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Abstract

Multivariate time series (MTS) forecasting has
been extensively applied across diverse domains,
such as weather prediction and energy consump-
tion. However, current studies still rely on the
vanilla point-wise self-attention mechanism to cap-
ture cross-variable dependencies, which is inade-
quate in extracting the intricate cross-correlation
implied between variables. To fill this gap, we pro-
pose Variable Correlation Transformer (VCformer),
which utilizes Variable Correlation Attention (VCA)
module to mine the correlations among variables.
Specifically, based on the stochastic process theory,
VCA calculates and integrates the cross-correlation
scores corresponding to different lags between
queries and keys, thereby enhancing its ability
to uncover multivariate relationships. Addition-
ally, inspired by Koopman dynamics theory, we
also develop Koopman Temporal Detector (KTD)
to better address the non-stationarity in time se-
ries. The two key components enable VCformer
to extract both multivariate correlations and tem-
poral dependencies. Our extensive experiments
on eight real-world datasets demonstrate the ef-
fectiveness of VCformer, achieving top-tier per-
formance compared to other state-of-the-art base-
line models. Code is available at this repository:
https://github.com/CSyyn/VCformer.

1 Introduction
Multivariate time series (MTS) forecasting is widely used
in a range of applications, including energy consumption,
weather, traffic, economics, and other fields [Shao et al., 2022;
Choi et al., 2022; Wang et al., 2023; Guo et al., 2023;
Castán-Lascorz et al., 2022]. Unlike univariate time se-
ries, MTS involves multiple interrelated time-dependent vari-
ables, presenting unique challenges in capturing intricate inter-
variable dependencies [Han et al., 2023]. Consequently, MTS
forecasting has always been a prominent research domain in
both industry and academia.

∗Corresponding author

The achievement of Transformer [Vaswani et al., 2017] in
natural language processing [Brown et al., 2020] has led to the
emergence of numerous Transformer variants for time series
prediction tasks.

These models have developed various sophisticated atten-
tion mechanisms and enhancements to the Transformer archi-
tecture [Zhou et al., 2022a; Wu et al., 2021; Li et al., 2019a;
Zhou et al., 2022b], which demonstrate a remarkable mod-
elling ability for temporal dependencies in time series data
[Wen et al., 2023].

However, there is an ongoing academic discourse regard-
ing their ability to effectively capture temporal dependen-
cies [Zeng et al., 2023] which typically embed each time
step into a mix-channel token and apply attention mecha-
nism on every token. Considering that these methods may
overlook the valuable multivariate relationships, which is
crucial for MTS forecasting, researchers have begun to fo-
cus on ensuring the channel independence and incorporating
mutual information to explicitly model multivariate correla-
tions. [Zhang and Yan, 2023; Nie et al., 2023; Yu et al., 2023;
Liu et al., 2023a].

Nevertheless, the traditional self-attention mechanism ob-
tain the relationship between two variables via dot-product
which can be approximately analogous to attn(v1, v2) shown
in Figure 1a. This approach aligns each time step of two vari-
ables ignoring the potential existence of different time delays
between them, as shown in Figure 1b [John and Ferbinteanu,
2021; Chandereng and Gitter, 2020].

Addressing the limitations of vanilla variable point-wise
attention, we introduce the Variable Correlation Transformer
(VCformer) to fully exploit lagged correlation inherent in MTS
through the Variable Correlation Attention (VCA) module.
The VCA module calculates the global strength of correlations
between each query and key across different feature. Inspired
by stochastic process theory [Chatfield and Xing, 2019;
Blight and Chatfield, 1991], it not only computes auto-
correlations akin to those in Autoformer [Wu et al., 2021]
but also extends this concept to determine lagged cross-
correlations among various variates. The method employs
a ROLL operation combined with Hadamard products to
approximate these lagged correlations effectively. Further-
more, VCA adaptively aggregates lagged correlation over
various lag lengths, thereby determining the comprehensive
correlation for each variate. To enhance the model’s capability
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(a) Analogous to attn(v1, v2) (b) Different lags inherent in time series

Figure 1: Illustration of the dot-product method to obtain correlations with different lags. For example, lag = 3 shows the similarity between
v1 and v2 (points with the same color)

in addressing the non-stationary property in MTS, we
design the Koopman Temporal Detector (KTD) module
inspired by Koopman theory in dynamics [Koopman, 1931].
Experimentally, VCformer achieves state-of-the-art (SOTA)
performance on eight real-world datasets. We also conduct
experiments about VCA generality on other previous SOTA
Transformer-based models, which demonstrates the powerful
capability of modelling channel dependencies of VCA. In
general, our contributions lie in the following three aspects:

• We propose a novel model for MTS forecasting, which is
called VCformer. It learns both variable correlations and
temporal dependencies of MTS.

