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Abstract

Federated learning (FL) is a privacy-preserving
collaboratively machine learning paradigm. Tra-
ditional FL requires all data owners (a.k.a. FL
clients) to train the same local model. This
design is not well-suited for scenarios involv-
ing data and/or system heterogeneity. Model-
Heterogeneous Personalized FL. (MHPFL) has
emerged to address this challenge. Existing MH-
PFL approaches often rely on a public dataset with
the same nature as the learning task, or incur high
computation and communication costs. To ad-
dress these limitations, we propose the Federated
Semantic Similarity Aggregation (FedSSA) ap-
proach for supervised classification tasks, which
splits each client’s model into a heterogeneous
(structure-different) feature extractor and a homo-
geneous (structure-same) classification header. It
performs local-to-global knowledge transfer via se-
mantic similarity-based header parameter aggrega-
tion. In addition, global-to-local knowledge trans-
fer is achieved via an adaptive parameter stabi-
lization strategy which fuses the seen-class pa-
rameters of historical local headers with that of
the latest global header for each client. FedSSA
does not rely on public datasets, while only requir-
ing partial header parameter transmission to save
costs. Theoretical analysis proves the convergence
of FedSSA. Extensive experiments present that
FedSSA achieves up to 3.62% higher accuracy,
15.54 times higher communication efficiency, and
15.52 times higher computational efficiency com-
pared to 7 state-of-the-art MHPFL baselines.

1 Introduction

As societies become increasingly aware of the importance of
data privacy protection, centrally collecting large-scale data
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Figure 1: Feature extractor and classification header.

for model training has become less viable, especially under
privacy regulations. To enable decentralized data owners to
collaboratively train effective machine learning models while
protecting privacy, federated learning (FL) [McMahan et al.,
2017] has been proposed. In a typical FL system, a central
FL server coordinates multiple data owners (FL clients) for
model training. In each communication round, the server
broadcasts its current global model to the clients. Each client
then treats the received global model as its local model, and
trains it on local private data. The updated local model is
uploaded to the server. The server weighted averages (aggre-
gates) the received local models to obtain an updated global
model. The above steps are repeated until the global model
converges. In FL, only model parameters are communicated
between the server and clients. Potentially sensitive local data
are not exposed, thereby protecting privacy [Liu et al., 2024].

This model homogeneous mode of FL requires all clients
to train models with the same structures. It is not well-
suited for scenarios involving data heterogeneity [Zhu ef al.,
2021] (i.e., clients with local data following non-independent
and identical distributions (non-IID)) and system heterogene-
ity [Jiang et al., 2022; Yi et al., 2024b; Yu et al., 2011;
Zhang et al., 2023] (i.e., clients with diverse communica-
tion and computation capabilities). Therefore, training a per-
sonalized FL. model adaptively based on each client’s local
data distribution and system capability helps improve perfor-
mances [Tan et al., 2022a; Yi et al., 2024al]. Furthermore,
enterprise FL clients are often reluctant to share their model
structures with others due to intellectual property concerns.
Thus, the field of Model-Heterogeneous Personalized Feder-
ated Learning (MHPFL) [Yi et al., 2023a; Yi et al., 2023c;
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Yi et al., 2023b; Yi et al., 2024c], which allows each client to
train a heterogeneous personalized local model with a struc-
ture tailored to actual needs, has emerged.

