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Abstract
Continual test-time domain adaptation seeks to
adapt the source pre-trained model to a continu-
ally changing target domain without incurring ad-
ditional data acquisition or labeling costs. Unfor-
tunately, existing mainstream methods may result
in a detrimental cycle. This is attributed to noisy
pseudo-labels caused by the domain shift, which
immediately negatively impacts the model’s knowl-
edge. The long-term accumulation of these neg-
ative effects exacerbates the model’s difficulty in
generalizing to future domain shifts and contributes
to catastrophic forgetting. To address these chal-
lenges, this paper introduces a Dual-stream Net-
work that independently optimizes different param-
eters in each stream to capture symbiotic knowl-
edge from continual domains, thereby ensuring
generalization while enhancing instantaneous dis-
crimination. Furthermore, to prevent catastrophic
forgetting, a weighted soft parameter alignment
method is designed to leverage knowledge from the
source model. Finally, efforts are made to calibrate
and explore reliable supervision signals to mitigate
instantaneous negative optimization. These include
label calibration with prior knowledge, label selec-
tion using self-adaptive confidence thresholds, and
a soft-weighted contrastive module for capturing
potential semantics. Extensive experimental results
demonstrate that our method achieves state-of-the-
art performance on several benchmark datasets.

1 Introduction
Deep neural networks have achieved remarkable success in
visual tasks when training and testing data obey the same dis-
tribution. Such networks, however, suffer from the gener-
alization problem due to the ubiquitous domain shift [Wang
et al., 2023b]. For example, a classification network pre-
trained in the normal, natural images may not recognize the
corrupted images. Thus, domain adaptation is essential to
transfer knowledge from the source domain to the target one
by reducing the shift. However, the target domain labels are
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usually unavailable, and the problem is primarily explored
at Unsupervised Domain Adaptation (UDA) [Li et al., 2020;
Wang et al., 2023c; Yang et al., 2022]. More realistically,
the source data is often inaccessible during test time due to
privacy or business problems, making the adaptation problem
more challenging. Initial approaches attempt to employ the
source model and unlabeled target data for testing, such as
Source-Free and Test-Time domain Adaptation (TTA) [Chen
et al., 2022; Yang et al., 2021; Liu et al., 2021].

Common techniques in Test-Time Adaptation (TTA) typ-
ically address the challenge of domain shift by updating
adapted model parameters using either generated pseudo-
labels or entropy regularization [Yang et al., 2023]. While
effective for static target distributions, these approaches ex-
hibit instability when the target domain’s distribution is in
a continual state of flux [Wang et al., 2022; Prabhu et al.,
2021]. The presence of noisy pseudo-labels, stemming from
the constantly shifting distribution, significantly hampers the
adaptation process [Wang et al., 2022; Prabhu et al., 2021].
To address this issue, CoTTA [Wang et al., 2022] intro-
duces the concept of Continual Test-Time Domain Adapta-
tion, wherein a source pre-trained model must adapt to an
evolving stream of target domains without recourse to source
data. CoTTA leverages a weight-average teacher network
to enhance the quality of generated pseudo-labels. Addi-
tionally, Robust Mean Teacher [Döbler et al., 2023] em-
ploys a multi-viewed contrastive loss to guide test features
back towards the initial source space and learns invariant
features concerning the input space. Nevertheless, recent
studies [Marsden et al., 2023] have demonstrated that tun-
ing network parameters based solely on the current domain
may result in a loss of generalization and impair performance
on subsequent domains. Some strategies [Gong et al., ;
Marsden et al., 2023] advocate for updating only the net-
work’s normalization parameters while freezing all others,
which can mitigate the rapid loss of generalization. However,
this approach may lead to a lack of discriminative power in
certain domains due to the constrained learning parameters.

The aforementioned methods have motivated our pri-
mary research objective: enhancing network discrimina-
tion within the current domain while preserving gener-
alization for subsequent domains. Our focus lies in de-
veloping a dual-stream architecture leveraging distinct opti-
mization parameters to encapsulate synergistic knowledge of
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generalization and discrimination. One stream of this dual-
stream network exclusively adjusts normalization parameters
to maintain generalization prowess, while the other stream
harnesses all learnable parameters to enhance discriminative
capacity. Furthermore, to mitigate the risk of catastrophic
forgetting, we propose continual integration of source knowl-
edge into each stream using varied strategies to fine-tune the
adapted dual-stream model. Specifically, a weight-average
strategy is employed in both the source and adapted models
for the normalization-tuned stream. To achieve this, we in-
troduce a weighted soft parameter alignment mechanism that
encourages similarity between the adapted network and the
source. Importantly, the absence of supervisory signals in
generated pseudo-labels inevitably introduces noise. We pro-
pose a novel weighted guidance approach, inspired by the
observation that latter layers in a network are more suscep-
tible to label noise while former layers exhibit greater robust-
ness [Bai et al., 2021]. These weights modulate the similar-
ity between the adapted model and the source model across
layer depths, enabling noise-resistant former layers to un-
dergo more adjustment and noise-sensitive latter layers to un-
dergo less adjustment.