• We design VCA mechanism to fully exploit lagged cor-
relations among different variates. Additionally, we pro-
pose KTD inspired by Koopman theory in dynamics to
effectively address non-stationarity in MTS forecasting.

• Experimentally, VCformer achieves top-tier performance
on eight real-world datasets. To further evaluate the gener-
ality of VCA function, VCA is used in other Transformer-
based models and gets better performance.

2 Related Work
Advancing beyond contemporaneous Temporal Convolutional
Networks [Sen et al., 2019] and RNN-based models [Sali-
nas et al., 2020; Lai et al., 2018], Transformer variants have
shown excellent capability in sequence modelling. All the
modifications can be divided into two groups according to
their focus: solely on modeling temporal dependencies and
addressing both temporal and variable dependencies.

For the former, a series of sophisticated attention mecha-
nisms has been developed which can be roughly classified into
three categories. The first category is to remove redundant
information by introducing sparse bias, thereby reducing the
quadratic complexity of vanilla Transformer [Li et al., 2019a;
Zhou et al., 2022a]. The second is to transfer the self-attention
mechanism from time domain to frequency domain. This
shift is facilitated by Fast Fourier Transform or other fre-
quency analysis tools, enabling a more granular extraction
for temporal dependencies at sub-series level [Wu et al., 2021;
Zhou et al., 2022b]. The third category is related to tack-
ling the distribution shift phenomenon in time series such
as De-stationary attention [Liu et al., 2022b]. Beyond these
attention-focused innovations, the former also include meth-
ods that incorporate multi-resolution analysis of time series
via hierarchical architectures [Liu et al., 2022a].

With the primary focus on extracting temporal dependen-
cies, these models designed various exquisite attention mech-
anisms and fancy architectures. However, a critical vulnera-
bility in these models is the neglect of the rich cross-variable
information, which is important for MTS forecasting tasks.

For the later in addressing MTS forecasting, two pri-
mary dimensions emerge in multivariate modeling: Channel-
Independent (CI) and Channel-Dependent (CD). CI takes vari-
ates of time series independently and adopts the shared back-
bone. CD predicts future values by taking into account all
the channels [Li et al., 2023]. [Nie et al., 2023] introduces
patching and CI strategies, significantly enhancing its perfor-
mance within Transformer-based architectures. Although CI
structure is simple, its time-consuming training and inference
has catalyzed the development of CD method for modeling
multivariate relationships. For the CD method, [Zhang and
Yan, 2023] employs temporal and variable attention serially
to capture both cross-time and cross-dimension dependencies,
while [Yu et al., 2023] applies them in parallel. Moreover,
iTransformer [Liu et al., 2023a] revolutionizes the vanilla
Transformer by inverting the duties of the traditional atten-
tion mechanism and the feed-forward network. They focus
on capturing multivariate correlations and learning nonlinear
representations respectively.

While these above works acknowledge the significance of
modelling multivariate relationships, they adopt the classi-
cal self-attention mechanism based on point-wise method,
which does not fully exploit the relationship among variable
sequences. Despite the existing methods for analysis of lagged
cross-correlations in time series [John and Ferbinteanu, 2021;
Chandereng and Gitter, 2020; Shen, 2015], these time series
Transformers in the literature have not leveraged them among
variables, thereby limiting their predictive performance.

3 Method
In MTS forecasting, given historical observations X =
{x1, . . . ,xT } ∈ RT×N with T time steps and N variates, we
predict the future H time steps Y = {xT+1, . . . ,xT+H} ∈
RH×N . To tackle this MTS forecasting task, we proposes
VCformer which is shown in Figure 2.

3.1 Background
In this section, we first discuss the current limitation of vanilla
variable attention in modelling feature-wise dependencies.
This then motivates us to propose the variable cross-correlation
attention mechanism, which operates across the feature chan-
nels for learning cross-correlation among variates.
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Figure 2: Overall structure of VCformer, VCA module (a) and KTD module (b)

Next, we review the Koopman theory and treat time series
as dynamics. Based on this, we design the KTD module and
combine it with the variable cross-correlation attention to learn
both channels and time-steps dependencies.