Existing MHPFL methods are mainly designed based on
knowledge distillation, mutual learning, and model mixup.
Knowledge distillation-based methods [Li and Wang, 2019;
Lin et al., 2020; Huang et al., 2022a; Itahara et al., 2023;
Sattler er al., 2022; Makhija et al., 2022; Chang et al., 2021]
often rely on the availability of a public dataset that is large
enough and follows a similar distribution with local private
data for fusing knowledge from heterogeneous local mod-
els. However, such a public dataset is difficult to obtain in
practice. Other knowledge distillation-based methods [Jeong
et al., 2018; Ahn et al., 2019; Ahn et al., 2020; Tan et al.,
2022b] without requiring public datasets often incur high
computational overhead on clients and face the risk of privacy
leakage. Mutual learning-based methods [Shen er al., 2023;
Wu et al., 2022] allow each client to train a large heteroge-
neous model and a small homogeneous model in a mutual
learning manner. Only the small homogeneous models are
uploaded to the server for aggregation. Training two mod-
els simultaneously leads to high computational overhead for
clients. Model mixup-based methods [Collins et al., 2021;
Liang et al., 2020; Jang et al., 2022] divide each client’s lo-
cal model into a heterogeneous feature extractor and a homo-
geneous classifier. The server aggregates the homogeneous
local classifiers to update the global classifier and then broad-
casts it to clients. Each client replaces its local classifier with
the updated global classifier or constructs a regularization
term based on the distillation loss between local and global
classifiers. They often ignore the semantic information of the
classifier parameters, resulting in limited accuracy improve-
ments.

To enable the privacy-preserving, communication- and
computation-efficient training of high-performance mod-
els through MHPFL, we propose the Federated Semantic
Similarity Aggregation (FedSSA) approach for supervised
classification tasks, which have been widely applied in fields
like cancer detection for medical diagnosis and object recog-
nition in autonomous driving [Kairouz erf al., 2021]. As de-
picted in Figure 1, it splits each client’s local model into
two parts: 1) a heterogeneous feature extractor, and 2) a
homogeneous classification header. Local-to-global knowl-
edge transfer is achieved by semantic similarity-based classi-
fication header parameter aggregation. Since the parameters
of classification headers from different clients corresponding
to the same class are semantically similar, each client only
needs to upload classification header parameters correspond-
ing to locally seen classes. The FL server aggregates pa-
rameters from different classification headers by class to up-
date the global header. Global-to-local knowledge transfer
is achieved through parameter stabilization. To ensure stable
convergence, we devise an adaptive parameter stabilization
strategy that fuses local historical header parameters and the
latest global header parameters for locally seen classes to up-
date the local header of each FL client.

Owing to the above design, FedSSA has the following ad-
vantages: 1) aggregating semantically similar head parame-
ters corresponding to the same class stabilizes the decision
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boundaries and boosts performance; 2) the adaptive param-
eter stabilization strategy alleviates parameter shaking in the
initial training rounds, thereby speeding up convergence; 3)
the server and clients only need to transmit classification
header parameters corresponding to seen classes, which is
communication-efficient compared to transmitting the entire
model; 4) low computational overhead for FL clients as they
only fuse partial parameters from the global and local head-
ers before local training; and 5) since only partial parameters
are transmitted between the FL server and FL clients, no new
privacy risk is introduced. In short, compared with existing
methods, FedSSA improves model performance, and com-
munication and computation efficiency simultaneously.

Theoretical analysis proves the convergence of FedSSA.
Extensive experiments on two real-world datasets against
seven compared with state-of-the-art MHPFL baselines
demonstrate that FedSSA achieves up to 3.62% higher accu-
racy, 15.54 times higher communication efficiency, and 15.52
times higher computation efficiency.

2 Related Work

Our work is closely related to MHPFL with complete model
heterogeneity. These methods support flexible model hetero-
geneity, and are divided into the following three categories.

Knowledge Distillation-based MHPFL. Most knowledge
distillation-based MHPFL methods rely on a public dataset
(e.g., FedMD [Li and Wang, 2019], FedDF [Lin et al.,
2020], FCCL [Huang et al., 2022al, DS-FL [Itahara et al.,
2023], CFD [Sattler et al., 2022], FedHeNN [Makhija et al.,
2022], Cronus [Chang erf al., 2021], FSFL [Huang et al.,
2022bl, FedAUX [Sattler e al., 20211, FedKT [Li e al.,
20211, Fed-ET [Cho et al, 2022], FedKEMF [Yu et al.,
2022], FedGEMS [Cheng et al., 2021], KT-pFL [Zhang et
al., 2021]) to fuse information of local heterogeneous models
by knowledge distillation. However, the public dataset is not
always available. To avoid relying public datasets, FedGen
[Zhu and others, 2021] and FedZKT [Zhu et al., 2022] train
a generator for generating local representations or public
shared datasets, which is time-consuming and computation-
intensive. In FD [Jeong et al., 2018], HED [Ahn et al., 2019;
Ahn et al., 2020], FedProto [Tan et al., 2022b], FedGKT
[He et al., 20201, each client uploads the (class-average) log-
its or representations of local data to the server, the aggre-
gated global logits or representations for each class are sent
to clients for local knowledge distillation which incurs high
computational costs for clients. Besides, uploading the log-
its/representations might compromise privacy.

