
EC-SNN: Splitting Deep Spiking Neural Networks for Edge Devices

Di Yu1 , Xin Du1 ∗ , Linshan Jiang2 , Wentao Tong1 and Shuiguang Deng1

1Zhejiang University
2National University of Singapore

yudi2023@zju.edu.cn, jsjduxin@gmail.com, linshan@nus.edu.sg,
{toldzera, dengsg}@zju.edu.cn

Abstract

Deep Spiking Neural Networks (SNNs), as an ad-
vanced form of SNNs characterized by their multi-
layered structure, have recently achieved signifi-
cant breakthroughs in performance across various
domains. The biological plausibility and energy ef-
ficiency of SNNs naturally align with the requisites
of edge computing (EC) scenarios, thereby prompt-
ing increased interest among researchers to explore
the migration of these deep SNN models onto edge
devices such as sensors and smartphones. How-
ever, the progress of migration work has been no-
tably challenging due to the influence of the sub-
stantial increase in model parameters and the de-
manding computational requirements in practical
applications. In this work, we propose a deep SNN
splitting framework named EC-SNN to run the in-
tricate SNN models on edge devices. We first par-
tition the full SNN models into smaller sub-models
to allocate their model parameters on multiple edge
devices. Then, we provide a channel-wise prun-
ing method to reduce the size of each sub-model,
thereby further reducing the computational load.
We design extensive experiments on six datasets
(i.e., four non-neuromorphic and two neuromor-
phic datasets) to substantiate that our approach can
significantly diminish the inference execution la-
tency on edge devices and reduce the overall energy
consumption per deployed device with an average
reduction of 60.7% and 27.7% respectively while
keeping the effectiveness of the accuracy.

1 Introduction
The rapid advancement in machine learning technologies
has precipitated an escalated demand for computational re-
sources. Traditional computational architectures, character-
ized by the dichotomy between processing and memory func-
tions, often render the implementation of large-scale AI sys-
tems financially prohibitive for many organizations. In this
milieu, the development of neuromorphic chips like Loihi

∗Corresponding Author: Xin Du.

and TrueNorth heralds the potential of third-generation neu-
ral networks (i.e., spiking neural networks) to replace tra-
ditional artificial neural networks (ANNs) gradually. These
SNN models are distinguished by their energy efficiency and
biological fidelity, positioning them as a promising avenue for
addressing computational and energy constraints.

Recent larger and deeper SNNs have shown breakthroughs
in performance improvements across diverse domains [Li et
al., 2023; Yao et al., 2024; Su et al., 2023], enabling the
possibility of implementing more extensive functionalities.
Nevertheless, These more complex SNN-related models re-
sult in the loss of their advantage for widespread application
in resource-constrained edge devices, such as smartphones
and sensors. The deployment of these models remains con-
strained by the limited computational power and storage ca-
pability of edge devices. To tackle this challenge, we pro-
pose a novel framework named EC-SNN1, which can utilize
the collaboration of multiple edge devices to offer an energy-
efficient strategy for deploying complex SNN models on the
edge devices.

In the EC-SNN, we mainly adopt and integrate two ap-
proaches to solve this issue. The first type of the approach
is partitioning the original large deep SNN model into several
smaller sub-models, also known as split learning (SL) [Thapa
et al., 2022], deploying them across multiple edge devices,
and orchestrating their cooperation to execute the same task
collectively. This method involves segmenting the complete
machine learning (ML) model into several smaller network
segments, which further undergo individual training on either
a cloud server or distributed clients and leverage localized
datasets. The main focus of SL is to alleviate the computa-
tional burden and processing requirements. However, none
of them ever considered splitting SNN on edge devices. In
EC-SNN, we propose to allocate the spitted SNN sub-models
on the edge devices to reduce energy consumption.

The other way involves simplifying the computational
mechanisms within the initial SNN model. The previous
pruning methods for SNNs [Kim et al., 2022; Chen et al.,
2022a] mainly involved the direct application of some well-
established pruning techniques from ANNs [Frankle and
Carbin, 2018; Hoefler et al., 2021]. These transferred meth-
ods have demonstrated their effectiveness through numerous

1Code is available at https://github.com/AmazingDD/EC-SNN

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5389

https://github.com/AmazingDD/EC-SNN

experiments in the domain of SNN pruning. In this study, we
employ a channel-wise pruning method [Chen et al., 2023]
to conduct the initial pruning phase, dramatically reducing
the sub-model’s execution time without significant impact on
performance. By the integration of the two approaches, EC-
SNN is a novel splitting framework, which minimizes the ex-
ecution latency and maximizes the utilization of all available
edge devices, while adhering to the individual energy con-
straints of each device simultaneously.

Our main contributions are summarized as follows.

• This is the first study that focuses on the splitting prob-
lem of deep SNNs. The resolution of this issue offers a
viable solution for deploying deep SNNs across multiple
edge devices through parallel operation. It not only ef-
fectively utilizes the capabilities of deep SNNs but also
maintains the advantage of low energy consumption of
the model. Furthermore, solving this problem allows for
the full utilization of multiple edge devices in practical
implementations.

• To solve the splitting problem of deep SNNs, we pro-
pose a novel framework named EC-SNN to run the in-
tricate SNN models on edge devices. The EC-SNN
first decomposes a deep SNN model into smaller sub-
models according to its characteristics. Then, we uti-
lize a channel-wise pruning method to reduce the size of
each sub-model. By making a trade-off of model size
and accuracy on each edge device, we effectively reduce
the energy consumption, computational load, and infer-
ence latency of the deep SNN model.

