evaluate the algorithms’ performance.

We set the variance of all truncated normal distributions
in the experiment to 0.2, and designed several different sets
of experiments to study the effect of variables on the algo-
rithms. All results are the averages over 20 runs. In the exper-
iments, variables other than specified separately were fixed as
follows: 1) the round number T = 20000; the arm number
K = 2; 2) the optimal arm’s mean value µ∗ = 0.8; the sub-
optimal arms’ mean values µ(a) = 0.4; 3) the aggregated
reward function f(x) =

√
1 + x−1; 4) the parameter for the

value range σ = 2.
Impact of Round Number. Figure 3 presents the impact
of round number on algorithms’ regrets. As shown in Figure
3, SW-BCAR and SWUCB-BCAR can always obtain better
results than the benchmark algorithms in the considered sit-
uations. As T increases, the regrets of other methods will
increase faster than that of our algorithms. In Figure 3(b)
and Figure 3(d), as T grows, the ratio between the regrets
attained by our algorithms and the optimal reward gradually
decreases. At the same time, the ratio between the regrets
attained by the benchmark algorithms and the optimal re-
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Figure 4: Regret with different functions.

ward is almost unchanged. We calculate that the attained to-
tal regrets of our algorithms are at least 79.38% lower than
those of the benchmark algorithms, when T ≥ 20000 and
K = 2. In Figure 3(a) and Figure 3(c), the regret for
SWUCB-BCAR decreases with T . In our problem, the re-
ward function is a monotonically increasing concave func-
tion. Although µ∗T−

∑T
t=1 va(t)(t) increases as T increases,

f(µ∗T ) − f(
∑T

t=1 va(t)(t)) does not necessarily increase
as T increases. An illustrative example is

√
1.21 −

√
1 ≥√

4.31 −
√
4. We can establish that the experimental results

align with the theoretical analysis.
Impact of Reward Function. Figure 4 presents the impact
of different aggregated reward functions on algorithms’ re-
grets. The larger the function parameter c is, the faster the
slope of the function changes as its input changes. When
c = 1, i.e. f(x) = x, this problem degenerates into the
Stochastic MAB Problem. The algorithm UCB1 and exp3
which are designed specifically for this situation have lower
regret than SW-BCAR and SWUCB-BCAR. The results are
within our expectations. When the function’s slope varies
rapidly with its input, SW-BCAR and SWUCB-BCAR attain
a smaller regret than other algorithms. Furthermore, our al-
gorithms can provide an excellent performance guarantee no
matter how the reward function changes. These experimental
results also verify our algorithm’s effectiveness on the BCAR.
We calculate that the attained total regrets of our algorithms
are at least 67.96% lower than those of the benchmark algo-
rithms, when c ≥ 1.4.
Impact of Mean Value. Figure 5 presents the impact of the
suboptimal arm’s mean value on algorithms’ regret. In these
simulations, we find that SW-BCAR and SWUCB-BCAR can
always obtain better result than benchmark algorithms. The
cost of selecting the wrong arm decreases as the mean of
the suboptimal arm increases. Consequently, various algo-
rithms can yield satisfactory results in this scenario. Con-
versely, when the suboptimal arm mean is small, SW-BCAR
and SWUCB-BCAR surpass other algorithms by achieving
significantly better rewards.
Impact of Parameter for the Value Range. Figure 6
presents the impact of the parameter for the value range on
algorithms’ regret. As shown in Figure 6, for parameters that
meet the requirements, the closer they are to 1

µ∗ , the smaller
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Figure 6: Regret with different parameters.

regrets SWUCB-BCAR will obtain. As the parameter be-
comes larger, SWUCB-BCAR requires more rounds to distin-
guish the optimal arm. A small round number is not enough
for the agent to distinguish which arm is better, thus the al-
gorithm cannot obtain a satisfactory result. When T is large
enough, R(T )/OPT will gradually decrease as T increases.

