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Abstract
Wasserstein Barycenter (WB) is one of the most
fundamental optimization problems in optimal
transportation. Given a set of distributions, the goal
of WB is to find a new distribution that minimizes
the average Wasserstein distance to them. The
problem becomes even harder if we restrict the so-
lution to be “k-sparse”. In this paper, we study the
k-sparse WB problem in the presence of outliers,
which is a more practical setting since real-world
data often contains noise. Existing WB algorithms
cannot be directly extended to handle the case with
outliers, and thus it is urgently needed to develop
some novel ideas. First, we investigate the relation
between k-sparse WB with outliers and the clus-
tering (with outliers) problems. In particular, we
propose a clustering based LP method that yields
constant approximation factor for the k-sparse WB
with outliers problem. Further, we utilize the core-
set technique to achieve the (1 + ϵ)-approximation
factor for any ϵ > 0, if the dimensionality is not
high. Finally, we conduct the experiments for our
proposed algorithms and illustrate their efficiencies
in practice.

1 Introduction
Let P = {p1, p2, · · · , pn1} and Q = {q1, q2, · · · , qn2}
be two sets of weighted points in the Euclidean space Rd,
where we use wP (·) (resp., wQ(·)) to denote the non-negative
weight function for each point of P (resp., Q); we also
assume that P and Q have the same total weight, i.e.,∑n1

i=1 wP (pi) =
∑n2

j=1 wQ(qj) = n > 0. For any l ≥ 1,
the seminal Wasserstein Distance [Rubner et al., 2000] is to
measure their minimum transportation cost:

W(P,Q) = min
F

( n1∑
i=1

n2∑
j=1

fij ||pi − qj ||l
) 1

l

, (1)

where || · || is the Euclidean distance, and the flow set F =
{fij | 1 ≤ i ≤ n1, 1 ≤ j ≤ n2} from P to Q should sat-
isfy:

∑n1

i=1 fij = wQ(qj) for any j, and
∑n2

j=1 fij = wP (pi)

∗Corresponding author.

for any i. We usually set l = 1 or 2 for most practical ap-
plications. Also note that “||pi − qj ||l” in (1) can be re-
placed by other distance function if the input P and Q are
in some other metric space rather than the Euclidean space.
The Wasserstein distance is one of the most fundamental top-
ics in mathematics in past decades, and recently finds a broad
range of applications in machine learning, such as image re-
trieval [Rubner et al., 2000], generative model [Arjovsky et
al., 2017], and robust optimization [Kuhn et al., 2019].

In this paper, we focus on an important optimization
problem from Wasserstein distance, k-sparse Wasserstein
Barycenter (WB) [Borgwardt and Patterson, 2021]. Sup-
pose the input contains m ≥ 1 weighted point sets
P1, P2, · · · , Pm, the problem of k-sparse WB for a given
k ∈ Z+ is to construct a new weighted point set S with the
support size |supp(S)| = k, such that

1

m

m∑
j=1

W l(S, Pj) (2)

is minimized. The Wasserstein barycenter [Agueh and Car-
lier, 2011] is a natural representation for the average of a set
of given distributions. Recently, it has been applied to a num-
ber of real-world problems, such as medical imaging [Gram-
fort et al., 2015], Bayesian learning [Srivastava et al., 2018],
clustering [Ho et al., 2017], and natural language process-
ing [Singh et al., 2020]. In practice, we often prefer a sim-
ple representation of the barycenter with low complexity, and
thus we have the sparsity requirement “|supp(S)| = k”.

Note that it is quite challenging to achieve a high-quality
solution with theoretical guarantee for the objective (2); this
is mainly due to two aspects, where one is from the inher-
ent hardness for computing the Wasserstein distance, and the
other reason is due to the restriction of “|supp(S)| = k”
which is a troublesome combinatorial constraint for the op-
timization. For example, [Borgwardt and Patterson, 2021]
proved that the k-sparse WB problem is NP-hard, even if
m = 3 and the dimensionality d = 2; on the other
hand, if the k-sparse restriction is removed, one can com-
pute Wasserstein barycenter in polynomial time in low di-
mensional space [Altschuler and Boix-Adserà, 2021].