• We conduct extensive experiments with four non-
neuromorphic datasets and two neuromorphic datasets
within two sensing modalities to demonstrate that our
framework markedly decreases the inference execution
latency on edge devices and reduces the overall energy
consumption with negligible loss of model accuracy in
various SNN applications.

The remainder of this paper is organized as follows. Section
2 reviews related works. Section 3 describes the design of
EC-SNN. Section 4 presents the evaluation results. Section 5
concludes this paper.

2 Related Work
Spiking Neural Networks on Edge Computing. Most ex-
isting works on SNNs primarily focus on their notable en-
ergy efficiency, a characteristic that renders them particu-
larly suitable for applications on edge computing (EC). EC, a
paradigm that facilitates expedited data streaming via nodes
proximal to the data source, enables real-time, low-latency
data processing. Meanwhile, an increasing number of SNNs
have demonstrated exceptional computational performance
across a wide array of edge computing applications, includ-
ing facial recognition [Barchid et al., 2023], robotics [Jiang
et al., 2023], and object detection [Su et al., 2023]. How-
ever, the limitation on resource-constraint edge devices poses
a significant challenge in utilizing the power of the SNNs,
especially in the training and inference phases in SNN.

There exist several approaches to address the concern of
the limitation of the resources on SNN. The key compo-
nent to address this concern involves devising a computation-
efficient framework aimed at reducing unnecessary compu-
tations and optimizing weight parameters in SNNs. [Liu
et al., 2024] utilizes the sparsity property of SNN to per-
form weight parameter pruning by Lottery Ticket Hypoth-
esis (LTH) to discover a very sparse subnet that maintains
similar performance. [Nguyen et al., 2021] introduces an in-
novative connection-reducing approach to pruning the SNN
with the TTFS coding during the on-chip STDP-based learn-
ing. [Chowdhury et al., 2021] incorporates a PCA-based
spatial pruning method with temporal pruning to reduce to-
tal time steps and enhance inference efficiency. Differently,
we employ a filter-wise pruning technique tailored for deep
SNNs, aiming to adjust the model size and reduce energy con-
sumption to enhance the compatibility with diverse resource-
constraint limitations of various edge devices.

Split Learning. We propose another potential direction to
address the limitation of the resource-constrained edge de-
vices incorporated with SNN. A promising direction to ad-
dress the deployment issues of deep CNN models on the edge
devices involves decomposing the model and deploying it in
a distributed manner across multiple edge devices, which is
also known as Split Learning (SL) [Gupta and Raskar, 2018].
In SL, it performs part of the model’s training on servers to
tackle the full-offloading problem among edge clients, while
minimizing the delays in a resource-constrained network and
preventing sensitive information leakage through intermedi-
ate information communication. Based on the way to split a
huge top-down network structure, SL can be classified into
two categories, which are horizontal and vertical SL. Vertical
SL scales down the scope of the problem addressed by the
full model, diffusing specific local data to sub-models which
will then be trained on cloud servers. [Kim et al., 2017] pro-
poses a solution model to split the deep network into a tree
of sub-networks by clustering the classes into groups. [Chen
et al., 2023] splits the large DNN into multiple lightweight
class-specific models to satisfy the sensor’s memory and en-
ergy constraints. [Hou et al., 2022] employs a deep rein-
forcement learning method to determine optimal partitioning
decisions for CNN, intended for deployment across heteroge-
neous edge devices for collaborative inference. In contrast,
Horizontal SL aims at finding the optimal points to split the
whole model, and train each part on a cloud server. [Bakhtiar-
nia et al., 2023] introduces a dynamic split computing method
based on the state of the communication channel. [Kim et al.,
2020] divides a single deep learning architecture into a com-
mon extractor, a cloud model, and a local classifier for dis-
tributed learning. [Chen et al., 2021a] proposes a loss-based
asynchronous training and search-based quantization method
for the best combination of exponent bits and bias.

However, their work solely considers splitting the CNN on
edge devices. To the best of our knowledge, we are the pio-
neering contributors to applying SL on the SNN. Besides, un-
like the previous works, in this paper, we adopt a hybrid SL
strategy on deep SNNs, in which the complete large model
is partitioned into multiple feature extractors responsible for

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5390

Spike-wise Model Training
C-RetrainingFilter Pruning

Model Splitting

Fused Inferece

CatInput

Dataset

C
onv 2D
B

N A
P

×N

FC

C
lassification

CSNN

Metrics Trade-off
Not Satisfy

LIF Neuron Layer

AP Average Pooling

Concatenation

FC Full Connection

Deployed Operation
BN Batch Normalization

Distribute Operation

Fusion MLP

Class Assignment Filter Selection

CSNN-1

CSNN-2
…

CSNN-C

Model Pruning

…
…

Figure 1: The overview of EC-SNN.

class-specific tasks and a fusion module that integrates the
final inference.

3 Methodology
3.1 Design Overview
To tackle a classification task with multiple classes, large
DNN models, especially CNN models [Sengupta et al.,
2019], perform well on the application. Analogously, deep
SNN models rely on intricate network structures and exten-
sive parameter training to enhance their efficacy. However,
such original SNN models are hard to deploy, especially on a
resource-constrained edge device. To address this issue, we
propose to utilize the characteristics of SNNs and the col-
laboration of multiple edge devices. In detail, the key idea
of our method is to split the original SNN model into several
class-specific sub-models that meet resource-constrained lim-
itations and sufficiently take advantage of multiple available
devices.