Mutual Learning-based MHPFL. FML [Shen et al.,
2023] and FedKD [Wu et al., 2022] enable each client to
train a large heterogeneous model and a small homogeneous
model in a mutual learning manner. The large model is al-
ways trained locally and the small model is uploaded to the
server for aggregation. Although they implement information
interaction through the small homogeneous models, training
the homogeneous model increases local computational costs
for clients, and transmitting the homogeneous models incurs
high communication costs.

Model Mixup-based MHPFL. These methods split each
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local model into a feature extractor and a classifier. In
FedRep [Collins et al., 2021], FedPer [Arivazhagan et al.,
2019], FedMat ch [Chen et al., 2021], FedBABU [Oh ef al.,
2022] and FedAlt /FedSim [Pillutla et al., 2022], the fea-
ture extractor is homogeneous and used for aggregation by
the FL server to enhance generalization. The classifier can be
heterogeneous. Since the feature extractor has more parame-
ters than the classifier, these methods can only support model
heterogeneity to a low degree. In contrast, LG-FedAvg
[Liang et al., 2020], FedClassAvg [Jang et al., 2022] and
CHFL [Liu et al., 2022] use heterogeneous feature extrac-
tors and homogeneous classifiers (i.e., executing the same
classification task). The local classifiers are uploaded to the
FL server for aggregation to generate the global classifier.
To acquire global knowledge, LG-FedAvg directly replaces
each client’s local classifier with the global classifier. Each
client in CHFL or FedClassAvqg calculates the regulariza-
tion term or distillation loss between the local and global clas-
sifiers. Although these methods support a higher degree of
model heterogeneity, they ignore the semantic similarity of
classifier parameters belonging to the same class, thus achiev-
ing limited performance improvement. Our FedSSA sets out
to address the aforementioned limitations.

3 Preliminaries
3.1 Notations and Objective of Typical FL.

A typical FL system involves a central FL server and N de-
centralized FL clients. In each round, the server selects a
C fraction of clients at random. The selected client set is
denoted as X, |X| = C - N = K. The server then broad-
casts the global model f(w) (f(-) and w denote the model
structure and the model parameters) to the selected clients.
A client k trains the received f(w) on its local dataset Dy,
to produce a local model f(wy) through gradient descent
wi — w—nVL(f(z;;w),y:). £(f(xi;w),y;) is the loss of the
global model f(w) on the sample (x;,y;) € Dy. Dy ~ Py
indicates that Dy, obeys distribution P, (i.e., local data from
different clients are non-IID). Then, client k£ uploads its lo-
cal model parameters wy, to the server. The server aggre-
gates the received local models to update the global model,

w = f ! “Ewy,. That is, the objective of typical FL is to
minimize the average loss of the global model f(w) on data

from all clients:

K—1
. Nk
min » —Ly(Dy; f(w)), (1
weR4 n
k=0
where w are d-dimensional real numbers. n; = |Dj| is the
number of samples in client k’s local dataset. n = 2:01 Ng.

Ly (Dg; f(w)) = ﬁ 2 (@i ey, Lf (@i w), y;) is the loss
of the global model f(w) on Dy.