We consider an even harder but also more practical vari-
ant of the k-sparse WB problem called “k-sparse WB with
outliers”. Roughly speaking, we allow a certain fraction of
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outliers for the mapping from each Pj to S in (2) (the for-
mal definition is shown in Section 2). The motivation of al-
lowing outliers is very natural in practical scenarios. Sup-
pose we want to compute the WB for a set of images [Cuturi
and Doucet, 2014]; it is common that the input images may
contain noises and/or some irrelevant objects. To achieve a
more robust solution, it is better to compute a barycenter that
matches each input image partially (the un-matched part can
be viewed as outliers).

Actually, the study on Wasserstein distance with outliers
has already attracted attentions recently in machine learn-
ing [Chapel et al., 2020; Mukherjee et al., 2021; Le et al.,
2021; Nietert et al., 2022]. However, the existing algorithms
for computing WB with outliers are still quite limited, to the
best of our knowledge. Though several robust models and
algorithms for WB have been studied [Cazelles et al., 2021;
Le et al., 2021], their methods do not explicitly handle out-
liers. In the current article, we consider developing approxi-
mate algorithms for k-sparse WB with outliers. For the sake
of simplicity, we fix l = 2 for the Wasserstein distance in
(1); actually our results can be easily extended for any l ≥ 1.
Our main ideas rely on the vanilla clustering algorithms. Sup-
pose we have an α-approximation algorithm A for k-means
clustering (e.g., the algorithms from [Kanungo et al., 2002;
Arthur and Vassilvitskii, 2007]) and a β-approximation al-
gorithm B for k-means clustering with outliers (e.g., the al-
gorithms from [Friggstad et al., 2019; Gupta et al., 2017]),
where α, β ≥ 1. Our contributions are as follows.

• Our first contribution is to illustrate the relation between
k-sparse WB with outliers and the problems of k-means
clustering and k-means clustering with outliers. We are
aware that the relation between the vanilla WB (without
outliers) problem and k-means clustering has been dis-
cussed before [Cuturi and Doucet, 2014]. However, it is
much more challenging to analyze the case with outliers;
for example, even one single outlier can seriously de-
stroy the clustering performance. In particular, we need
to develop some significantly new insight to investigate
the influence of outliers in the context of the compli-
cated Wasserstein flows. We show that one can achieve
an O(α)-approximate solution by utilizing the algorithm
A, but the returned barycenter has the support size larger
than k. If we want to keep the support size being equal
to k, we can take advantage of B instead and achieve an
O(β)-approximate solution.

• We further study the problem in low-dimensional space
(e.g., computing the WB for a set of 2D images). Our
idea follows the aforementioned clustering method, but
in a more sophisticated manner. We utilize the low-
dimensional coreset technique [Har-Peled and Mazum-
dar, 2004] to generate a set of “anchor” points, and then
build a set of non-uniform grids surrounding them. For
any ϵ > 0, if we relax the “k-sparse” requirement, we
can compute a WB that achieves a (1 + ϵ) approxima-
tion factor based on those grids. Moreover, our result
can be generalized to any metric space with constant
doubling dimension (e.g., the input distributions could
have small intrinsic dimension even in high-dimensional

space [Roweis and Saul, 2000]).

Remark 1. The algorithms A and B can be bi-criteria ap-
proximation algorithms, that is, they can return more than k
cluster centers (if we relax the k-sparse requirement). The
benefit of using bi-criteria approximation algorithms is that
they often achieve lower α and β. For example, the popu-
lar k-means++ algorithm yields an O(log k) approximation
factor [Arthur and Vassilvitskii, 2007]; but if we run the k-
means++ seeding procedure more than k steps (say λk with
some constant integer λ > 1), the approximation factor can
be reduced to be O(1) [Aggarwal et al., 2009].