We consider a classification system that involves N edge
devices for sensing and an aggregation server for the clas-
sification results. Figure 1 overviews the workflow of our
proposed method: Edge Collaboration with Spiking Neural
Network (EC-SNN), which mainly contains four compo-
nents: spike-wise model training, model splitting, model
pruning, and fused inference. In the spike-wise model train-
ing, we train and convert the deep SNNs from the con-
ventional CNN models. In the model splitting, we split a
deep SNN model into sub-models which contain a subset of
classes. To reduce the computation overhead, we prune the
sub-models in the model pruning. Lastly, we assign the sub-
models on the corresponding edge devices while the aggre-
gation server fuses the extracted features to obtain the final
inference results. The details of each component are as fol-
lows.

3.2 Spike-wise Model training
Diverging from the conventional CNN models, convolutional
Spiking Neural Network (CSNN) employs spiking neurons
in place of ReLU activation layers while retrained with equal
intensity [Deng and Gu, 2020]. In CSNNs, all bias compo-
nents are eliminated and an average strategy is highly recom-
mended for pooling operations to mimic the behavior of neu-
ral cells which integrates all information perceived to release
spikes and enhance bio-fidelity.

In this study, we use Leaky Integrate-and-Fire (LIF) model
[Gerstner and Kistler, 2002], one of the most promising spik-
ing neuron models, to build CSNNs due to its low compu-
tation cost and bio-plausibility. Rather than directly passing

the sum of weighted inputs to an activation function like arti-
ficial neurons, LIF neurons integrate the input over time with
a leakage. When the integration exceeds a threshold, the neu-
rons emit a spike [Eshraghian et al., 2023], namely a discrete
event. These neurons abstract the profile of spikes among
layers, hence the transmitted information is stored in the fre-
quency of spikes instead of the spikes themselves, also known
as temporal information concentration [Kim et al., 2023].
This distinct information transmission compared with tradi-
tional artificial neurons leads to the energy-efficiency merit
of CSNN.

Inspired by [Chen et al., 2022b], we describe the layer of
LIF neurons with a series of discrete-time equations:

V [t−] =V [t− 1] +
1

τ
(X[t]− (V [t− 1]− Vreset)) (1)

S[t] =H(V [t−]− Vthreshold) (2)

V [t] =V [t−](1− S[t]) + VresetS[t] (3)
where τ , Vthreshold, and Vreset represent the membrane time
constant, the firing threshold, and the reset potential respec-
tively. At time step t, X[t] is the current input features; V [t−]
and V [t] are the membrane potential after neuronal dynamic
integration and after the trigger of firing separately. H(x) is
the Heaviside step function:

H(x) =

{
1, if V [t−] ≥ Vthreshold
0, otherwise

(4)

to simulate the firing process, which generates a spike S[t]
with a binary value.

Unlike the training process in ANNs, direct gradient-based
training in SNNs is impossible because the Heaviside func-
tion H(·) in Equation (3) is not differentiable. Surrogate
functions [Zenke and Vogels, 2021], which are differen-
tiable alternatives of H(·), is one method to tackle this issue.
Specifically, we choose the arc tangent spiking function pro-
posed by [Fang et al., 2023]

H∗(x) =
1

π
arctan(πx) +

1

2
(5)

as the surrogate function for training.
Moreover, the overall effectiveness of SNNs is contingent

upon the time step t, as depicted in Equation (1). Analogous
to recurrent networks, a large time step often corresponds to
challenges such as gradient vanishing or exploding phenom-
ena during the backpropagation process. As t escalates, it
also leads to more computational operations and more en-
ergy consumption. Thus, selecting an appropriate t holds
paramount importance for our forthcoming experiments to
compare diverse metrics.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5391

Algorithm 1 Model Splitting in EC-SNN
Input: The number of devices N ; initial pruning threshold
ζ0; step size for pruning threshold ∆ζ; available memory size
Mi and remaining energy limitation Ei for device i; training
dataset (X, y)
Parameter: the classes set C; trained original CSNN0

Output: class-specific sub-models {CSNN1,..., CSNNN}
and a fusion MLP model M

1: Let ζ = ζ0, γ = True, I−={device 1, ..., device N}.
2: Let E = {E1, ..., EN}, M = {M1, ...,MN}.
3: repeat
4: Let C = {C1, C2, ..., CN}, s.t.|C| =

∑N
i=1 |Ci|.

5: until ∀Ca, Cb ∈ C,
∣∣|Ca| − |Cb|

∣∣ ≤ 1.
6: while γ is True do
7: for i in N do
8: CSNNi = prune(ζ, Ci,CSNN0, X, y)
9: i∗ = greedySearchAssign(E,M,CSNNi, I

−).
10: I− = I−\{i∗}, E = E\{Ei∗}, M =M\{Mi∗}.
11: end for
12: if I− = ϕ then
13: γ = False.
14: else
15: ζ = ζ −∆ζ .
16: end if
17: end while
18: outf = concat(CSNN1(X),..., CSNNN (X)).
19: M = train(outf , y).
20: return M , CSNN1, ..., CSNNN

3.3 Model Splitting
In conventional CNN, each filter has its exclusive impact
when learning and inferring certain classes [Wang et al.,
2020], offering insights to split the original CSNN model into
several class-specific CSNN sub-models. Each sub-model is
curated to encompass solely the essential filters pertinent to
its responsible classes. As illustrated in Algorithm 1, each
CSNN sub-model undergoes pruning based on a threshold ζ
and its corresponding categories, following the relatively eq-
uitable workload distribution. Subsequently, a greedy search
mechanism is initiated to identify the most fitting edge de-
vice for deploying a particular sub-model, considering en-
ergy and memory constraints. In cases where no suitable de-
vice is found, an iterative approach is employed to fine-tune
the threshold and repeat the allocation process, until all sub-
models succeed to be assigned on the edge devices.