The second objective of this paper is to uncover prior
knowledge aimed at enhancing supervision signals. As
noisy pseudo-labels accumulate over time, the model’s dis-
criminative capacity faces significant challenges. In prac-
tical scenarios, the distribution of features among samples
often reflects their semantic properties, yet this knowledge
remains largely unexplored. To address this gap, we lever-
age source predictions to approximate the lower and upper
bounds of individual class probabilities, facilitating the cali-
bration of pseudo-labels and averting trivial solutions. Addi-
tionally, we employ global and local strategies to indepen-
dently determine thresholds for each class, thereby select-
ing more reliable pseudo-labels. Subsequently, we construct
a soft-weighted contrastive learning module based on these
dependable components, which brings potential same-class
samples closer while effectively discriminating against un-
related samples. This approach harnesses various priors to
enhance the model’s adaptability to target domains.

Contributions. The highlights of the paper are three-
fold: 1) By analyzing the update properties of parameters,
we design a dual-stream framework for continual test-time
domain adaptation. The different learnable parameters are
tuned in each stream to form a symbiotic knowledge for
long-term generalization and instantaneous discrimination,
while the source parameters are appropriately introduced into
dual streams to alleviate catastrophic forgetting; 2) We ex-
plore reliable supervision signals with prior knowledge to
guide the test time tuning. The lower and upper bounds
of individual class probability are employed to calibrate the
pseudo-labels, and the reliable samples are selected in a self-
adaptive manner. The feature distribution of the source pre-
trained model is adopted to guide a soft-weighted contrastive
module for capturing potential semantics lost during adap-
tation; 3) Extensive experimental results demonstrate that
our method achieves state-of-the-art performance on several
datasets. The ablation experiments are conducted to verify
the effectiveness of each module.

2 Related Work
2.1 Domain Adaptation
Domain adaptation [Cao et al., 2022; Jiang et al., 2021]
refers to acquiring knowledge from labeled data within the
source domain to achieve effective performance across di-
verse yet related target domains. A fundamental challenge in
domain adaptation lies in the misalignment between the fea-
ture and label spaces of the source and target domains [Wang
et al., 2023a; Ding et al., 2023; Xie et al., 2022]. To tackle
this challenge, certain domain adaptation techniques aim to
guide deep models in learning domain-invariant representa-
tions [Sun et al., 2022] and classifiers [Wang et al., 2023c].
Notably, some methodologies [Ganin and Lempitsky, 2015;
Tzeng et al., 2017; Ganin et al., 2016] employ adversarial
training to align feature distributions with a domain discrim-
inator, while others impose constraints on the cross-domain
feature space, such as entropy constraint [Saito et al., 2019]
or maximum prediction rank [Cui et al., 2020]. It’s worth
noting that all the aforementioned methods necessitate access
to both source and target data during the adaptation process,
rendering the learning transductive.

2.2 Test-Time Domain Adaptation
In recent studies on test-time domain adaptation, attention has
shifted towards a more demanding scenario where solely the
source model and unlabeled target samples are accessible.
Certain test-time domain adaptation approaches [Li et al.,
2020] leverage generative models to effectuate feature align-
ment between the source and target domains without requir-
ing additional source data acquisition. Additionally, some
methodologies achieve test-time domain adaptation by refin-
ing the source model with the aid of target data, obviating
the need for explicit domain alignment. Test Entropy Mini-
mization (TENT) [Wang et al., 2020] introduces entropy min-
imization as a test-time optimization objective, wherein nor-
malization statistics are estimated, and channel-wise affine
transformations are optimized online with each batch update.
Source Hypothesis Transfer (SHOT) [Liang et al., 2020] en-
deavors to learn the optimal target-specific feature learning
module to align with the source hypothesis.