3.2 Problem Definition

The problem we aim to solve in this work belongs to the cat-
egory of MHPFL for supervised classification tasks. Each
FL client k& owns local models fj(wy) with a model structure
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f(+) and parameters wy,. They can be heterogeneous for dif-
ferent clients. We assume all clients execute the same classifi-
cation task and each client’s local model fx(wy,) consists of a
heterogeneous feature extractor ¥ (¢, ) and a homogeneous
classification header H(0y,), i.e., fx(wr) = Fr(px) o H(Ok)
with o denoting model splicing. The feature extractor takes
inputs as Fi(Dg; pr), where Fi(+), ¢x denote the structure
and parameters of the feature extractor. It maps data Dy, from
the input space to the feature space. The classification header
takes input as H(Fy (Dy; vk ); 0k ), where H(-), 6, denote the
structure and parameters of the classification header. It in-
volves the last two linear layers of the model which maps the
features Fy (Dy; 1) extracted by Fy(-) to the output space.

Our objective is to minimize the sum of losses of all clients’
heterogeneous local models:

K—1
min Z Lk Dk,fk wk = Z Lk Dk,?k ka)og'f(ek))
k=0

W0,y WK1
@)

where local models wy, . .. ,wx_1 € Rb0rdx—1,

4 The Proposed FedSSA Approach

FedSSA consists of two modules: 1) semantic similarity-
based classification header parameter aggregation for local-
to-global knowledge transfer, and 2) adaptive parameter sta-
bilization for global-to-local knowledge transfer.

4.1 Semantic Similarity-Based Aggregation

As shown in Figure 2, the last fully connected layer of
the classification header outputs all-class logits which are
mapped to the prediction probability for each class by a
soft-max layer. That is, each neuron at the classification
header’s last layer corresponds to one class and its connec-
tions with all neurons at the previous layer are the param-
eters belonging to corresponding classes. Assuming that
all clients execute the same S-classification task, then client
k’s local classification header 6;, can be subdivided by class
as {09,...,0%,..., 02‘1}. Since local data from different
clients are non-1ID, different clients may hold partial classes
of data. We denote the set of client k’s seen classes as S.
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Figure 2: The FedSSA framework.
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Since each client trains its local model on locally seen
classes, the local classification header seen-class parameters
are well-trained. Therefore, client k only uploads its clas-
sification header seen-class parameters {0} },s € Sj to the
FL server for aggregation. As illustrated in Figure 2, client 1
only uploads its classification header parameters correspond-
ing to seen classes ‘0, 1°, client 2 only uploads its classifica-
tion header parameters for classes ‘0, 1,2’, and client 3 only
uploads its classification header parameters for class ‘1.

Since classification header parameters for the same class
from different clients are semantically similar, we design the
server to aggregate classification header parameters based on
classes (i.e., the corresponding neuron positions at the output
layer). We denote the set of clients holding class s of data as
X, and define the aggregation rule as:

s __ ]' s
9 IKS\%; 0;. 3)
After aggregation, the server splices the aggregated header
parameters for all classes together to form an updated global
header = {0°,...,60%,...,05"1}. Then, it sends the par-
tial parameters of the global header to each client correspond-
ing to its respective locally seen classes. This step transfers
local seen-class knowledge from clients to the server. It en-
hances the generalization to seen classes for each client after
receiving the aggregated seen-class header parameters, and
produces a more stable seen-class classification boundary.

4.2 Adaptive Parameter Stabilization

Inspired by historical learning [Li et al., 2023] which tends
to re-use historical knowledge from old models to avoid for-
getting, during global-to-local knowledge transfer, we ex-
ploit historical local headers to stabilize and speed up model
convergence. Specifically, in the ¢-th training round, client
k fuses the seen-class parameters from its historical local
header 9,2_1’5 (s € S) and the latest global header §*—1>*
(s € Sk) to produce a new local header ézs The unseen-class

header parameters are still the historical local header 92_1’8/
(s" € (S\'Sk)). The fusion of the seen-class parameters from
the two headers is achieved by the proposed adaptive param-
eter stabilization strategy.