3.4 Model Pruning
A conventional deep CNN model usually contains four
parts, i.e., convolution, activation, pooling, and fully con-
nected (FC) layers, among which the convolution is the most
computation-intensive. Pruning the filters contributes to ac-
celerating inference execution speed and lessening overheads
for storing the parameters in conventional CNN. Consider-
ing the similarities between CNNs and CSNNs, we believe
that pruning the filters to build CSNN sub-models can also
significantly reduce the computation overhead. For example,
typical results of CifarNet [Chen et al., 2021b] with 6 same

ANN SNN
0

20

40

60

80

100
Accuracy (%)

ANN SNN
0.0

0.5

1.0

1.5

2.0

2.5

Energy Consumption (×106)
Original Pruned

ANN SNN
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Inference Latency (s)

Figure 2: The performance of ANN-based and SNN-based CifarNet
before and after pruned to the equivalent model size with identical
methods

Algorithm 2 Model Pruning in EC-SNN
Input: pruning threshold ζ; assigned classes subset Ci

Parameter: the set of filters in trained raw CSNN F ; training
dataset (X, y)
Output: pruned CSNNi

1: Xi, yi = resample(X, y, Ci).
2: Fi = filterPrune(F, ζ,Xi).
3: CSNNi = reconstruct(Fi, weight of F).
4: CSNNi = retrain(CSNNi, Xi, yi).
5: return CSNNi

convolutional filters are exemplified in Figure 2. Thus, we
can reduce the energy consumption and shrink sub-models
with a tolerable compromise on test accuracy.

In detail, inspired by [Chen et al., 2023], we utilize a rank-
ing metric called the average percentage of zero (APOZ) [Hu
et al., 2016] to evaluate the importance of each filter on learn-
ing and inference. Concretely, each convolution layer needs a
LIF layer to generate an activation map for each inside filter.
The activation map may comprise some zero spikes that con-
vey less useful feature information. Consequently, we apply
the trained CSNN model to infer sensing data that consists of
N samples in a specific bundle of classes C. Then, the APOZ
of filter f in the convolution layer l is denoted as:

APOZl
f,C =

∑N
n=1

∑hw
p=1 ψ(A

l
f,C(n, p))

Nhw
(6)

where w and h represent the width and the height of the acti-
vation map andAl

f,C(n, p) denote the activated value at point
p in the activation map generated by filter f in the convolu-
tion layer l with the input sample n when recognizing classes
set C. Note thatψ(x) = 1 if x is 0 and ψ(x) = 0, otherwise.
The pruning process is shown in Algorithm 2. The filter with
a larger APOZ value is less important for the specific-class
bundle C, so that we define a threshold ζAPOZ to screen the
filter importance. Any filter with an APOZ value higher than
ζAPOZ is considered to be pruned. Additionally, a reduced
value of ζAPOZ results in the diminished size and energy cost
of the class-specific sub-model, albeit at the cost of increased
accuracy loss induced by filter pruning. The threshold ζAPOZ

assumes a crucial role in achieving a balance between model
performance and resource-constrained limitations.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5392

3.5 Fused Inference
In the result fusion phase, each sub-model on the edge devices
perceives inputs and extracts corresponding features. The
server aggregates the generated features through concatena-
tion and feeds them to an MLP to obtain the final prediction
result. Note that the MLP for result fusion requires train-
ing once all trained sub-models are provided. Given the pre-
trained weights derived from sub-models, extensive training
epochs for MLP are deemed unnecessary.

4 Experiments
4.1 Experimental Settings
Considering the versatile applicability of the framework,
we choose 4 non-neuromorphic datasets (CIFAR, Caltech,
GTZAN, and UrbanSound) and 2 neuromorphic datasets (CI-
FARDVS, NCaltech) to construct the classification task in our
experiments. Moreover, we use VGG-structured architec-
tures [Simonyan and Zisserman, 2014] with different depths
(5, 9, and 16 relatively) to classify these public datasets. For
simplicity, we exemplify EC-SNN-VGG9 to denote our pro-
posed EC-SNN approach with VGG9 structure.

All models are implemented based on Pytorch and Spik-
ingJelly2. We set the time step to 5 and the total number
of training epochs to 70 for all networks. During the train-
ing process, we utilize Adam optimizer with a cosine-decay
learning rate initiated to 1e-4 and set the batch size to 16. For
LIF neurons, the time constant τ is set to 1.33. Each trial is
carried out on one NVIDIA GeForce RTX 4090 GPU and 9
Raspberry Pi-4B as the edge devices for evaluating the exe-
cution time of a specific sub-model processing one sample.

4.2 Performance Evaluation
Test Accuracy. In the work, the paramount concern is not
primarily centered around accuracy. For the metric, we aim to
keep the effectiveness of the accuracy. Compared with ANN-
structured and SNN-structured baselines across various sce-
narios on one edge device, EC-SNN exhibits an accuracy de-
viation ranging from 1% to 3%, which can be deemed as ac-
ceptable. Based on the outcomes, it is evident that as the net-
work depth increases, the ANN-structured models typically
achieve slightly superior accuracy performance compared to
the SNN-structured ones by the involvement of considerable
computational operations. Nonetheless, it is impressive that
under specific circumstances, SNN models exhibit the sur-
prising capability to slightly surpass the accuracy of ANN
models. These results substantiate the feasibility of convert-
ing from ANN to SNN without concerns of excessive com-
promise in accuracy.