Most test-time adaptation methodologies primarily address
the offline scenario, wherein the complete test data set is
available during the training phase. However, CoTTA [Wang
et al., 2022] extends test-time adaptation from the offline set-
ting to an online continual scenario. This extension tackles
a more challenging yet realistic problem termed Continual
Test-Time Domain Adaptation, wherein a source pre-trained
model must adapt to a continuously evolving stream of tar-
get test data without access to any source data. [Gan et al.,
2022] employs visual domain prompts to dynamically update
a small portion of input image pixels, thereby mitigating the
issue of error accumulation. Additionally, NOTE [Gong et
al., ] introduces instance-aware batch normalization to rectify
normalization for out-of-distribution samples.

Our Study. Our proposed method incorporates an efficient
dual-stream network to ensure long-term generalization and
improve instantaneous discrimination for continual test-time
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Figure 1: This is the flow of our method. We propose a Dual-stream Network to form a symbiotic knowledge with different parameters
tuned in each stream, ensuring long-term generalization and instantaneous discrimination. Meanwhile, we explore various prior knowledge
from the source pre-trained model to calibrate and enrich supervision signals. The lower and upper bounds of individual class probability are
employed to calibrate the pseudo-labels, and a confidence threshold in a self-adaptive manner is utilized to select reliable labels. Finally, the
source pre-trained model features are adopted to construct a soft-weighted contrastive module for capturing potential semantics lost during
adaptation.

domain adaptation, and we first explore prior knowledge from
the source pre-trained model to guide the adaptation stages.

3 Proposed Method
Following [Wang et al., 2022], we consider a continual test-
time domain adaptation setting, where a pre-trained model
needs to adapt to a continually changing target domain on-
line without source data. Consider a pre-trained model Fθ(x)
with parameter θ trained on the source data. Unlabeled target
domain data Xt is provided sequentially, and the data dis-
tribution continually changes. At testing stage t, when the
unlabeled target data Xt = [x1

t , ..., x
B
t ] is sent to the model

Fθt , whereB is the number of samples. The model Fθt needs
to make the prediction Pt = [p1

t , ..., p
B
t ] and adapts itself ac-

cordingly for the next input (θt → θt+1). It is worth noting
that the total evaluation process is online, and the model only
has access to the data Xt of the current stage t. We design
a dual-stream network, which optimizes different parame-
ters independently in each stream, to capture knowledge from
continual domains. Meanwhile, we explore prior knowledge
from the source pre-trained model. The framework is shown
in Figure 1.

3.1 Dual-stream Network
We first design a new dual-stream pipeline for continual test-
time domain adaptation to capture symbiosis knowledge of
generalization and discrimination. For the convenience of ex-
pression, θt in the following mainly refers to the parameters
of the dual-stream network. The parameters θt of the dual-
stream network are divided into two parts {θ̂t, θ̄t}, where

only the batch normalization layers are tuned in θ̂t and all
parameters are tuned in θ̄t, and the learning process can be
denoted as follows.

pbt = Softmax(γFθ̂t(x
b
t) + (1− γ)Fθ̄t(x

b
t)),

Lce(Xt) = − 1

B

B∑
b=1

∑
k

yb,kt log pb,kt ,
(1)

where pbt represents classification result of the sample b at
time t, and k ∈ K is the k-th class. The learnable parts
can improve the instantaneous discriminative adaptability and
long-term generalization adaptability of the model. We use
the predictions of the source model as auxiliary information
to predict γ. The basic idea is that a similar prediction with
the source model may represent a higher reliability stream.

γ =
sim(Fθ̂t(x

b
t), Fθ(x

b
t))

sim(Fθ̂t(x
b
t), Fθ(x

b
t)) + sim(Fθ̄t(x

b
t), Fθ(x

b
t))
, (2)

where sim(·) is the cosine similarity of smaples. Previous
literature [Frankle et al., 2020] supports the averages of the
parameters of the source model potentially has good gener-
alization capabilities and the adapted model. Thus, we con-
tinually ensemble the parameters of the initial source model
and the weights of the current model using an Exponential
Moving Average of the form.

θ̂t+1 = αθ̂t + (1− α)θ, (3)
where α = 0.99 is a momentum term. For the stream that
optimizes all network parameters, we hope that the objec-
tive function can be employed to directly guide the param-
eter transfer of the source model and the adapted one, and the
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Weighted Soft Parameter Alignment can be defined as fol-
lows.