6 Related Work
The Bandits with Concave Reward Functions. Some
models have been proposed for formulating bandits with con-
cave reward functions [Agrawal and Devanur, 2014; Xu et al.,
2020]. However, in these models the arm values and the con-
cave functions are assumed to be known, which significantly
decreases the complexity of the problem.

The Stochastic MAB Problem. In the stochastic MAB
problem [Gittins, 1979], when the agent chooses an arm a, he
will receive a stochastic reward, which is sampled indepen-
dently from an unknown distribution. The two most repre-
sentative solutions for this problem are UCB [Gittins, 1979]
method and Thompson sampling [Thompson, 1933]. Both
methods give a regret bound of E[R(T )] ≤

√
KT log T .

In our model, the concave aggregated reward function intro-
duces additional complexity into the problem and requires de-
velopment of different strategies to effectively solve it.

The Adversarial MAB Problem. In the adversarial MAB
problem [Auer et al., 2002b; Mohri and Yang, 2016; Saha
and Tewari, 2011; Scaman et al., 2017; van der Hoeven et al.,

2020; Lykouris et al., 2020], an adversary possesses the abil-
ity to manipulate the reward associated with each arm[Hazan
and Kale, 2011]. One of the most widely employed algo-
rithms to address this problem is the exp3 algorithm[Auer et
al., 2002b], which achieves a regret of O(

√
KT logK) in

this model. However, the regret fails to completely meet the
agent’s requirements in our model.
The Non-stationary Stochastic MAB problem. In the
non-stationary stochastic MAB problem[Russac et al., 2019;
Besbes et al., 2014; Trovò et al., 2020; Garivier and
Moulines, 2008], the mean reward of each arm changes over
time. In the restless bandits[Whittle, 1988], the reward dis-
tributions change in each round, but the agent is aware of
these changes. In the rested bandits[Tekin and Liu, 2012],
an arm’s reward distribution changes only when it is cho-
sen by the agent. In the rotting bandits[Levine et al., 2017],
the reward of each arm decays with the number of times
it is selected, and the algorithm SWA achieves a regret as
Õ(K1/3T 2/3). In the bandits with adversarial scaling[Lyk-
ouris et al., 2020], rewards consist of two components: the
random values generated by the arms and the “scaling” de-
termined by an adversary. The algorithm AAEAS attains a
regret as O

(∑
a̸=a∗

k log(kT )
∆(a)

)
in this model. In the stochas-

tic rising bandits[Metelli et al., 2022], the expected rewards
of arms are determined by the number of times they have been
pulled or the current round number. In this model, The algo-
rithm Rless attains a regret as Õ(T 2/3).

In our model, the aggregated reward function introduces
two novel challenges that must be addressed: 1) the rewards
obtained from the agent’s previous selections have an impact
on his future rewards, and 2) the cumulative reward may not
increase linearly with the round number T . Even if the agent
employs existing methodologies and attains a regret that is
sublinear with respect to T , we are unable to provide a theo-
retical proof regarding the agent’s ability to attain a reward of
(1 − o(1))OPT . However, by utilizing our proposed meth-
ods, we are able to establish a theoretical proof that the agent
can achieve a reward of (1− o(1))OPT in this problem.

7 Conclusion
In this study, we proposed a novel bandit framework named
the Bandits with Concave Aggregated Reward. To ad-
dress this problem, we developed a sliding-window type
algorithm SW-BCAR, and proved that the regret is up-
per bounded by Õ(K1/3T−1/3)OPT. Additionally, for the
parameter case, we proposed another algorithm SWUCB-
BCAR, and we also proved that the regret is upper bounded
by Õ(K1/2T−1/2)OPT, which matches the optimal regret
bound for this problem. Our framework and results provide
a starting point for further exploration of the BCAR problem.
There are several intriguing questions that remain for further
research. One is to establish a lower bound on the regret for
the fundamental case. Another question is to study a general
MAB under additional constraints such as budget limits and
combinatorial bandits. Furthermore, extending the optional
range from an arm set to a d-dimensional space is also an
inspiring and significant problem that awaits to a solution.
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