Limitation of Vanilla Variable Attention

In the previous Transformer-based forecasters which adopted
attention mechanism for facilitating the temporal dependen-
cies, the self-attention module employs the linear projec-
tions to get queries, keys and values Q,K,V ∈ RT×D,
where D is the projected dimension. With the queries
Q = [q1,q2, . . . ,qT ]

⊤ and keys K = [k1,k2, . . . ,kT ]
⊤, the

pre-Softmax attention score is the computation with Ai,j =(
QK⊤/

√
D
)
i,j

∝ q⊤
i kj . Nevertheless, feature-wise infor-

mation, where each of the D features corresponds to an entry
of qi ∈ R1×D or kj ∈ R1×D, is absorbed into such inner-
product representation. This thus makes such temporal atten-
tion unable to explicitly leverage the feature-wise information.
iTransformer [Liu et al., 2023a] considered the limitation of
temporal attention and proposed the inverted Transformer to
capture cross-variable dependencies that instead computes
K⊤Q ∈ RD×D. This simple design is suitable for capturing
instantaneous cross-correlation, but it is insufficient for MTS
data which is coupled with the intrinsic temporal dependen-
cies. In particular, the variates of MTS data can be correlated
with each other, yet with a lag interval. This phenomenon
is referred to as lagged cross-correlation in MTS analysis
[John and Ferbinteanu, 2021; Chandereng and Gitter, 2020;
Shen, 2015]. Additionally, a variate in MTS data can even be
correlated with the delayed copy of itself which is termed auto-
correlation [Wu et al., 2021]. With yet less-efficient modelling
capabilities of cross-correlation, we hereby aim to derive a
flexible and efficient correlated attention mechanism that can
elevate existing Transformer-based models.

Non-linear Dynamics Tackled by Koopman Theory
Koopman theory [Koopman, 1931; Brunton et al., 2022]
shows that a linear dynamical system can be represented as an
infinite-dimensional non-linear Koopman operator K, which
operates on a space of measurement functions g, such that:

K ◦ g (xt) = g (F (xt)) = g (xt+1) (1)

Dynamic Mode Decomposition(DMD) [Schmid and Sester-
henn, 2008] seeks the best fitted matrix K to approximate
infinite-dimensional operator K by collecting the observed
system states (a.k.a snapshots). However, it is highly nontriv-
ial to find appropriate measurement functions g as well as the
Koopman operator K. Therefore, by the universal approxima-
tion theorem [Hornik, 1991] of deep networks, many works
employ DNNs to learn measurement functions in a data-driven
way [Han et al., 2020; Li et al., 2019b; Morton et al., 2019;
Li and Jiang, 2021; Lusch et al., 2018].

Koopman theory serves as a connection between finite-
dimensional nonlinear dynamics and infinite-dimensional lin-
ear dynamics, enabling the use of spectral analysis tools for
detailed examination. In this paper, we consider time series
data X = {x1, . . . ,xT } as observations of a series of dynamic
system states, where xi ∈ RN is the system state. Therefore,
we design the KTD module which leverage Koopman-based
approaches to tackle nonlinear dynamics.

3.2 Structure Overview
The proposed VCformer is shown in Figure 2. Following
the same Encoder-only structure as iTransformer [Liu et
al., 2023a], we adopt the Inverted Embedding : RT 7→ RD,
which regards each univariate time series as the embedded
token, instead of embedding multiple variates at the same
time as the (temporal) token. By stacking L layers with VCA
and KTD modules, the cross-variable relationships and tem-
poral dependencies in time series can be captured. The final
prediction is obtained by the Projection : RD 7→ RH .