Lwspa(θ̄t) =
∑
l

1[l /∈ BN] · βl
∥∥θ̄lt − θl∥∥2

2
, (4)

where l is the layer of the network and βl repressents the sim-
ilarity strength of l-th layer. BN represents the batch normal-
ization layers. βl is increased with the deeper layers. During
this process, the accumulation of noisy labels inevitably mis-
leads parameter learning. The following sections will detail
the construction of the supervision signals.

3.2 Supervision Signals
Label Calibration with Prior Knowledge. We hope to ex-
tract prior knowledge from the source pre-training model to
optimize the prediction results. The first is the rough estima-
tion of class distribution at each stage t. To achieve this, the
samples are fed into the source pre-trained network, and the
occurrence probability of each class ckt is then calculated.

qbt = arg max(Softmax(Fθ(x
b
t))),

ckt =
∑
b

1(qbt = k)/B, (5)

where qbt is the class prediction of the sample b. Here, we
choose the source pre-trained model to estimate this proba-
bility mainly because its parameters are fixed and not affected
by pseudo-labels. Admittedly, such an estimation is not en-
tirely accurate, so we need to relax this estimation to calibrate
the supervision labels. The objective is defined as follows.

P̂t = max
Ht

< Ht, Pt >,

s.t.



∑
k

hb,kt = 1, ∀b ∈ B

hb,kt ∈ {0, 1}, ∀k ∈ K, b ∈ B,

(1− δ)ckt ≤
∑
b

hb,kt /B ≤ (1 + δ)ckt , ∀k ∈ K

(6)

where <,> is the inner product, and δ is a relaxation fac-
tor, making the probability of each class in a limited range.
Ht = [h1

t , ..., h
B
t ] is the variable that needs to be solved and

obeys three constraints. The first two constraints ensure that
the result conforms to the one-hot distribution of groundtruth.
δ is a relaxation factor, making the probability of each class
in a limited range with ckt . The objective is a Zero-One Pro-
gramming problem and can be solved with standard solvers
[Wolsey, 2020]. We combine the calibrated pseudo-labels
with the original predictions to ensure model stability while
employing an adaptive threshold to select the final supervi-
sion labels.

Yt = (P̂t + Pt)/||P̂t + Pt||. (7)

Label Selection with Self-adaptive Thresholds. The cali-
bration can suppress noisy labels, but cannot eliminate them.
Thus, we adopt a confidence threshold to filter reliable labels.
Thus, we present self-adaptive thresholding that automati-
cally defines and adaptively adjusts the confidence threshold

for each class by leveraging the current predictions during
adaptation. The global threshold should represent the confi-
dence of the model, reflecting the overall learning status. We
set the global threshold τt as the average confidence from the
model, and estimate the global confidence at each stage t. τt
is defined and adjusted as:

τt =
1

B

B∑
b=1

max(ybt ). (8)

Except for the global threshold, the local threshold is uti-
lized to modulate the global threshold in a class-specific fash-
ion to account for the intra-class diversity and the possible
class adjacency. We compute the expectation of the model’s
predictions on each class k to estimate the class-specific
learning status:

ξt(k) =
1

B

B∑
b=1

yb,kt . (9)

After integrating the global and local thresholds, we can ob-
tain the final self-adaptive threshold of each class k.

τt(k) =
ξt(k)

max{ξt(k) : k ∈ K}
τt. (10)

Based on such thresholds, the samples at current batch
can be divided into two parts, the reliable part Nrel(t) =
{b|b ∈ B,max(ybt ) ≥ τt(arg max ybt )} and unreliable one
Nunrel(t) = {b|b ∈ B,max(ybt ) < τt(arg max ybt )}. The
objective of Lrce(Xt) can be denoted as follows:

Lrce(Xt) = − 1

|Nrel(t)|
∑

b∈Nrel(t)

∑
k

yb,kt log pb,kt (11)

Soft-weighted Contrastive Learning. Undeniably, the
source pre-trained model is fully trained with labels, so even
if the domain shift causes the classification results to be bi-
ased, it is still a suitable feature extractor. In other words,
the source domain training model can still judge samples’
similarity. Based on this, we design a contrastive learning
framework to improve the discriminative ability of the model
further. Specifically, we first exploit the source pre-trained
model to extract the sample features and establish a similar-
ity matrix.