1.1 Related Works
Wasserstein distance. The research on computing the
Wasserstein distance (1) has gained a great amount of atten-
tions in theory and various practical applications. It is easy
to see that (1) can be viewed as a min-cost flow problem
that one can apply the network simplex algorithm to solve
it [Ahuja et al., 1988]. In machine learning community, [Cu-
turi, 2013] proposed a new variant called “Sinkhorn distance”
that can be computed much faster than the original Wasser-
stein distance. Following Cuturi’s work, [Altschuler et al.,
2017] proposed a nearly-linear time Wasserstein distance al-
gorithm. [Genevay et al., 2016] proposed a stochastic algo-
rithm for solving large-scale optimal transportation. Some re-
cent improvements also include [Dvurechensky et al., 2018;
Lin et al., 2019]. As mentioned before, several works on
the Wasserstein distance with outliers problem and its ap-
plications (e.g., outlier detection and shape matching) were
also proposed recently [Chapel et al., 2020; Mukherjee et al.,
2021; Le et al., 2021; Nietert et al., 2022].

Wasserstein barycenter. The study of Wasserstein
barycenter mainly focuses on two different types. One is
called “fixed-support WB”, where the barycenter S in (2)
has a fixed support (the support size can be very large) and
the task is to determine the weight distribution over the sup-
port such that the average Wasserstein distance to the given
m input distributions is minimized. The other one is called
“free-support WB” where the barycenter S can have the sup-
port that locates anywhere in the space. The former problem
is relatively easier to solve, since the weight distribution can
be obtained by computing a linear programming (LP) [Au-
ricchio et al., 2019]. A number of efficient algorithms for
fixed-support WB have been proposed. For example, [Claici
et al., 2018] presented a stochastic algorithm for WB; [Ge
et al., 2019] developed a novel interior-point method by re-
moving redundant constraints for the LP; [Lin et al., 2020]
provided a fast iterative Bregman projection algorithm.

On the other hand, the free-support WB problem is more
challenging. Recently, [Altschuler and Boix-Adsera, 2022]
showed that it is NP-hard to compute even a WB with ϵ ad-
ditive error in Euclidean space (if d is not constant); only for
low-dimensional space, one can obtain the optimal WB in
polynomial time [Altschuler and Boix-Adserà, 2021]. [Borg-
wardt, 2022] provided a 2-approximate WB in Euclidean
space. But those algorithms cannot guarantee small support
for the obtained barycenter (e.g., the support can be as large
as O(

∑m
j=1 |supp(Pj)|)).
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If we further require |supp(S)| = k, the problem can be
much more challenging; as mentioned before the k-sparse
WB problem is NP hard even for m = 3 and d = 2 [Borg-
wardt and Patterson, 2021]. Most existing algorithms for
k-sparse WB rely on the idea of alternating minimization,
that is, they iteratively update the location of the k sparse
support of S and the weight distribution, until the solution
converges to some local optimum [Cuturi and Doucet, 2014;
Ye et al., 2017; Claici et al., 2018; Ge et al., 2019].

2 Preliminaries
To formally define the k-sparse WB with outliers problem, we
should provide the definition for Wasserstein distance with
outliers first (the vanilla Wasserstein distance (1) is the special
case with zero outlier). For any weighted point set P ⊆ Rd,
we use wP (p) and wP (S) to denote the non-negative weight
of a point p ∈ P and the total weight of a subset S ⊂ P ,
respectively. We also define the relation “⪯” between two
point sets P and P ′: P ′ ⪯ P if supp(P ′) = supp(P ) and
wP ′(p) ≤ wP (p) for any p ∈ supp(P ). Further, we define
the set PP

−z = {P ′ ⊂ Rd | P ′ ⪯ P and wP ′(P ′) = wP (P )−
z} for any given non-negative value z ≤ wP (P ).
Definition 1 (Wasserstein distance with z outliers). Let
n > z ≥ 0. Suppose P = {p1, p2, · · · , pn1} and Q =
{q1, q2, · · · , qn2} are two sets of weighted points in Rd; also∑n1

i=1 wP (pi) = n and
∑n2

j=1 wQ(qj) = n− z. The Wasser-
stein distance with z outliers from P to Q is

W−z(P,Q) = min
P ′∈PP

−z

W(P ′, Q). (3)

The set PQ = argminP ′∈PP
−z

W(P ′, Q) is called “the in-
liers of P induced by Q”.