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5337



3.3 Variable Correlation Attention
Our VCA is comprised of lagged cross-correlation calculation
and scores aggregation.

Lagged Cross-correlation Computing
Recall from stochastic process theory [Chatfield and Xing,
2019] that for any real discrete-time process {Xt}, its auto-
correlation RX ,X (τ) can be computed as follows:

RX ,X (τ) = lim
L→∞

1

L

L∑
τ=1

XtXt−τ (2)

Given the queries Q = [q1,q2, . . . ,qN ] and keys K =
[k1,k2, . . . ,kN ] expressed in feature-wise dimension where
qi,kj ∈ RT×1, we make an approximation for the auto-
correlation of variates i:

Rqi,ki(τ) =
T∑

τ=1

(qi)t · (ki)t−τ = qi ⊙ ROLL (ki, τ) (3)

where ROLL (ki, τ) denotes the elements of ki shift along the
time dimension and ⊙ denotes the Hadamard product. This
idea was also harnessed in Autoformer [Wu et al., 2021]. Sim-
ilarly, we can compute the cross-correlation between variate i
and j by:

LAGGED-COR (qi,kj) = qi ⊙ ROLL (kj , τ) (4)

where τ ∈ [1, T ]. Consequently, we calculate all the variates
lagged cross-correlations with different lag lengths in this way.

Scores Aggregation
To obtain the total correlation of variate i and j, we aggregate
different lags τ from 1 to T with learnable parameters λ =
[λ1, λ2, . . . , λT ] to more accurately calculate the effect of
lagged correlation:

COR(qi,kj) =
T∑

τ=1

λiRqi,kj
(τ) (5)

Finally, the VCA performs softmax on the learned multivariate
correlation map A ∈ RN×N at each row and obtains the
output via:

VCA(Q,K,V) = SOFTMAX(COR (Q,K))V (6)

3.4 Koopman Temporal Detector
We employ the KTD to address the non-stationarity in the
input series Xvar ∈ RN×D with multivariate correlation in-
formation. Remarkably, it is non-trivial to directly capture the
non-stationarity in the entire series Xvar, but fortunately we
identify that the localized time series exhibits weak stationar-
ity, thereby aligning with the Koopman theory for nonlinear
dynamics analysis. Consequently, we divide the input Xvar

into D
S segments xj of length S:

xj = Xvar[:, (j − 1)S : jS], j = 1, 2, . . . ,
D

S
. (7)

where each segment can be served as a snapshot for the system.
Subsequently, for every xj ∈ RN×S , we leverage MLP-based
Encoder : RN×S 7→ RM to project it into a Koopman space

embedding zj ∈ RM . According to eDMD [Williams et al.,

2015], these embeddings Z =
[
z1, z2, . . . , zD

S

]
∈ RD

S ×M

are then utilized to calculate the fitted matrix Kvar, facilitating
an approximation of the infinite Koopman operator K.

Specifically, given the Koopman embedding Z, we
construct two matrices Zback =

[
z1, z2, . . . , zD

S −1

]
∈

R(
D
S −1)×M and Zfore =

[
z2, z3, . . . , zD

S

]
∈ R(

D
S −1)×M ,

which respectively contain information of adjacent embed-
dings. After that, the fitted matrix Kvar ∈ RD×D can be
calculated as the following equation:

Kvar = Zfore Z
†
back (8)

where Z†
back is the Moore-Penrose inverse of Zback . Following

the deviation of Kvar, we iteratively apply it to predict H
S

Koopman embeddings as follows:

ẑT
S +t = (Kvar )

t
zT

S
, t = 1, 2, . . . ,H/S. (9)

In this way, a prediction of length H is obtained. Finally,
to obtain the output of KTD, we adopt a Decoder : RM 7→
RN×S , which maps the predicted embeddings back, yielding
Yvar as follows:

Yvar =
[
x̂T

S +1, . . . , x̂T
S +H

S

]⊤
(10)

3.5 Efficient Computation
For each vector pair qi,kj ∈ RT×1, the time complex-
ity of the lag-correlation (Equation 5) is O

(
T 2

)
. There-

fore, calculating COR(qi,K) demands O
(
NT 2

)
time. It

leads the overall complexity of VCA to O
(
N2T 2

)
in its

current form. To alleviate the computational burden, we
apply Fast Fourier Transforms (FFT) based on Wiener-
Khinchin theorem [Wiener, 1930], thus reducing the com-
plexity to O

(
N2T log T

)
. Specifically, for computing the

lag-correlation in Equation 4, given discrete time series {Xt}
and {Yt}, the RXY(τ) can be calculated via FFT as follows:

SXY(f) = F (Xt)F∗ (Yt)