f bt = Fθ(x
b
t), w

b,d
t = sim(f bt , f

d
t ), (12)

where d represents the dth sample at time step t. Such a ma-
trix can be further utilized to promise the model more sub-
stantial representation power, while previous methods have
not achieved it. Moreover, in the context of contrastive
learning, in particular, these semantic class structures can
give helpful guidance in selecting contrastive pairs with sim-
ilar semantics to improve training efficiency. We adopt the
weighted similarity matrix wt to guide the traditional con-
trastive loss, which can be rewritten as follows,

Lswcl(Xt) = − 1

B

B∑
b=1

log

∑
d∈Npos(b) w

b,d
t exp(zbt · zdt )∑

d∈Nneg(b) exp(zbt · zdt )
,

(13)
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where zbt = γFθ̂t(x
b
t) + (1 − γ)Fθ̄t(x

b
t). We then introduce

the components of the objective function in detail.
Positives. We attempt to present more potential positive

samples by utilizing the correlation between samples during
the instantaneous learning process. We select the samples of
the same class with b as the positive sample set from the cali-
brated labels Yt.

Npos(b) = {d|d ∈ Nrel(t), arg max ydt = arg max ybt}.
(14)

Negtatives. The traditional contrastive loss strives to max-
imize the cosine distances between b and every d in the batch.
Instead, we argue that not pushing away same-class pairs
helps learn better semantically meaningful clusters. Specifi-
cally, we adopt the labels to exclude reliable same-class pairs
from all negative pairs:

Nneg(b) = {d|d ∈ Nrel(t), arg max ydt 6= arg max ybt}∪
{d|d ∈ Nunrel(t), arg max ydt 6= arg max ybt}.

(15)
Here, we believe that the confidence of the selected same-

class samples is higher, so these samples are excluded from
the negative samples. The same-class samples with lower
confidence are considered potentially similar samples. There-
fore, we remove them from the positives and negatives, ex-
pecting to optimize their distribution using the soft weights
transfer.

3.3 Overall
The overall objective of our method is as follows.

L(Xt) = Lrce(Xt) + λ1Lwspa(θ̄t) + λ2Lswcl(Xt),

θ̂t+1 = αθ̂t + (1− α)θ,
(16)

where λ1 and λ2 are hyperparameters. In general, we do
not directly use the results of pre-trained models as super-
vision signals, but apply them as prior knowledge to calibrate
pseudo-labels, and design a soft-weighted contrastive learn-
ing method. In order to prevent the influence of noisy labels,
adaptive thresholds are devised to select reliable samples.

4 Experiments
In this section, we evaluate the effectiveness of the pro-
posed method on three benchmark datasets in terms of 1)
whether our dual-stream network learns meaningful results,
2) whether the proposed label selection and correction strate-
gies can improve the discrimination, and 3) the parameters
analysis of the proposed method.

4.1 Datasets
We adopt CIFAR10, CIFAR100, and ImageNet as the
source domain datasets, and CIFAR10C, CIFAR100C, and
ImageNet-C as the corresponding target domain datasets, re-
spectively. The target domain datasets were created to evalu-
ate the robustness of classification networks [Hendrycks and
Dietterich, 2019]. Each target domain dataset contains 15
types of corruption with five levels of severity. Following
[Wang et al., 2022], for each corruption, we use 10000 im-
ages for both CIFAR10C and CIFAR100C datasets and 5000
images for ImageNet-C.

4.2 Implementation Details
Following [Wang et al., 2022], the corrupted images are pro-
vided to the network online, which means these images can
be utilized to update the model only once in the adaptation
process. In addition, unlike traditional test-time adaptation
methods, which adapt to each corruption type data individu-
ally, we adjust the source model to each corruption type se-
quentially. We evaluate the adaptation performance immedi-
ately after encountering each corruption type data. The total
type of corruption is set at 15, and the corruption level is set
to the highest level of 5 (except for the gradual experiments
on CIFAR10-to-CIFAR10C).

For CIFAR10-to-CIFAR10C, we use a pre-trained
WideResNet-28 [Zagoruyko and Komodakis, 2016] model
from the RobustBench benchmark[Croce et al., 2020]. We
use Adam to optimize the network and set the learning rate to
1e-3. The data augmentation strategy is the same as [Wang
et al., 2022], including color jitter, gaussian blur, gaussian
noise, random affine, and random horizontal flip. For
CIFAR100-to-CIFAR100C, we use a pre-trained ResNeXt-
29 [Xie et al., 2017] from [Hendrycks et al., 2019]. For
ImageNet-to-ImageNet-C, we use the standard pre-trained
ResNet-50 from RobustBench [Croce et al., 2020]. The
experiments on ImageNet-to-ImageNet-C are performed
under ten diverse corruption orders. The relaxation factor δ
is set as 0.2, λ1 = 0.1 and λ2 = 1 in our experiments. We set
βl = 1−e−5l

1+e−5l and l is the number of layers.