In the initial rounds of training, local model parameters are
updated rapidly and local model parameters from different

—-=- miu_0=0.5, T_stable=20
miu_0=1, T_stable=40

Figure 3: Decay functions for u*. cos(-) € [0,7/2] is a smooth
decay function. It leads to a stable decrease of .
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clients trained on non-IID data are biased. This leads to in-
stability in the global header. To enhance the reliability of
global-to-local knowledge transfer, we devise an adaptive pa-
rameter stabilization strategy:

ézs _ gt—l,s + Mt . 9271,8’ s€ Sk:7

ut = 1o ~c08(g7r o), t < Tatabie, @
0, t > Tstable~

The coefficient u* € [0,1] of the historical local header
is determined by the above piecewise function. In round
t < Tsiapie (a fixed hyperparameter for all clients in FL),
! is determined by a decay function (e.g., Figure 3) with ini-
tial value po € (0,1]. u' decreases as round ¢ rises. When
t > Tstabie, the reliability of the global header has been en-
hanced. Thus, we set ut = 0 to directly replace historical
local seen-class parameters with the latest global seen-class
header parameters. This prevents stateless local header pa-
rameters from slowing down convergence.

The updated local header 6}, = {6}*, 9;;1’5’}(5 €Sy, s €
(S\Sk)) and the feature extractor ¢} ' from the previous
round are spliced together to form a new local model &} :

At t—1 _ pt
W =), ol (®)]
Then, w; is trained on D;, to obtain w}; via gradient descent:

wy = @f =V (fe(xi;0%), vi), (@6, 9i) € Dy (6)

These three key steps of uploading seen-class header pa-
rameters by class, aggregation by class, and parameter fu-
sion by class enhance the personalization and stabilize the
classification boundary for each heterogeneous local model.
They are repeated until local models from all clients con-
verge. Each client’s final local model is used for inference.
FedSSA is detailed in Algorithm 1 (Appendix A 1).

4.3 Discussion

Here, we discuss the privacy, communication costs, and com-
putational overheads of FedSSA.

Privacy. When a client uploads its seen-class header pa-
rameters, it can maintain the seen-class header parameters
and replace the unseen-class header parameters with 0, while
still uploading the entire header to the server. The server ag-
gregates non-zero local header parameters according to the
corresponding classes (ordinates), and then broadcasts the up-
dated global header to the clients. Since only the header pa-
rameters are transmitted, local data privacy can be preserved.

Communication Cost. As stated above, only the param-
eters of headers are communicated between clients and the
server in each round of FL. Therefore, FedSSA incurs lower
communication costs than transmitting the complete models
as in the cases of FedAvg based FL approaches.

Computational overhead. For clients, the additional com-
putation compared with FedAvg is incurred by header pa-
rameter fusion in the adaptive parameter stabilization strat-
egy, which are simple linear operations. It is significantly

'The appendices of this paper can be accessible from https:
//arxiv.org/abs/2312.09006
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lower than the computational overhead incurred by training
local models. For the server, aggregating the header parame-
ters by class linearly incurs low computation costs.

5 Analysis

To analyze the convergence of FedSSA, we first introduce
some additional notations. Let e € {0,1,..., E} denote a
local iteration. (tE + e) denotes the e-th local iteration in the
FL training round (¢ + 1). At (tE + 0) (i.e., the beginning
of the round (¢ + 1)), clients fuse historical local headers (in
round t) and the latest global header (in round ?) to update
local headers. (tE + 1) is the first iteration in round (¢ 4 1).
(tE + E) is the last iteration in round (¢ + 1).

Assumption 1. Lipschitz Smoothness. Client k’s local
model gradients are L1-Lipschitz smooth, i.e.,
VLY (wits e, y) = VLR (w252, y)l| < Liflwy' —wy?
Vi1, te >0,k € {O,l,...,N— 1}, a:,y) € Dy.