Remark 2. The objective function (3) was similarly defined
as “unbalanced optimal transport” before [Chapel et al.,
2020; Pham et al., 2020]. This definition is similar with the
“trim” idea widely used in robust statistics [Rousseeuw and
Leroy, 1987]. Also our definition for the function W−z(P,Q)
is one-side, i.e., only P contains outliers; actually, a more
general definition can be two-side that both P and Q may
contain outliers. We refer the reader to the recent arti-
cles [Mukherjee et al., 2021; Nietert et al., 2022] for more
detailed discussion. Due to the space limit, we only present
our results of one-side here, and leave the results for two-side
(which can be easily extended from the one-side results) to
our full paper [Yang and Ding, 2024].

Computing W−z(P,Q). Obviously, the total flow∑n1

i=1

∑n2

j=1 fij = n − z in Definition 1. So the
missing flows with the total weight z can be viewed
as the outliers. Actually the problem of Wasserstein
distance with z outliers can be easily reduced to the
vanilla Wasserstein distance problem (1) via a “dummy
point” idea that was studied in [Chapel et al., 2020;
Ding et al., 2023] before. We add a dummy point q∗ to Q
with the weight equal to z; also we force the “distance”
between q∗ and each pi to be 0. Note that we cannot find
such a real point q∗ in the space, where in reality we just
need to set all the entries corresponding to the line of q∗ to

be 0 in the n1 × (n2 + 1) distance matrix. Then we can
run any off-the-shelf Wasserstein distance algorithm, e.g.,
the simplex network algorithm [Ahuja et al., 1988] or the
sinkhorn distance algorithm [Cuturi, 2013], to compute the
solution. Intuitively, the dummy point q∗ absorbs the furthest
z outliers from P .
Claim 1. Computing W−z(P,Q) is equivalent to computing
W(P,Q ∪ {q∗}).
Definition 2 (k-sparse WB with z outliers). Let n > z ≥ 0.
Suppose the input P contains m ≥ 1 weighted point sets
P1, P2, · · · , Pm where each Pj has the total weight n. Then
the problem of k-sparse Wasserstein Barycenter with z out-
liers for a given k ∈ Z+ is to construct a new weighted point
set S with total weight n − z and the size |supp(S)| = k,
such that

Cost−z(P, S) =
1

m

m∑
j=1

W2
−z(Pj , S) (4)

is minimized. Throughout this paper, we always use “Sopt”
to denote the optimal solution of (4).
Remark 3. (Fixed-support WB with outliers) As mentioned
in Section 1.1, if we remove the “k-sparse” requirement and
let the support of S be fixed to a given set G (|G| can be
larger than k), the problem of WB can be solved by a linear
programming [Ge et al., 2019; Lin et al., 2020]. Through the
idea of Claim 1, the fixed-support WB with outliers problem
can be also solved by using LP. Namely, we add a dummy
point g∗ to G and set its weight to be z; then the problem
is exactly equivalent to the vanilla fixed-support WB problem
on G ∪ {g∗}. For completeness, we provide the detailed for-
mulation in our full paper [Yang and Ding, 2024].
Relation to k-means clustering with z outliers. To bet-
ter illustrate our algorithms for k-sparse WB with outliers,
we need to elaborate on its relation to k-means clustering
with outliers first. Given a set P of weighted points in Rd

with the total weight n, the goal of the vanilla k-means is to
find k cluster centers C = {c1, c2, · · · , ck}, such that each
point of P is assigned to its nearest cluster center and the
total weighted squared distances S(P,C) =

∑
p∈P wP (p) ·

min1≤s≤k ||p − cs||2 is minimized. If we allow to discard
z outliers, the goal becomes to find not only the k clus-
ter centers, but also a set P ′ ∈ PP

−z , such that S(P ′, C)

is minimized. We denote this optimal cost as Meank−z(P ),
and let Ck−z(P ) denote the set of optimal cluster centers
{c1, c2, · · · , ck} with the weight wCk−z

(cs) = the total weight
of the s-th cluster, 1 ≤ s ≤ k. If z = 0, we use Meank(P )
and Ck(P ) for simplicity.