4.3 Baselines
We compare our method with several state-of-the-art contin-
ual test-time adaptation algorithms, the details of these meth-
ods are as follows: 1) Source directly uses the pre-trained
model for adaptation without any specific method for domain
adaptation; 2) BN Stats Adapt keeps the pre-trained model
weights and uses the Batch Normalization statistics from the
input data of the input batch for the prediction [Li et al., 2016;
Schneider et al., 2020]; 3) Pseudo-Label [Lee and others,
2013] picks up the class which has the maximum predicted
probability as the pseudo-labels to update the model; 4)
TENT [Wang et al., 2020] reduces generalization error by re-
ducing the entropy of model predictions on test data, TENT-
continual is a continual learning version of TENT; 5) CoTTA
[Wang et al., 2022] reduces the error accumulation by us-
ing weight-averaged and augmentation-averaged predictions
and avoids catastrophic forgetting by stochastically restor-
ing a small part of the source pre-trained weights; 6) NOTE
[Gong et al., ] adopts an Instance-Aware Batch Normaliza-
tion to correct normalization for out-of-distribution samples;
7) RoTTA [Yuan et al., 2023] presents a robust batch nor-
malization scheme to estimate the normalization statistics; 8)
RMT [Döbler et al., 2023] uses symmetric cross-entropy and
contrastive learning to pull the test feature space closer to the
source domain; 9) ROID [Marsden et al., 2023] proposes
to continually weight-average the source and adapted model,
and an adaptive additive prior correction scheme.

4.4 Performance Evaluation
CIFAR10-to-CIFAR10C. Table 1 shows the classification
error rate for the standard CIFAR10-to-CIFAR10C task. We

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5330



Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Method

G
au

ss
ia

n

Sh
ot

Im
pu

ls
e

D
ef

oc
us

G
la

ss

M
ot

io
n

Zo
om

Sn
ow

Fr
os

t

Fo
g

B
rig

ht
ne

ss

C
on

tra
st

El
as

tic
tra

ns

Pi
xe

la
te

Jp
eg Mean Gain

Source 72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.5 30.3 43.5 -
BN Stats Adapt 28.1 26.1 36.3 12.8 35.3 14.2 12.1 17.3 17.4 15.3 8.4 12.6 23.8 19.7 27.3 20.4 +23.1
Pseudo-Label 26.7 22.1 32.0 13.8 32.2 15.3 12.7 17.3 17.3 16.5 10.1 13.4 22.4 18.9 25.9 19.8 +23.7
TENT-continual [ICLR’21] 24.8 20.5 28.5 14.5 31.7 16.2 15.0 19.2 17.6 17.4 11.4 16.3 24.9 21.6 26.0 20.4 +23.1
CoTTA [CVPR’22] 24.6 21.9 26.5 11.9 27.8 12.4 10.6 15.2 14.4 12.8 7.4 11.1 18.7 13.6 17.8 16.5 +27.0
NOTE [NeurIPS’22] 7.3 7.4 12.5 20.9 13.8 15.5 34.2 34.2 39.6 25.0 11.6 24.2 29.9 14.1 12.7 20.1 +23.4
RoTTA [CVPR’23] 30.3 25.4 34.6 18.3 34.0 14.7 11.0 16.4 14.6 14.0 8.0 12.4 20.3 16.8 19.4 19.3 +24.2
RMT [CVPR’23] 24.1 20.2 25.7 13.2 25.5 14.7 12.8 16.2 15.4 14.6 10.8 14.0 18.0 14.1 16.6 17.0 +26.5
ROID [2023.6.1] 23.7 18.7 26.4 11.5 28.1 12.4 10.1 14.7 14.3 12.0 7.5 9.3 19.8 14.5 20.3 16.2 +27.3
ViDA [ICLR’24] 52.9 47.9 19.4 11.4 31.3 13.3 7.6 7.6 9.9 12.5 3.8 26.3 14.4 33.9 18.2 20.7 +22.8
Ours 19.7 15.7 19.6 12.6 23.8 11.6 10.3 12.8 11.8 9.8 7.8 9.3 16.9 11.2 15.8 13.9 +29.6