When considering the EC scenario, Table 1 demonstrates
the consistency of accuracy for EC-SNN-VGG9 as the num-
ber of edge devices increases. In most cases, the accuracy
fluctuation for the final fusion prediction remains within a
variance of less than one percentage point. The involvement
of more sub-models illuminates the feasibility of deploying
larger-scale models without concerns about high accuracy
loss.

2https://github.com/fangwei123456/spikingjelly

Dataset The Number of Devices Avg. Std.
3 5 7 9

CIFAR 85.25 85.28 85.11 84.89 85.13 0.18
Caltech 97.92 97.77 97.02 97.62 97.58 0.40
CIFARDVS 64.65 62.10 61.70 62.55 62.75 1.31
NCaltech 92.48 91.74 91.00 91.45 91.67 0.62
GTZAN 87.24 87.30 87.68 86.49 87.18 0.50
UrbanSound 89.41 89.01 89.52 89.58 89.38 0.26

Table 1: Accuracy (%) performance of EC-SNN-VGG9 across six
datasets in different edge resources

CI
FA

R
Ca

lte
ch

CI
FA

RD
VS

NC
al

te
ch

GT
ZA

N
Ur

ba
nS

ou
nd

0

25

50

75

100

ra
te

 (%
)

VGG5

CI
FA

R
Ca

lte
ch

CI
FA

RD
VS

NC
al

te
ch

GT
ZA

N
Ur

ba
nS

ou
nd

VGG9
SNN EC-SNN

CI
FA

R
Ca

lte
ch

CI
FA

RD
VS

NC
al

te
ch

GT
ZA

N
Ur

ba
nS

ou
nd

VGG16

Figure 3: The energy savings rate achieved by SNN-structure and
EC-SNN-structure compared with ANN-structure when APOZ=95.

Energy Consumption. A spike is related to some AC op-
erations and how much is associated with the architecture de-
sign of the network, so spike counts of SNNs are positively
correlated with energy cost [Yao et al., 2023]. The lower the
spike counts, the higher the energy efficiency is. We define a
metric called average total spiking activity number(ATSAN)
to compute the spike counts, which can be quantified as

ATSAN =
1

N

N∑
n=1

T∑
t=1

L∑
l=1

St
l (n) (7)

where N is the number of inputs, L represents the total num-
ber of convolution layers for a specific network, and T is the
time step. St

l (n) denotes the output spikes number of con-
volution layer l at time step t when making inference task of
input n. The metric is comparable on ANN architecture since
[Rueckauer et al., 2017] shows that the LIF neuron in SNN
is an unbiased estimator of the ReLU activation function over
time. After the whole network architecture and time step are
determined, T and L are fixed constants, and the spike counts
are only related to S. We mainly focus on ATSAN to depict
energy consumption and delve into how SL and LIF nodes
bring energy savings for the original neural networks.

Figure 3 presents the energy-saving tendencies exhibited
by SNN-related architectures in contrast to ANN structures
across six datasets, calculated by the ratio of total saving
ATSAN from SNN-related structure to that from ANN
structure. Notably, SNN exhibits a minimum energy saving
of approximately 75% compared to the original ANN archi-
tecture. Furthermore, our proposed EC-SNN approach with
one device demonstrates additional energy efficiencies rang-
ing from 2% to 4% beyond these established savings. This en-
hancement stems from the fact that the EC-SNN approach se-
lectively retains the critical convolution layers, thereby trans-
mitting reduced information to the full-connection layers.

Figure 4 illustrates the variation in ATSAN of different

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5393

https://github.com/fangwei123456/spikingjelly

0.000

0.025

0.050

0.075

0.100

AT
SA

N
 (×

10
6)

CIFAR

0.00

0.25

0.50

0.75

1.00

CIFARDVS
VGG5 VGG9 VGG16

0

1

2

3
GTZAN

3 5 7 9
0

2

4

6

AT
SA

N
 (×

10
6)

Caltech

3 5 7 9
0.0

0.5

1.0

1.5

2.0

NCaltech

3 5 7 9
0.00

0.05

0.10

0.15

0.20
UrbanSound

Figure 4: Mean ATSAN performance of EC-SNN per device
across six datasets as the number of edge devices increases when
APOZ=95.

EC-SNN structures with an increasing number of deployed
edge devices across six datasets. The mean energy consump-
tion per individual edge device appears relatively consistent.
Additionally, a gradual decline is observed in this metric
across results associated with static image datasets. When
compared with the sparsity of event-based datasets and the
complexity of the spectrogram, static image datasets are com-
paratively simpler, requiring less energy for the SNN model
to process due to the reduced target classification scale. Nev-
ertheless, the incorporation of extra devices results in a no-
table increase in the fluctuation of energy consumption, possi-
bly due to the diversity of classification tasks allocated across
different edge devices.
Model Size. Given the constrained storage capacity of edge
devices, it is imperative to assess both the original SNN
model size and the corresponding pruned sub-models to as-
certain their suitability for further deployment. Meanwhile,
variations in the depth of the VGG structure and the diversity
of input feature sizes significantly impact the resultant model
size. In this paper, we introduce a metric termed Shrink Ratio
(SR), which quantifies the minimum rate at which EC-SNN
can reduce the model size:

SR = 1− max(Size(EC-SNNi))

Size(origin SNN)
(8)

Size(EC-SNNi) denotes the memory size of EC-SNN de-
ployed on edge device i. Figure 5 illustrates a significant re-
duction in the sizes of all initial SNN models when imple-
mented across various scenarios, providing compelling evi-
dence supporting the efficacy of our current pruning method-
ology. In most cases, the SR values are larger than 95%, and
an increasing trend in pruning efficiency is observed as the
model complexity rises. This demonstrates that many com-
plex model designs and computational operations are redun-
dant for problem-solving.