(1) First, we consider the basic case m = 1 for k-sparse
WB with z outliers. It is easy to see that it is equivalent to the
k-means clustering with z outliers on P1.
Claim 2. Suppose m = 1. The set Ck−z(P1) forms the op-
timal solution for k-sparse WB with z outliers. Namely, for
any |supp(Q)| = k, Meank−z(P1) = W2

−z(P1, C
k
−z(P1)) ≤

W2
−z(P1, Q).
(2) Then we consider the general case m ≥ 2. From

Claim 2, we know that the barycenter actually induces k
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clusters and z outliers on P1 for the case m = 1. When
m ≥ 2, the k points of the barycenter also induce k clusters
on ∪m

j=1Pj but with additional constraint.

Claim 3. The optimal solution of k-sparse WB with z out-
liers is equivalent to solving the k-means clustering with
mz outliers on ∪m

j=1Pj with the following constraint: for
each obtained cluster Us, 1 ≤ s ≤ k, wUs

(Us ∩ P1) =
wUs

(Us ∩ P2) = · · · = wUs
(Us ∩ Pm).

Actually the above constrained k-means clustering with
outliers problem is a special fairness clustering with outliers
problem [Bera et al., 2019]: suppose each Pj has a unique
color, and we require that each color only takes 1

m of the
total weight in each cluster Cs. Though a number of algo-
rithms have been proposed for fairness clustering, the study
on the case with outliers is still quite limited, to the best of
our knowledge.

3 Our Clustering Based LP Algorithm
In this section we propose a clustering based LP algorithm
for solving the k-sparse WB with outliers problem, where
our main idea is inspired by the observations of Claim 2 and
Claim 3. Though the algorithm is simple, the analysis on the
quality is the major challenge since the inliers and outliers are
mixed without any prior knowledge.

The clustering based LP algorithm. Let P = {P1, P2,
· · · , Pm} be an instance of the k-sparse WB with
outliers problem as Definition 2. Assume wmin =
min1≤j≤m,p∈Pj wPj (p), and denote by ẑ = ⌈z/wmin⌉ for
convenience. Our algorithm has the following three steps.

(1) We first run an α-approximate (k + ẑ)-means cluster-
ing algorithm A on each Pj and obtain the set Tj of its
λ(k + ẑ) cluster centers with some integer λ ≥ 1 (as
discussed in Remark 1, we can run a bi-criteria approxi-
mation algorithm).

(2) Then, for each Tj we consider the following fixed-
support WB with outliers problem (as described in Re-
mark 3): the support of the barycenter is fixed to be the
O(k + ẑ) points of Tj , and compute the optimal weight
distribution over Tj via LP.

(3) Let T̃1, · · · , T̃m be the obtained m candidate WBs from
Step (2). We return the best one, say T̃j0 , which has the
smallest cost over the m candidates with respect to the
cost (4).

The theoretical quality guarantee of T̃j0 is given in The-
orem 1. Since |supp(T̃j0)| = O(k + ẑ) that violates the
k-sparse requirement, we can replace the algorithm A by a
β-approximate k-means clustering with z outliers algorithm
B in the above method. Then each Tj should have the support
size exactly equal to k for j = 1, 2, · · · ,m. We still select the
best candidate WB T̃j0 by the same manner, and return it as
the solution for k-sparse WB with outliers. The improved
result is shown in Theorem 2.

Theorem 1. Our clustering based LP Algorithm returns a
solution T̃j0 for k-sparse WB with outliers and achieves the

following quality guarantee:

Cost−z(P, T̃j0) ≤ (2 +
√
α)2 · Cost−z(P, Sopt). (5)

We have multiple choices for the algorithm A. For ex-
ample, we can run the (9 + ϵ)-approximate local search al-
gorithm [Kanungo et al., 2002] (but its running time is su-
per linear since there are too many swap combinations that
should be tested in the local search procedure). We also can
run the k-means++ based algorithms [Aggarwal et al., 2009;
Lattanzi and Sohler, 2019] to achieve an O(1)-approximation
as discussed in Remark 1. So the approximation factor in
Theorem 1 can be O(1) as well.