=

∫ +∞

−∞
Xte

−i2πtfdt

∫ +∞

−∞
Yte−i2πtfdt

RXY(τ) = F−1 (SXY(f)) =

∫ +∞

−∞
SXY(f)e

i2πfldf,

(11)

where τ ∈ [1, T ]. F and F−1 denotes the FFT and its inverse
respectively, and ∗ is the conjugate operation. Specifically,
we transform Q and K into frequency domain using FFT.
Then element-wise multiplication (a.k.a Hadamard Product)
is applied to ith row of the F (Q) and F (K) to compute the
LAGGED-COR (qi,K). Extending this process to the entire
matrix F (Q) and applying inverse FFTs to these products
yield the complete lag-correlations between Q and K. As FFT
and inverse FFT each requires O (T log T ), the optimized
VCA achieves a complexity of O

(
N2T log T

)
.
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Method VCformer iTransformer PatchTST DSformer Koopa Crossformer TimesNet DLinear Stationary

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
W

ea
th

er 96 0.171 0.220 0.174 0.214 0.177 0.218 0.170 0.217 0.177 0.226 0.185 0.248 0.172 0.220 0.196 0.255 0.205 0.265
192 0.230 0.266 0.221 0.254 0.242 0.271 0.253 0.296 0.223 0.257 0.229 0.305 0.230 0.281 0.253 0.323 0.233 0.274
336 0.280 0.299 0.278 0.296 0.290 0.305 0.285 0.310 0.281 0.299 0.323 0.285 0.335 0.311 0.325 0.390 0.296 0.317
720 0.352 0.344 0.354 0.349 0.362 0.350 0.395 0.391 0.360 0.350 0.665 0.356 0.398 0.356 0.389 0.437 0.372 0.365

E
le

ct
ri

ci
ty 96 0.150 0.242 0.154 0.245 0.188 0.280 0.164 0.261 0.174 0.273 0.153 0.250 0.182 0.285 0.195 0.276 0.172 0.275

192 0.167 0.255 0.169 0.258 0.193 0.285 0.177 0.272 0.195 0.291 0.223 0.329 0.247 0.329 0.194 0.280 0.187 0.287
336 0.182 0.270 0.185 0.275 0.211 0.302 0.201 0.294 0.216 0.310 0.191 0.291 0.256 0.338 0.207 0.295 0.208 0.307
720 0.221 0.302 0.225 0.308 0.253 0.335 0.242 0.327 0.265 0.346 0.609 0.568 0.311 0.382 0.242 0.328 0.235 0.329

Tr
af

fic

96 0.454 0.310 0.717 0.466 0.475 0.303 0.546 0.352 0.539 0.368 0.530 0.285 0.592 0.315 0.640 0.388 0.732 0.418
192 0.468 0.315 0.472 0.320 0.474 0.322 0.547 0.347 0.552 0.375 0.607 0.311 0.645 0.336 0.593 0.362 0.756 0.425
336 0.486 0.325 0.488 0.330 0.489 0.332 0.562 0.352 0.573 0.383 0.642 0.324 0.659 0.347 0.600 0.365 1.172 0.680
720 0.524 0.348 0.530 0.361 0.526 0.356 0.597 0.370 0.632 0.407 0.592 0.380 0.723 0.388 0.634 0.388 0.896 0.516

E
T

T
h1

96 0.376 0.397 0.380 0.398 0.378 0.396 0.373 0.397 0.389 0.403 0.384 0.409 0.438 0.447 0.479 0.471 0.761 0.612
192 0.431 0.427 0.433 0.428 0.433 0.427 0.419 0.425 0.438 0.431 0.461 0.459 0.488 0.472 0.448 0.443 0.746 0.599
336 0.473 0.449 0.475 0.451 0.471 0.448 0.457 0.446 0.479 0.451 0.521 0.496 0.510 0.480 0.489 0.467 0.739 0.572
720 0.476 0.474 0.486 0.480 0.472 0.471 0.499 0.497 0.486 0.474 0.627 0.586 0.511 0.497 0.511 0.509 0.757 0.612

E
T

T
h2

96 0.292 0.344 0.292 0.344 0.292 0.345 0.296 0.351 0.306 0.355 0.596 0.532 0.337 0.375 0.299 0.351 0.477 0.462
192 0.377 0.396 0.375 0.396 0.388 0.405 0.399 0.414 0.388 0.408 0.880 0.663 0.442 0.435 0.385 0.413 0.571 0.507
336 0.417 0.430 0.418 0.430 0.427 0.436 0.434 0.443 0.430 0.443 1.988 1.097 0.476 0.468 0.511 0.490 0.608 0.534
720 0.423 0.443 0.424 0.443 0.447 0.458 0.454 0.463 0.472 0.470 2.526 1.285 0.496 0.484 0.741 0.603 0.508 0.487