We also conduct a comparative analysis of size variations
among three VGG-structured sub-models across six datasets
while varying the number of edge devices involved in exper-
iments. This approach aims to validate the stability of our
method as intuitively illustrated in Figure 6. In most scenar-
ios, we observe that the sizes of the sub-models allocated to
each edge device do not exhibit notable fluctuations despite

40

60

80

100

SR
 (%

)

CIFAR CIFARDVS GTZAN

VGG5 VGG9 VGG16
40

60

80

100

SR
 (%

)

Caltech

VGG5 VGG9 VGG16

NCaltech

VGG5 VGG9 VGG16

UrbanSound

Figure 5: SR of SNN models with different structures across
six datasets after pruned by EC-SNN when APOZ=95, where the
dashed line represents the maximum SR.

0

5

10

15

M
od

el
 S

iz
e

(M
B)

CIFAR

0

10

20

CIFARDVS
VGG5 VGG9 VGG16

0

10

20

30

40

GTZAN

3 5 7 9
0

20

40

60

80

M
od

el
 S

iz
e

(M
B)

Caltech

3 5 7 9
0

20

40

60

NCaltech

3 5 7 9
0

10

20

30

UrbanSound

Figure 6: The changing patterns of model size after pruning as more
devices are introduced in different cases when APOZ=95.

the increase in the number of devices, which is advantageous
for us as it enables unified device management and mitigates
the necessity to acquire numerous edge devices with vary-
ing specifications. Certainly, it is noteworthy that the size
deviation in the UrbanSound dataset is notably higher than
other datasets, particularly evident in the VGG5 cases. After
a thorough investigation, we discovered this phenomenon is
attributed to a specific class labeled as Siren in the Urban-
sound dataset. The maximum size of any sub-model desig-
nated task within this category can reach up to 51 MB, while
most other sub-models only require about 11 MB total model
size. Moreover, this phenomenon is observed in several other
datasets, although it is not as pronounced as in the Urban-
sound dataset. One explanation is that the models require
increased structure complexity and computational capacity to
discern certain categories better. Simultaneously, this phe-
nomenon gradually diminishes with increased model depth,
which aligns with our experimental findings.

Inference Latency. Figure 7 introduces the latency patterns
of each VGG structure when inferring one sample for dif-
ferent applications by one edge device. It can be intuitively
concluded that: (1) ANN models, which have the same ar-
chitecture as SNN, generally demonstrate faster inference
times with an average of about 0.2 seconds due to their re-
duced complexity in activation parts. (2) The latency length
is jointly determined by the model’s complexity and the in-
put frame size. For instance, the size of the SNN-VGG16
model for Caltech is roughly 4× more than that of processing
CIFAR. (3) Leveraging EC and SL yields significant acceler-
ation, with an average improvement of approximately 60.7%

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5394

0.0

0.5

1.0

1.5

La
te

nc
y

(s
)

CIFAR

0.0

2.5

5.0

7.5

10.0

12.5

CIFARDVS
ANN SNN EC-SNN

0

5

10

15

20

25

GTZAN

VGG5 VGG9 VGG16
0

10

20

30

40

La
te

nc
y

(s
)

Caltech

VGG5 VGG9 VGG16
0

10

20

30

40

50
NCaltech

VGG5 VGG9 VGG16
0

2

4

6
UrbanSound

Figure 7: The patterns of inference latency among ANN-/SNN-/EC-
SNN-VGG model across different datasets when APOZ=95

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(s
)

CIFAR

0

2

4

CIFARDVS
VGG5 VGG9 VGG16

0.0

2.5

5.0

7.5

10.0

GTZAN

3 5 7 9
0

5

10

15

20

La
te

nc
y

(s
)

Caltech

3 5 7 9
0

2

4

6

NCaltech

3 5 7 9
0.0

0.2

0.4

0.6

0.8

UrbanSound

Figure 8: The patterns of inference latency in different scenarios as
the number of devices changes when APOZ=95.

in inference latency.
Figure 8 depicts the latency distribution patterns observed

across varying quantities of devices engaged in inference pro-
cesses within the same varieties of scenarios. The latency
exhibits a similar trend across varying numbers of devices,
showing a slight downward trajectory. However, more edge
devices involved do not always lead to latency reduction, as
the situations with 7 and 9 devices illustrated. This phe-
nomenon could potentially be attributed to the high compu-
tational demand arising from the expanding input dimensions
within the fusion model, which is a result of the concatenation
tensors derived from the output of these devices.

4.3 APOZ Sensitivity Analysis
Based on the evaluation above, it is observed that the per-
formance of EC-SNN remains consistent across each dataset.
We opt to utilize CIFAR10 as the reference dataset to assess
the performance changes in the four metrics concerning dif-
ferent APOZ values. Due to the sparsity in inter-layer activa-
tions of the SNN, we need a smoother approach to select cru-
cial filters through APOZ threshold screening. Besides, we
set a minimum reserved filter count, such as 16, to prevent a
scenario where a layer’s filters are almost entirely removed.