Table 1: Classification error rate (%) for the standard CIFAR10-to-CIFAR10C continual test-time adaptation task. All results are evaluated
with the largest corruption severity level 5 in an online fashion. Bold text indicates the best performance. Blue is the suboptimal solution.
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Source 73.0 68.0 39.4 29.3 54.1 30.8 28.8 39.5 45.8 50.3 29.5 55.1 37.2 74.7 41.2 46.4 -
BN Stats Adapt 42.1 40.7 42.7 27.6 41.9 29.7 27.9 34.9 35.0 41.5 26.5 30.3 35.7 32.9 41.2 35.4 +11.0
Pseudo-Label 38.1 36.1 40.7 33.2 45.9 38.3 36.4 44.0 45.6 52.8 45.2 53.5 60.1 58.1 64.5 46.2 +0.2
TENT-continual [ICLR’21] 37.2 35.8 41.7 37.7 50.9 48.5 48.5 58.2 63.2 71.4 72.0 83.1 88.6 91.6 95.1 61.6 -15.2
CoTTA [CVPR’22] 40.1 37.7 39.7 26.8 38.0 27.9 26.5 32.9 31.7 40.4 24.6 26.8 32.5 28.1 33.8 32.5 +13.9
NOTE [NeurIPS’22] 28.4 32.7 36.4 44.4 42.9 42.2 65.8 61.1 70.8 51.6 34.4 45.4 62.7 39.9 36.4 43.3 +3.1
RoTTA [CVPR’23] 49.1 44.9 45.5 30.2 42.7 29.5 26.1 32.2 30.7 37.5 24.7 29.1 32.6 30.4 36.7 34.8 +11.6
RMT [CVPR’23] 40.2 36.2 36.0 27.9 33.9 28.4 26.4 28.7 28.8 31.1 25.5 27.1 28.0 26.6 29.0 30.2 +16.2
ROID [2023.6.1] 36.5 31.9 33.2 24.9 34.9 26.8 24.3 28.9 28.5 31.1 22.8 24.2 30.7 26.5 34.4 29.3 +17.1
ViDA [ICLR’24] 50.1 40.7 22.0 21.2 45.2 21.6 16.5 17.9 16.6 25.6 11.5 29.0 29.6 34.7 27.1 27.3 +19.1
Ours 33.8 31.8 30.5 25.5 30.9 25.5 25.7 27.0 27.3 30.6 25.9 22.9 26.6 26.0 26.9 27.8 +18.4

Table 2: Classification error rate (%) for the standard CIFAR100-to-CIFAR100C continual test-time adaptation task. All results are evaluated
with the largest corruption severity level 5 in an online fashion. Bold text indicates the best performance. Blue is the suboptimal solution.

Avg. Error (%) Source BN Adapt TENT-continual CoTTA RoTTA RMT ROID Ours
ImageNet-C 82.4 72.1 66.5 63.0 67.3 59.9 54.5 50.3

Table 3: Average error of standard ImageNet-to-ImageNet-C experiments over 10 diverse corruption sequences. All results are evaluated
with the largest corruption severity level 5 in an online fashion. Bold text indicates the best performance. Blue is the suboptimal solution.

compare our method with the seven baseline methods. ‘Gain’
represents the percentage of improvement in model accuracy
compared with the source method. CoTTA considers the er-
ror accumulation to improve performance further. As the lat-
est proposed methods, NOTE attempts to improve the perfor-
mance of the model in different domains from the distribution
with BN. Although it performs well in domains such as Gaus-
sian and shot, it performs poorly in some simple domains,
such as Brightness and Contrast. ROID has dramatically im-
proved the overall performance of the model. However, the
model does not perform well in some difficult domains due to
the limited parameters that can be learned. Compared with all
the previous methods, our method achieves the best results in
the average error value and most of the corruption-type data.

CIFAR100-to-CIFAR100C. Table 2 shows the classifi-
cation error rate for the standard CIFAR100-to-CIFAR100C
task. BN Stats Adapt and NOTE do not bring error accumu-
lation, but there is little room for improvement. CoTTA con-

siders the error accumulation problem and reduces the error
to 32.5%. Similarly, Visual Domain Prompt performs well in
some domains, but in some relatively complex domains, the
limited learnable parameters lead to a limited upper bound of
the model. Further, the performance of our method is better
than RMT and ROID on several corruption types of data, and
the average error value is reduced to 27.8%.