; O]

From Eq. (7), we further derive:

LY~ £ < VAL, (W — e+ et I3 ®
Assumption 2. Unbiased Gradient and Bounded Variance.
The random gradient g, = VL' (wh;BL) (B is a batch of

local data) of each client’s local model is unbiased, i.e.,

E’BZQD,C [gm = VLZ(WZ% O]

and the variance of random gradient g\, is bounded by:

Es¢ ¢ p, [IIVLE (wk; B) — VEL(@i)[3] <o® (10)

Assumption 3. Bounded Variance of Classification Head-
ers. The variance between the seen-class parameters 0} (s €
Sk) of client k’s local header H(0y,) and the same seen-class
parameters 0° = By cx [03,](s € Sk) of the global header
H () is bounded [Yi et al., 2023a]:

Parameter bounded: Escs, [||0° — 053] < &2,

Gradient bounded: Escs, [|VL(0%) — VL(67)]13) < 0%

With the above assumptions, since FedSSA does not

change local model training, Lemma 1 from [Tan et al.,
2022b] still holds.

Lemma 1. Based on Assumptions 1 and 2, during
{0,1,..., E} iterations of the (t + 1)-th FL training round,
the loss of an arbitrary client’s local model is bounded by:

Lin® | & L.Er®
ElL 1] < Lepro — (1= Z55) D oemsell; + 50"
e=0
an

Lemma 2. Based on Assumption 3, the loss of an arbitrary
client’s local model after fusing the seen-class parameters of
local and global headers by the adaptive parameter stabiliza-
tion strategy is bounded by:

nL16>
5
The detailed proof can be found in Appendix B.

Based on Lemma 1 and Lemma 2, we can further derive
the following theorems.

ElL(t41yero] < E[Lr1ye] — (12)
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Theorem 1. One-round deviation. The expectation of the
loss of an arbitrary client’s local model before the beginning
of a round of local iteration satisfies

E
L
E[L(t41)E+0] <Lipto — (0 — 177 Z|\LtE+e\|§
e= (13)
nL,(Enc® —52)
2

The proof can be found in Appendix C. Then we can derive
the non-convex convergence rate of FedSSA as follows:

+

Theorem 2. Non-convex convergence rate of FedSSA.
Based on the above assumptions and derivations, for an ar-
bitrary client and any € > 0, the following inequality holds:

-1 E
2L — L)
o2l L e 3 < +

t=0 e=0

L (Eno® — 6%)
2 — L1’I7

<€

st < 2€+L152
A Li(e + Eo?)’
(14)

Therefore, under FedSSA, an arbitrary client’s local model
converges at a non-convex convergence rate of € ~ O(%)
The detailed proof can be found in Appendix D.

6 Experimental Evaluation

In this section, we compare FedSSA 2 against 7 state-of-the-
art MHPFL approaches on two real-world datasets under var-
ious experiment conditions. and baselines with Pytorch on
four NVIDIA GeForce RTX 3090 GPUs with 24G memory.

6.1 Experiment Setup

Datasets and Models. We evaluate FedSSA and baselines
on two image classification datasets: CIFAR-10 and CIFAR-
100 3 [Krizhevsky, 2009]. They are manually divided into
non-IID datasets following the method specified in [Shamsian
et al., 2021]. For CIFAR-10, we assign only data from 2 out
of the 10 classes to each client (non-IID: 2/10). For CIFAR-
100, we assign only data from 10 out of the 100 classes to
each client (non-IID: 10/100). Then, each client’s local data
are further divided into the training set, the evaluation set, and
the testing set following the ratio of 8:1:1. This way, the test-
ing set is stored locally by each client, which follows the same
distribution as the local training set. As shown in Table 3
(Appendix E), each client trains a CNN model with output
layer dimensions (i.e., the last fully-connected layer) of 10
or 100 on CIFAR-10 and CIFAR-100 datasets, respectively.
The dimensions of the representation layer (i.e., the second
last fully-connected layer) are set to be 500. Therefore, each
classification header consists of 10(100) x 500 parameters.