Figure 9 shows the details of our APOZ sensitivity exper-
iments. As the APOZ value decreases, there is a propor-
tional decrease in energy consumption, model size, and la-
tency, and the reduction rate is linked to the complexity of
the model. During the initial stages of APOZ value reduc-
tion, ranging from 94 to 100, a significant reduction in model

0.05

0.10

Energy Consumption (×106)

0

20

40

Model Size (MB)

VGG5 VGG9 VGG16

86 90 94 98
0.0

0.5

1.0

Latency (s)

86 90 94 98

50

60

70

80

Accuracy (%)

Figure 9: The changing patterns of energy consumption, model size,
accuracy, and latency as the APOZ value varies in CIFAR10

size and latency does not necessarily imply a proportional de-
crease in energy consumption and accuracy, which indicates
that EC-SNN is capable of retaining fundamental computa-
tional aspects while upholding accuracy levels. However, as
the APOZ continues to decrease, specifically within the range
of 90-94, these four metrics will simultaneously decrease at a
certain rate. This is because EC-SNN eliminates certain com-
putation operations crucial for prediction accuracy due to ex-
cessively low APOZ values. When the APOZ value is lower
than 90, our proposed smooth threshold mechanism comes
into effect, and the pruned model ensures that each layer re-
tains a minimum number of filters to maintain normal compu-
tational flow. Overall, a high APOZ value like 95 is adequate
for EC-SNN to achieve relatively satisfactory results, show-
casing its high sensitivity.

5 Conclusions
In this study, a novel model-splitting framework named EC-
SNN is specifically designed to solve the splitting prob-
lem of deep SNNs. The resolution of the problem offers
a viable solution for deploying deep SNNs across multiple
edge devices. The EC-SNN decomposes a deep SNN model
into smaller sub-models and utilizes a channel-wise prun-
ing method to streamline the complex network architecture
and enables more efficient inferences by significantly reduc-
ing energy consumption and latency. Extensive experiments
are constructed to evaluate the proposed framework based on
two sensing modalities, three network architectures, and six
datasets. The results demonstrated that the EC-SNN can sig-
nificantly diminish the inference execution latency on edge
devices and reduce the overall energy consumption while
maintaining the inference accuracy.

Acknowledgments
The work of this paper is supported by the National Key
Research and Development Program of China under Grant
2022YFB4500100, the National Natural Science Founda-
tion of China under Grant 62125206, and the Key Research
Project of Zhejiang Province under Grant 2022C01145.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5395

References
[Bakhtiarnia et al., 2023] Arian Bakhtiarnia, Nemanja

Milošević, Qi Zhang, Dragana Bajović, and Alexandros
Iosifidis. Dynamic split computing for efficient deep
edge intelligence. In IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 1–5.
IEEE, 2023.

[Barchid et al., 2023] Sami Barchid, Benjamin Allaert,
Amel Aissaoui, José Mennesson, and Chaabane C
Djeraba. Spiking-fer: spiking neural network for fa-
cial expression recognition with event cameras. In
Proceedings of the 20th International Conference on
Content-based Multimedia Indexing, pages 1–7, 2023.

[Chen et al., 2021a] Xing Chen, Jingtao Li, and Chaitali
Chakrabarti. Communication and computation reduction
for split learning using asynchronous training. In IEEE
Workshop on Signal Processing Systems, pages 76–81.
IEEE, 2021.

[Chen et al., 2021b] Yanqi Chen, Zhaofei Yu, Wei Fang,
Tiejun Huang, and Yonghong Tian. Pruning of deep spik-
ing neural networks through gradient rewiring. In Pro-
ceedings of the Thirtieth International Joint Conference
on Artificial Intelligence, pages 1713–1721, 8 2021.

[Chen et al., 2022a] Yanqi Chen, Zhengyu Ma, Wei Fang,
Xiawu Zheng, Zhaofei Yu, and Yonghong Tian. A uni-
fied framework for soft threshold pruning. In The Eleventh
International Conference on Learning Representations,
2022.

[Chen et al., 2022b] Yanqi Chen, Zhaofei Yu, Wei Fang,
Zhengyu Ma, Tiejun Huang, and Yonghong Tian. State
transition of dendritic spines improves learning of sparse
spiking neural networks. In International Conference on
Machine Learning, pages 3701–3715, 2022.

[Chen et al., 2023] Jiale Chen, Duc Van Le, Rui Tan, and
Daren Ho. Nnfacet: Splitting neural network for concur-
rent smart sensors. IEEE Transactions on Mobile Comput-
ing, 2023.

[Chowdhury et al., 2021] Sayeed Shafayet Chowdhury, Isha
Garg, and Kaushik Roy. Spatio-temporal pruning and
quantization for low-latency spiking neural networks. In
International Joint Conference on Neural Networks, pages
1–9. IEEE, 2021.

[Deng and Gu, 2020] Shikuang Deng and Shi Gu. Optimal
conversion of conventional artificial neural networks to
spiking neural networks. In International Conference on
Learning Representations, 2020.

[Eshraghian et al., 2023] Jason K Eshraghian, Max Ward,
Emre O Neftci, Xinxin Wang, Gregor Lenz, Girish
Dwivedi, Mohammed Bennamoun, Doo Seok Jeong, and
Wei D Lu. Training spiking neural networks using lessons
from deep learning. Proceedings of the IEEE, 2023.

[Fang et al., 2023] Wei Fang, Yanqi Chen, Jianhao Ding,
Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei
Huang, Huihui Zhou, Guoqi Li, and Yonghong Tian. Spik-
ingjelly: An open-source machine learning infrastructure

platform for spike-based intelligence. Science Advances,
9(40):eadi1480, 2023.

[Frankle and Carbin, 2018] Jonathan Frankle and Michael
Carbin. The lottery ticket hypothesis: Finding sparse,
trainable neural networks. In International Conference on
Learning Representations, 2018.

[Gerstner and Kistler, 2002] Wulfram Gerstner and
Werner M Kistler. Spiking neuron models: Single
neurons, populations, plasticity. Cambridge university
press, 2002.

[Gupta and Raskar, 2018] Otkrist Gupta and Ramesh
Raskar. Distributed learning of deep neural network
over multiple agents. Journal of Network and Computer
Applications, 116:1–8, 2018.