E
T

T
m

1 96 0.319 0.359 0.345 0.369 0.326 0.361 0.326 0.364 0.334 0.372 0.352 0.388 0.334 0.375 0.336 0.362 0.386 0.398
192 0.364 0.382 0.386 0.391 0.372 0.381 0.360 0.382 0.374 0.391 0.409 0.436 0.385 0.401 0.378 0.389 0.459 0.434
336 0.399 0.405 0.423 0.416 0.404 0.403 0.394 0.405 0.409 0.414 0.424 0.428 0.410 0.411 0.413 0.416 0.551 0.485
720 0.467 0.442 0.491 0.445 0.467 0.438 0.474 0.451 0.473 0.448 0.569 0.528 0.513 0.473 0.475 0.454 0.585 0.516

E
T

T
m

2 96 0.180 0.266 0.190 0.276 0.193 0.280 0.201 0.286 0.187 0.271 0.297 0.370 0.185 0.267 0.188 0.284 0.240 0.320
192 0.245 0.306 0.251 0.311 0.246 0.307 0.281 0.335 0.253 0.314 0.499 0.492 0.249 0.306 0.259 0.337 0.314 0.367
336 0.307 0.345 0.315 0.352 0.314 0.351 0.336 0.367 0.323 0.358 0.597 0.684 0.314 0.346 0.334 0.389 0.340 0.371
720 0.406 0.402 0.413 0.404 0.410 0.405 0.430 0.417 0.416 0.407 0.835 0.659 0.411 0.399 0.463 0.466 0.438 0.421

E
xc

ha
ng

e 96 0.085 0.205 0.090 0.211 0.100 0.231 0.092 0.216 0.092 0.217 0.139 0.265 0.108 0.244 0.110 0.266 0.154 0.297
192 0.176 0.299 0.186 0.307 0.215 0.344 0.189 0.312 0.182 0.304 0.241 0.375 0.278 0.391 0.218 0.376 0.374 0.447
336 0.328 0.415 0.339 0.424 0.403 0.473 0.348 0.430 0.349 0.432 0.392 0.468 0.523 0.556 0.387 0.497 0.548 0.563
720 0.830 0.688 0.898 0.718 1.057 0.782 0.947 0.740 1.178 0.830 1.11 0.802 1.224 0.856 0.839 0.695 0.987 0.777

Table 1: Multivariate long-term time series forecasting results

4 Experiment
Dataset We conduct extensive experiments on eight widely-
used real-world datasets [Zhou et al., 2022a], including Elec-
tricity Transformer Temperature (ETT) with its four sub-
datasets (ETTh1, ETTh2, ETTm1, ETTm2), Weather, Elec-
tricity, Traffic and Exchange. Following [Zhou et al., 2022a],
we adopt the same train/val/test sets with splits ratio 6:2:2. For
the ETT datasets, we split the remaining four sub-datasets by
the ratio of 7:1:2 following [Wu et al., 2021].

Baselines We carefully select a range of SOTA methods as
baselines to provide a comprehensive comparison with our
proposed approach including (1) Transformer-based methods:
Stationary [Liu et al., 2022b], Crossformer [Zhang and Yan,
2023], DSformer [Zhang and Yan, 2023], iTransformer [Liu
et al., 2023a]; (2) MLP-based methods: DLinear [Zeng et al.,
2023], Koopa [Liu et al., 2023b]; (3) TCN-based methods:
TimesNet [Wu et al., 2023].

Setups Following [Zhou et al., 2022a], we normalize the
train/val/test to zero-mean using the mean and standard devi-
ation from the training set. The Mean Square Error (MSE)
and Mean Absolute Error (MAE) are selected as evaluation
metrics, consistent with previous works. All of models adopt
the same prediction length H = {96, 192, 336, 720}. For the
look-back window with length T , we follow the same setting
as TimesNet [Wu et al., 2023] which sets T = 96 for all the

baselines to ensure the fairness.