To prove Theorem 1, we need several key lemmas.
Lemma 1 shows that each obtained Tj can approximately rep-
resent the corresponding Pj , even in the presence of outliers.
Lemma 2 further shows that the set TSopt

j , i.e., the inliers of
Tj induced by Sopt (see Definition 1), should yield an upper
bound for the total cost where the bound is determined by the
distance between Pj and Sopt. Also note that we cannot ob-
tain T

Sopt

j in reality since the optimal solution Sopt is always

unknown to us; in fact we only use T
Sopt

j in our analysis for
bridging the gap between T̃j0 and Sopt. Through Lemma 2
we can prove that the selected best candidate T̃j0 yields the
desired quality guarantee.

Lemma 1. For each 1 ≤ j ≤ m, suppose the obtained clus-
ter centers from A is Tj = {t1, t2, · · · , tλ(k+ẑ)}; also each
weight wTj

(ts) = the total weight of the s-th cluster. Then
W−z(Tj , Sopt) ≤ (1 +

√
α)W−z(Pj , Sopt).

Proof. First, we consider the relationship between k-means
clustering with z outliers and (k + ẑ)-means clustering. In-
tuitively, we can regard the result of k-means clustering with
z outliers as a special solution for the (k + ẑ)-means cluster-
ing, where each outlier actually is a cluster of single point.
We then have the following claim (due to the space limit, the
proof is shown in the full paper [Yang and Ding, 2024]).

Claim 4. Meank+ẑ(Pj) ≤ Meank−z(Pj).

From Claim 2 we know that Meank−z(Pj) ≤
W2

−z(Pj , Sopt). Also, because Tj is obtained from the
α-approximate algorithm A, we have

W(Tj , Pj)
2 ≤ αMeank+ẑ(Pj)

≤ αMeank−z(Pj) ≤ αW2
−z(Pj , Sopt). (6)

According to Definition 1, we know that W−z(Tj , Sopt) =

W(T
Sopt

j , Sopt), where T
Sopt

j is the inliers of Tj induced by

Sopt. Note P
Sopt

j is a set with total weight = n − z, so we

have W(T
Sopt

j , Sopt) ≤ W(T
P

Sopt
j

j , Sopt). Thus,

W−z(Tj , Sopt) ≤ W(T
P

Sopt
j

j , Sopt). (7)
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We also have the following bound

W(T
P

Sopt
j

j , Sopt)

≤ W(T
P

Sopt
j

j , P
Sopt

j ) +W(P
Sopt

j , Sopt)

= W−z(Tj , P
Sopt

j ) +W−z(Pj , Sopt)

≤ W(Tj , Pj) +W−z(Pj , Sopt)

≤ (1 +
√
α)W−z(Pj , Sopt), (8)

where the first inequality follows from the triangle inequality
of Wasserstein Distance, and the last inequality follows from
(6). Finally, we complete the proof by combining (7) and
(8).

Lemma 2. For any 1 ≤ j ≤ m, Cost−z(P, T
Sopt

j ) ≤ (2 +√
α)Cost−z(P, Sopt) + (2 + 3

√
α+ α)W2

−z(Pj , Sopt).

Proof. For any 1 ≤ j1 ≤ m, we have

W−z(Pj1 , T
Sopt

j ) ≤ W(P
Sopt

j1
, T

Sopt

j )

≤ W(P
Sopt

j1
, Sopt) +W(Sopt, T

Sopt

j )

= W−z(Pj1 , Sopt) +W−z(Tj , Sopt)

≤ W−z(Pj1 , Sopt) + (1 +
√
α)W−z(Pj , Sopt), (9)

where the second inequality follows from the triangle in-
equality of Wasserstein distance and the third inequality fol-
lows from Lemma 1. Then we obtain the following bound by
using (9):