[Hoefler et al., 2021] Torsten Hoefler, Dan Alistarh, Tal
Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity
in deep learning: Pruning and growth for efficient infer-
ence and training in neural networks. Journal of Machine
Learning Research, 22(241):1–124, 2021.

[Hou et al., 2022] Xueyu Hou, Yongjie Guan, Tao Han, and
Ning Zhang. Distredge: Speeding up convolutional neural
network inference on distributed edge devices. In IEEE
International Parallel and Distributed Processing Sympo-
sium, pages 1097–1107. IEEE, 2022.

[Hu et al., 2016] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and
Chi-Keung Tang. Network trimming: A data-driven neu-
ron pruning approach towards efficient deep architectures.
arXiv preprint arXiv:1607.03250, 2016.

[Jiang et al., 2023] Xiaoyang Jiang, Qiang Zhang, Jingkai
Sun, and Renjing Xu. Fully spiking neural network for
legged robots. arXiv preprint arXiv:2310.05022, 2023.

[Kim et al., 2017] Juyong Kim, Yookoon Park, Gunhee
Kim, and Sung Ju Hwang. Splitnet: Learning to seman-
tically split deep networks for parameter reduction and
model parallelization. In International Conference on Ma-
chine Learning, pages 1866–1874. PMLR, 2017.

[Kim et al., 2020] Jongwon Kim, Sungho Shin, Yeonguk Yu,
Junseok Lee, and Kyoobin Lee. Multiple classification
with split learning. In The 9th International Conference
on Smart Media and Applications, pages 358–363, 2020.

[Kim et al., 2022] Youngeun Kim, Yuhang Li, Hy-
oungseob Park, Yeshwanth Venkatesha, Ruokai Yin,
and Priyadarshini Panda. Exploring lottery ticket hypoth-
esis in spiking neural networks. In European Conference
on Computer Vision, pages 102–120. Springer, 2022.

[Kim et al., 2023] Youngeun Kim, Yuhang Li, Hyoungseob
Park, Yeshwanth Venkatesha, Anna Hambitzer, and
Priyadarshini Panda. Exploring temporal information dy-
namics in spiking neural networks. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37,
pages 8308–8316, 2023.

[Li et al., 2023] Jintang Li, Zhouxin Yu, Zulun Zhu, Liang
Chen, Qi Yu, Zibin Zheng, Sheng Tian, Ruofan Wu, and
Changhua Meng. Scaling up dynamic graph representation
learning via spiking neural networks. In Proceedings of

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5396

the AAAI Conference on Artificial Intelligence, volume 37,
pages 8588–8596, 2023.

[Liu et al., 2024] Yue Liu, Shanlin Xiao, Bo Li, and Zhiyi
Yu. Sparsespikformer: A co-design framework for token
and weight pruning in spiking transformer. In IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing, pages 6410–6414. IEEE, 2024.

[Nguyen et al., 2021] Thao NN Nguyen, Bharadwaj Veer-
avalli, and Xuanyao Fong. Connection pruning for deep
spiking neural networks with on-chip learning. In Interna-
tional Conference on Neuromorphic Systems, pages 1–8,
2021.

[Rueckauer et al., 2017] Bodo Rueckauer, Iulia-Alexandra
Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu.
Conversion of continuous-valued deep networks to effi-
cient event-driven networks for image classification. Fron-
tiers in neuroscience, 11:294078, 2017.

[Sengupta et al., 2019] Abhronil Sengupta, Yuting Ye,
Robert Wang, Chiao Liu, and Kaushik Roy. Going
deeper in spiking neural networks: Vgg and residual
architectures. Frontiers in neuroscience, 13:95, 2019.

[Simonyan and Zisserman, 2014] Karen Simonyan and An-
drew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[Su et al., 2023] Qiaoyi Su, Yuhong Chou, Yifan Hu, Jian-
ing Li, Shijie Mei, Ziyang Zhang, and Guoqi Li. Deep
directly-trained spiking neural networks for object detec-
tion. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 6555–6565, 2023.

[Thapa et al., 2022] Chandra Thapa, Pathum
Chamikara Mahawaga Arachchige, Seyit Camtepe,
and Lichao Sun. Splitfed: When federated learning meets
split learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pages 8485–8493,
2022.

[Wang et al., 2020] Guanhua Wang, Zhuang Liu, Siyuan
Zhuang, Brandon Hsieh, Joseph Gonzalez, and Ion Sto-
ica. Sensai: Fast convnets serving on live data via class
parallelism. In MLOps Systems workshop in MLSys, 2020.

[Yao et al., 2023] Man Yao, Guangshe Zhao, Hengyu Zhang,
Yifan Hu, Lei Deng, Yonghong Tian, Bo Xu, and Guoqi
Li. Attention spiking neural networks. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
45(8):9393–9410, 2023.

[Yao et al., 2024] Man Yao, Jiakui Hu, Zhaokun Zhou,
Li Yuan, Yonghong Tian, Bo Xu, and Guoqi Li. Spike-
driven transformer. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

[Zenke and Vogels, 2021] Friedemann Zenke and Tim P Vo-
gels. The remarkable robustness of surrogate gradient
learning for instilling complex function in spiking neural
networks. Neural computation, 33(4):899–925, 2021.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5397

	Introduction
	Related Work
	Methodology
	Design Overview
	Spike-wise Model training
	Model Splitting
	Model Pruning
	Fused Inference

	Experiments
	Experimental Settings
	Performance Evaluation
	APOZ Sensitivity Analysis

	Conclusions