4.1 Time Series Forecasting
Table 1 shows the comprehensive experimental results, where
the lower MSE/MAE indicates the more accurate result. And
we highlight the best in red and bold, while the second in
blue and underlined. As we can see, Table 1 illustrate that
VCformer consistently achieves top-tier performance across a
range of datasets, outperforming other previous SOTA models.
It can be attributed to the robust capability of VCA component
in extracting correlations among multiple variables. Addi-
tionally, it is noteworthy that VCformer achieves the best
results on the Exchange dataset which is characterized by
high non-stationarity. This success can be owing to the KTD
component which augments the power in capturing the non-
stationarity from time series. Furthermore, in other datasets
like ETT where VCformer does not attain the best benchmark,
it still yield competitive results. We also find that the con-
ventional Transformer-based models such as Non-stationary
Transformer [Liu et al., 2022b], only achieve the modest per-
formance. It further substantiates the previously discussed
limitations of the vanilla attention mechanism in tackling tem-
poral dependencies.

4.2 VCA Generality
To further explore the effectiveness of VCA, we migrate the
VCA module to several well-known Transformer variants:
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Models Nonstationary
(2022)

Nonstationary
(VCA)

Autoformer
(2022)

Autoformer
(VCA)

Informer
(2021)

Informer
(VCA)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Electricity

96 0.172 0.275 0.163 0.262 0.201 0.317 0.170 0.273 0.274 0.368 0.195 0.301
192 0.187 0.287 0.175 0.270 0.222 0.334 0.195 0.290 0.296 0.386 0.210 0.315
336 0.208 0.307 0.195 0.286 0.231 0.338 0.200 0.295 0.300 0.394 0.231 0.339
720 0.235 0.329 0.230 0.310 0.254 0.361 0.237 0.331 0.373 0.439 0.266 0.361

Average 0.201 0.300 0.191(5.1%) 0.282(6.0%) 0.227 0.338 0.201(11.7%) 0.297(12.1%) 0.311 0.397 0.226(27.5%) 0.329(17.1%)

Exchange

96 0.154 0.297 0.100 0.235 0.197 0.323 0.124 0.278 0.847 0.752 0.301 0.414
192 0.374 0.447 0.220 0.301 0.300 0.369 0.255 0.323 1.204 0.895 0.441 0.615
336 0.548 0.563 0.405 0.479 0.509 0.524 0.443 0.501 1.672 1.036 0.573 0.729
720 0.987 0.777 0.860 0.844 1.447 0.941 1.051 0.893 2.478 1.310 1.109 0.883

Average 0.516 0.545 0.396(23.2%) 0.465(14.7%) 0.613 0.517 0.468(23.6%) 0.499(3.5%) 1.550 0.998 0.606(60.9%) 0.660(33.9%)

Traffic

96 0.612 0.338 0.540 0.321 0.613 0.388 0.559 0.357 0.719 0.391 0.590 0.371
192 0.613 0.340 0.548 0.324 0.616 0.379 0.563 0.355 0.696 0.379 0.601 0.381
336 0.618 0.328 0.554 0.331 0.622 0.337 0.570 0.366 0.777 0.420 0.595 0.382
720 0.653 0.355 0.579 0.362 0.660 0.408 0.601 0.385 0.864 0.472 0.622 0.407

Average 0.624 0.420 0.555(11.6%) 0.334(20.4%) 0.628 0.379 0.573(8.8%) 0.365(3.5%) 0.764 0.416 0.602(21.2%) 0.385(7.4%)

Table 2: VCA Generality and improvement for other Transformer-based models

Design VCformer Replace VCA w/o VCA Replace KTD w/o KTD

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Exchange 0.360 0.402 0.390 0.445 0.419 0.454 0.425 0.480 0.440 0.506

Traffic 0.483 0.324 0.527 0.351 0.498 0.365 0.498 0.337 0.518 0.351

Electricity 0.180 0.198 0.290 0.445 0.184 0.288 0.184 0.288 0.190 0.280

Weather 0.258 0.282 0.265 0.285 0.264 0.290 0.264 0.290 0.269 0.291

Table 3: Ablations on VCformer. We conduct substitution and removal experiments on two key components (VCA & KTD) of VCformer
respectively. For the substitution experiments, we replace the VCA and KTD modules with self-attention and FFN module respectively. The
average results with all prediction lengths are presented in here.

Non-Stationary Transformer [Liu et al., 2022b], Autoformer
[Wu et al., 2021] and Informer [Zhou et al., 2022a]. Since
these Transformer-based models have masked decoders in
which the partial values of scores (QKT) are replaced with
−∞, the FFT in VCA module can not be used to quickly
calculate the lag-correlations of queries and keys.