Cost−z(P, T
Sopt

j )

≤ 1

m

∑m

j1=1

(
W−z(Pj1 , Sopt)

+ (1 +
√
α)W−z(Pj , Sopt)

)2

≤ 1

m

∑m

j1=1
(2 +

√
α)W2

−z(Pj1 , Sopt)

+ (2 + 3
√
α+ α)W2

−z(Pj , Sopt)

= (2 +
√
α)Cost−z(P, Sopt)

+ (2 + 3
√
α+ α)W2

−z(Pj , Sopt), (10)

where the second inequality follows from the fact that (a +
δb)2 ≤ (1 + δ)a2 + (δ2 + δ)b2 for any numbers a, b, and
δ.

Proof. [of Theorem 1] Because T̃j is the optimal
weight distribution over Tj , we have Cost−z(P, T̃j) ≤
Cost−z(P, T

Sopt

j ). For the best candidate T̃j0 , we have

Cost−z(P, T̃j0) ≤ min1≤j≤m Cost−z(P, T
Sopt

j )

≤ (2 +
√
α) Cost−z(P, Sopt)

+ (2 + 3
√
α+ α)min1≤j≤m W2

−z(Pj , Sopt) (11)

based on Lemma 2. Also it is easy to know
min1≤j≤m W2

−z(Pj , Sopt) ≤ 1
m

∑m
j=1 W2

−z(Pj , Sopt) =

Cost−z(P, Sopt), so (11) implies Cost−z(P, T̃j0) ≤ (2 +√
α)2Cost−z(P, Sopt) which completes the proof.

Theorem 2. If we run the β-approximate k-means clustering
with z outliers algorithm B instead of A, and compute the
optimal weight distribution with 2z outliers over Tj in the
clustering based LP algorithm, we have

Cost−2z(P, T̃j0) ≤ (2 +
√
β)2 · Cost−z(P, Sopt). (12)

Comparing with Theorem 1, it is guaranteed that the out-
put T̃j0 in Theorem 2 is exactly k-sparse, with only a vi-
olation on the size of outliers. The total weight of dis-
carded outliers is increased to 2z; but usually z is a value
much smaller than n and thus we believe this influence is
acceptable in practice. For the algorithm B, we can use
the O(1)-approximate algorithms [Friggstad et al., 2019;
Krishnaswamy et al., 2018] (the algorithm of [Friggstad et
al., 2019] slightly violates the number of returned cluster cen-
ters to be (1 + ϵ)k with an arbitrarily small value ϵ > 0). In
practice, we can also use some faster algorithms like [Chawla
and Gionis, 2013; Gupta et al., 2017] (though their theo-
retical guarantees are weaker than [Friggstad et al., 2019;
Krishnaswamy et al., 2018]).

The proof of Theorem 2 is similar with that of Theorem 1,
but the only major challenge is that we have to provide a more
complicated version for Lemma 1 (which is Lemma 3 below).
For each 1 ≤ j ≤ m, let the obtained cluster centers from B
be Tj = {t1, t2, · · · , tk}; the key difficult problem is that Tj

and Sopt may induce different inliers on Pj . To resolve this
issue, we should make a deep analysis on the distribution of
Tj and prove the existence of a set T ′

j ⪯ Tj who can play the
same role as Tj in Lemma 1. Due to the space limit, we leave
the proofs of Lemma 3 and Lemma 4 to our full paper.
Lemma 3. There exists a weighted point set T ′

j satisfy-
ing W−z(Sopt, T

′
j) ≤ (1 +

√
β)W−z(Pj , Sopt), where

supp(T ′
j) = supp(Tj) and wT ′

j
(T ′

j) = n− 2z.

Lemma 4. For any 1 ≤ j ≤ m, the weighted point
set T ′

j in Lemma 3 also satisfies Cost−2z(P, T ′
j) ≤ (2 +√

β)Cost−z(P, Sopt) + (2 + 3
√
β + β)W2

−z(Pj , Sopt).