Baselines. We compare FedSSA with 7 baseline methods,
which are the state-of-the-art methods in the three MHPFL
categories elaborated in Sec. 2.

e Standalone, each client trains its local model inde-
pendently, which serves as a lower performance bound;

Zhttps://github.com/Liping Yi/FedSSA
*https://www.cs.toronto.edu/%7Ekriz/cifar.html
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N=10, C=100% N=50, C=20% N=100, C=10%

Method CIFARTO0 | CIFART00 | CIFARTO | CIFART00 | CIFARITO | CIFART00
Standalone 96.35 74.32 95.25 62.38 92.58 54.93
FML 94.83 70.02 93.18 57.56 87.93 46.20
FedKD 94.77 70.04 92.93 57.56 90.23 50.99
LG-FedAvg 96.47 73.43 94.20 61.77 90.25 46.64
FedClassAvg 96.44 74.33 94.45 63.10 91.03 4931
FD 96.30 - - - - -
FedProto 95.83 72.79 95.10 62.55 91.19 54.01
FedSSA 98.57 74.81 95.32 64.38 92.67 58.54

Table 1: The mean test accuracy for model-homogeneous scenarios.
N is the total number of clients. C' is the fraction of participating
clients in each round. ‘-’ denotes failure to converge.

N=10, C=100% N=50, C=20% N=100, C=10%
Method CIFARIO [ CIFARIO0 | CIFARIO [ CIFARI00 | CIFARIO | CIFARI00
Standalone 96.53 72.53 95.14 62.71 91.97 53.04
FML 30.48 16.84 - 21.96 - 15.21
FedKD 80.20 53.23 77.37 44.27 73.21 37.21
LG-FedAvg 96.30 72.20 94.83 60.95 91.27 45.83
FedClassAvg 94.41 69.16 85.23 56.54 82.61 35.48
FD 96.21 - - - - -
FedProto 96.51 72.59 95.48 62.69 92.49 53.67
FedSsa 96.54 73.39 95.83 64.20 92.92 57.29

Table 2: The mean test accuracy for model-heterogeneous scenarios.
N is the total number of clients. C' is the fraction of participating
clients in each round. ‘-’ denotes failure to converge.

* Knowledge distillation without public data: FD [Jeong
etal.,2018], FedProto [Tan ef al., 2022b];

e Mutual learning: FML [Shen er al., 2023] and FedKD
[Wu et al., 2022];

* Model mixup: LG-FedAvg [Liang et al., 2020] and
FedClassAvg [Jang er al., 2022].

Evaluation Metrics. 1) Accuracy: we measure the in-
dividual test accuracy (%) of each client’s local model and
calculate the average test accuracy of all clients’ local mod-
els. 2) Communication Cost: We trace the number of trans-
mitted parameters when the average model accuracy reaches
the target accuracy. 3) Computation Cost: We track the con-
sumed computation FLOPs when the average model accuracy
reaches the target accuracy.

Training Strategy. We tune the optimal FL settings for
all methods via grid search. The epochs of local train-
ing F € {1,10} and the batch size of local training B €
{64,128, 256,512}. The optimizer for local training is SGD
with learning rate n = 0.01. We also tune special hyperpa-
rameters for the baselines and report the optimal results. We
also adjust the hyperparameters 1o and Ts;qpe to achieve the
best-performance FedSSA. To compare FedSSA with the
baselines fairly, we set the total number of communication
rounds T € {100,500} to ensure all algorithms converge.

6.2 Comparisons Results

We compare FedSSA with the baselines under both model-
homogeneous and model-heterogeneous scenarios with dif-
ferent total numbers of clients N and client participation frac-
tion C to evaluate the robustness of FedSSA. We set up
three scenarios: {(N = 10,C = 100%),(N = 50,C =
20%),(N = 100,C = 10%)}. For ease of comparison
across the three settings, N x C'is set to be the same (i.e.,
10 clients participate in each round of FL).
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Figure 4: Accuracy distribution for individual clients.

Model-Homogeneous PFL

In this scenario, all clients hold the largest model ‘CNN-1" as
shown in Table 3. Table 1 shows that FedSSA consistently
achieves the highest mean test accuracy under all settings,
outperforming the best baseline by 3.61%.

Model-Heterogeneous PFL

We evenly assign 5 models (model IDs: 1 — 5) with different
structures (Table 3, Appendix E) to clients. In practice, the id
of the model assigned to client % is determined by (client ID
k%>5). For FML and FedKD, we regard the 5 structurally dif-
ferent models as large heterogeneous models and consider the
smallest ‘CNN-5" model as the small homogeneous model.