ImageNet-to-ImageNet-C. We also make experiments on
the ImageNet dataset. Following [Wang et al., 2022], we con-
duct ImageNet-to-ImageNet-C experiments over ten diverse
corruption type sequences in severity level 5. The average re-
sult of ten experiments is shown in Table 3. ImageNet is more
complex than CIFAR-100 and CIFAR-10, and the overall av-
erage test error is more significant. Our method outperforms
other competing methods and reduces the average test error
to 50.3%.
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Stream 1 w/o EMA 27.5 24.8 28.9 12.0 32.8 13.6 11.2 16.9 12.8 10.2 7.9 12.2 18.5 13.8 17.5 17.4
Stream 1 25.8 22.2 27.0 11.3 29.5 13.1 10.6 15.8 12.0 10.1 7.8 12.0 17.6 11.5 15.5 16.1
Stream 2 w/o WSPA 23.3 20.4 25.0 13.8 30.5 13.9 12.8 15.5 14.6 15.4 8.0 12.4 22.4 18.2 19.4 17.7
Stream 2 21.3 17.8 22.7 13.2 26.8 13.2 11.5 14.7 13.2 10.9 8.0 10.2 18.8 14.5 16.8 15.6
0.5*Stream 1+ 0.5*Stream 2 20.5 17.3 21.2 12.6 24.5 11.9 10.9 13.6 11.8 10.6 8.5 10.6 17.5 11.0 15.3 15.0
γ*Stream 1+ (1− γ)*Stream 2 19.7 15.7 19.6 12.6 23.8 11.6 10.3 12.8 11.8 9.8 7.8 9.3 16.9 11.2 15.8 13.9

Table 4: Ablation experiments of the Dual-Stream Nerwotk for the CIFAR10-to-CIFAR10C task.‘Stream 1’ represents the stream in that only
the batch normalization layers are tuned, and ‘Stream 2’ is the stream in which all parameters are tuned. EMA represents the Exponential
Moving Average, and WSPA is Weighted Soft Parameter Alignment.

Method Mean Gain
CE 16.5 -
CE w/ CAL 16.0 +0.5
CE w/ SEL 16.2 +0.3
CE w/ SEL(CAL) 15.3 +1.2
CE w/ SEL(CAL)+CL 14.7 +1.8
CE w/ SEL(CAL)+SwCL 13.9 +2.6

Table 5: Ablation experiments of the supervision signals for the
CIFAR10-to-CIFAR10C task. ‘CAL’ is the calibration, and ‘SEL’
represents the Label Selection. ‘CL’ is traditional contrastive learn-
ing, and ‘SwCL’ is the proposed Soft-weighted Contrastive Learn-
ing.

4.5 Ablation Studies
In addition, we first conduct ablation experiments with the
same supervision signals to prove the effectiveness of the
dual-stream network. For the convenience of expression,
‘Stream 1’ represents the stream in that only the batch nor-
malization layers are tuned, and ‘Stream 2’ is the stream in
which all parameters are tuned. The results are shown in Ta-
ble 4, where EMA represents the Exponential Moving Aver-
age, and WSPA is Weighted Soft Parameter Alignment. The
results demonstrate that the proposed modules are helpful for
performance gains. Subsequently, we focus on validating the
proposed supervision signals module. It can be seen that the
pseudo-label after prior calibration can effectively improve
the performance of the model. In addition, the proposed label
selection strategy can also effectively suppress noisy labels.
Finally, the proposed contrastive learning strategy effectively
optimizes the sample distribution.

4.6 Parameters Analysis
We explored how the model varies with the parameter λ, and
the results are shown in Figure 2. The results demonstrate that
our method is not sensitive to λ1 and λ2 at range [0.01, 1].

5 Conclusion
This paper first proposes a dual-stream structure to capture
the discriminative ability, maintain generalization, and pre-
vent catastrophic forgetting. We propose continually cap-
turing source knowledge using different strategies in each

Figure 2: Parameters Analysis of λ1 and λ2 on CIFAR10-
CIFAR10C dataset.

stream to calibrate the adapted model. Then, we adopt the
source predictions to rough calculate the lower and upper
bounds of individual class probability, which can calibrate
the pseudo-labels and avoid a trivial solution. Moreover,
we select an independent threshold for each class through
global and local strategies to choose reliable pseudo-labels.
Based on such reliable parts, we construct a soft-weighted
contrastive learning module, which pulls the potential same-
class samples closer and discriminates against uncorrelated
samples. Finally, we evaluate the proposed method on sev-
eral benchmarks and prove its superiority.
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