Therefore, we retain the original design of decoder and
simply replace self-attention in encoder with VCA. The ex-
perimental results are shown in Table 2, where (VCA) rep-
resents the replaced model. We can see that the VCA mod-
ule has significantly improved the performance of traditional
Transformer-based models (Non-stationary Transformer, Aut-
oformer and Informer), which yields an overall relative MSE
reduction with 13.3%, 14.7% and 36.5%.

4.3 Model Analysis
Ablation Study
In order to comprehensively understand the individual con-
tributions of the key components in VCformer, we conduct
ablation experiments covering experiments with both replac-
ing components (Replace) and removing components (w/o),
as shown in Table 3. From these results, we can conclude
that both VCA and KTD are indispensable for the best perfor-
mance of VCformer, which utilizes lag-correlation on variate
dimension and Koopman detector on temporal dimension. Af-
ter replacing or removing either one of them, the MSE/MAE

Figure 3: A case visualization for multivariate correlation analysis.
The upper part is the multivariate correlation of past series and future
series. The bottom part is the learned correlation maps in different
layers.
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Figure 4: Model efficiency comparison. The running efficiency of eight models on the Exchange (left) and Traffic (right) dataset with the
prediction length H = 96 and the batch size B = 16.

will increase, which validates their effectiveness. Notably,
in the datasets with a large number of variates, specifically
Traffic and Electricity, the replacement or removal of the VCA
module incurs a remarkable increase in MSE/MAE, i.e., an
averaged increase of 9% over the increase by KTD. This sug-
gests that VCA plays a more critical role when dealing with
a larger number of variates. On the other hand, within the
Exchange dataset noted for its volatility, the substitution or
removal of the KTD module, which can capture series non-
stationarity, results in more noticeable performance drops than
that of the VCA module. Conversely, pertaining to the Weather
dataset, the experimental results indicate that the omission or
replacement of either module doesn’t lead to major variances
in performance. These results show that the KTD module is
good at learning features from non-stationary time series.

Multivariate Correlation Analysis
To enhance the interpretability of learned multivariate corre-
lations by VCA, we provide a visualization case with ran-
dom selection on series from Exchange. As demonstrated
in Figure 3, the upper part presents the variate correlations
inherent within the raw series including both input and predic-
tion sequences. These correlations are calculated by Pearson
Correlation coefficient as the following equation:

rxy =

∑L
i=1(xi − x̄)(yi − ȳ)√∑L

i=1(xi − x̄)2 ·
√∑L

i=1(yi − ȳ)2
(12)

where xi, yi ∈ R run through all time points of the paired
variates to be correlated. The lower part portrays the pre-
Softmax score maps learned by VCA in both the first and the
last layers.

From the red box in Figure 3, we can observe that the
multivariate correlations learned by shallow layer of VCA
are more similar to correlations of the input raw series. And
as we explore at a deeper layer of VCA, we find that the
learned multivariate correlations are closer to the forecasting
sequences. This observation indicates that the focus of learned
multivariate correlations shifts progressively from input series
to prediction sequences. It also enhances interpretability of

VCA which aggregates different lag-correlations to represent
these variable relationships.

Model Efficiency Analysis
As shown in the Figure 4, we conduct a comparative study
of the VCformer’s efficiency with seven baselines. Our as-
sessment considers three aspects: training speed, memory
consumption and prediction performance. It can be observed
that the time complexity of VCformer is O

(
N2T log(T )

)
.

However, the coefficient N2 does not significantly impact the
training time when handling datasets with a small number of
variates like Exchange. Notably, for the Traffic dataset which
contains a large number of variates, the actual computational
consumption is not as large as expected. It even outperforms
PatchTST and TimesNet, which can be largely attributed to
all the required calculations based on matrix operations. And
these operations are well parallelized in built-in library.

5 Conclusion
In this paper, we address the limitations of the conventional
dot product attention mechanism in extracting multivariate
correlations. Then we propose VCformer which contains two
effective modules. The VCA module can not only mine the
lagged cross-correlation implicit in MTS, but also seamlessly
integrate into other Transformer-based models. The KTD mod-
ule employs MLP modules to derive Koopman embeddings
and generates Koopman operator to enhance the capability
for capturing non-stationarity in MTS. Extensive experiments
shows that VCformer achieves SOTA forecasting performance
and its VCA module is general enough to improve perfor-
mance of various Transformer-based models.
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