Mean Accuracy. Table 2 shows that FedSSA consistently
achieves the highest mean test accuracy under all settings,
outperforming the best baseline by 3.62%. Figure 8 (Ap-
pendix E) shows how the mean test accuracy of FedSSA and
the two top-performing baselines in each FL setting of Table 2
varies with communication round, it presents that FedSSA
converges to higher accuracies faster than others.

Individual Accuracy. Figure 4 shows the accuracy dis-
tribution of individual models in FedSSA and the two top-
performing baselines in each FL setting shown in Table 2. In
Figure 4, ‘+’ denotes the average accuracy of all clients un-
der each algorithm. A small box length bounded by the upper
quartile and the lower quartile indicates a more concentrated
accuracy distribution across all clients with small variance.
We observe that the three algorithms achieve similar mean
and variance values in terms of accuracy when N = {10, 50},
while FedSSA achieves significantly higher mean and lower
variance when N = 100. This verifies that FedSSA is capa-
ble of producing the best personalized heterogeneous models
in FL with a large number of potential clients and a low par-
ticipation rate, which closely reflects practical FL scenarios.

Personalization Analysis. We extract every sample
representation from each FL client under FedSSA and
FedProto, respectively. Then, we leverage the T-SNE
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Figure 5: T-SNE representation visualization for FedProto and
FedSSA on the CIFAR-10 (Non-IID: 2/10) dataset. M1-M5 denote
5 heterogeneous models {CNN-1, ..., CNN-5}.

[van der Maaten and Hinton, 2008] tool to reduce the dimen-
sionality of the extracted representations from 500 to 2, and
visualize the results. Since CIFAR-100 includes 100 classes
of samples, we focus on visualizing the results on CIFAR-
10 (non-1ID: 2/10) in Figure 5. It displays that most clus-
ters in FedSSA and FedProto consist of representations
from a client’s two seen classes of samples, indicating that
each client’s local model has strong personalization capabil-
ity. Generally, FedSSA performs better than FedProto.

6.3 Case Studies

Robustness to Non-IIDness (Class)

We study the robustness of FedSSA and FedProto to non-
[IDness controlled by the number of seen classes one client
holds under (N=100, C=10%) on CIFAR-10 and CIFAR-
100. We vary the number of classes seen by each client
as {2,4,...,10} on CIFAR-10 and {10,30,...,100} on
CIFAR-100. Figure 6 shows that FedSSA consistently out-
performs FedProto, demonstrating its robustness to non-
IIDness. As the non-IIDness decreases (the number of classes
seen by each client rises), accuracy degrades as more IID lo-
cal data enhances generalization and reduces personalization.

Robustness to Non-IIDness (Dirichlet)
We also test the robustness of FedSSA and FedProto
to more complex non-IIDness controlled by a Dirichlet(v)
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Figure 6: Robustness to Non-IIDness (Class).
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Figure 7: Robustness to Non-IIDness (Dirichlet).

function under setting (N=100, C=10%) on CIFAR-10 and
CIFAR-100. We vary v = {0.1,...,0.5} on both datasets.
Figure 7 presents that FedSSA also outperforms FedProto

across all non-IIDnesses *.

7 Conclusions

In this paper, we propose a novel personalized heterogeneous
federated learning framework named FedSSA to enhance the
performance and efficiency of model-heterogeneous person-
alized federated learning. It consists of two core modules:
1) local-to-global knowledge transfer by semantic similarity-
based header parameter aggregation and 2) global-to-local
knowledge transfer by adaptive parameter stabilization-based
header parameter fusion, both of them enhance the person-
alization of each client’s heterogeneous local model and sta-
bilize classification boundaries. Theoretical analysis shows
that FedSSA could converge over wall-to-wall time. Exten-
sive experiments demonstrate that FedSSA achieves the best
classification accuracy while incurring the lowest communi-
cation and computational costs.
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