Proof. [of Theorem 2] Because of T̃j is the optimal
weight distribution over Tj , so we have Cost−2z(P, T̃j) ≤
Cost−2z(P, T ′

j). For the best candidate T̃j0 , we have

Cost−2z(P, T̃j0) ≤ min1≤j≤m Cost−2z(P, T ′
j)

≤ (2 +
√

β)Cost−z(P, Sopt)

+ (2 + 3
√
β + β)min1≤j≤m W2

−z(Pj , Sopt)

≤ (2 +
√

β)2Cost−z(P, Sopt), (13)

where the second inequality follows from Lemme 4 and the
last inequality follows from min1≤j≤m W2

−z(Pj , Sopt) ≤
Cost−z(P, Sopt).

Analysis on running time. Let Γ1 be the time complex-
ity of A or B on each input set Pj , and let Γ2 be the time
complexity for solving the fixed-support WB for each T̃j as
described in Remark 3. Then the total time complexity of
our algorithm is m(Γ1 + Γ2). Usually Γ1 can be linear in n
if using the previous clustering algorithms (e.g., [Aggarwal
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et al., 2009]) ; the complexity Γ2 can be Õ(mn7/3ϵ−4/3) if
using the recent algorithm [Lin et al., 2020] (ϵ > 0 is a pre-
specified small error).

4 Improvement in Low-Dimensional Space
We further consider a common case that the dimensionality d
is small (e.g., the input P is a set of 2D images). In the previ-
ous section, we show that the quality of our solution heavily
depends on the clustering performance of the algorithm A or
B. So a natural question is

Can we remove the dependence on the factors α and β in
our quality guarantee?

We answer this question in the affirmative. Our main idea
is to generate the support through a more sophisticated ap-
proach. Our algorithm contains the following two steps.

(1) Generate the anchor points. We still run the α-
approximate (k+ẑ)-means clustering algorithm A on each Pj

and obtain the set Tj = {t1, · · · , tλ(k+ẑ)} of its cluster cen-
ters. To have a higher-quality fixed support for replacing Tj ,
we utilize the low-dimensional coreset1 technique [Har-Peled
and Mazumdar, 2004] to generate a set of “anchor” points
T̂j as follows. Denote by B(c, r) the ball centered at point c
with radius r ≥ 0. We fix a j, and let r̄j =

√
W(Pj , Tj)/n

and ϵ1 > 0. Then for s = 1, 2, · · · , λ(k + ẑ), we parti-
tion the ball B(ts, nr̄j) into ⌈log n⌉ + 1 layers: Tj,s,0 =
B(ts, r̄j) and Tj,s,h = B(ts, r̄j2h)\B(ts, r̄j2h−1) for h =
1, · · · , ⌈log(n)⌉. For each h-th layer, we can build a grid
with the side length r̄jϵ12

h−1/
√
αd; each point of Pj ∩Tj,s,h

is assigned to its nearest grid point, and each grid point has
the weight equal to the total weight of the points assigned
to it. Finally, we have the set T̂j which contains all the
weighted grid points of the ⌈log n⌉ + 1 layers. The size
|T̂j | = O

(
(k + ẑ) log(n)αd/2/ϵd1

)
. We call the union set

∪m
j=1T̂j as the “anchor points” (which is actually the coreset

in [Har-Peled and Mazumdar, 2004]).
(2) Construct the support. Without loss of generality, we

assume that the minimum and maximum pairwise distances
of ∪m

j=1Pj are 1 and ∆, respectively. For each anchor point
q ∈ ∪m

j=1T̂j , we draw ⌈log∆⌉+ 1 concentric balls B(q, 2h),
h = 0, 1, · · · , ⌈log∆⌉. Let ϵ2 > 0. Inside each ball B(q, 2h),
we build a grid of side length ϵ22

h−1/
√
d. We denote the

union set of the ⌈log∆⌉ + 1 grids as Gq , and denote Ḡ =⋃
q∈

⋃m
j=1 T̂j

Gq .
Finally, we solve the fixed-support WB with outliers prob-

lem by using the LP method on Ḡ instead of the Tjs. The
obtained solution is denoted by G̃.

Theorem 3. Our Algorithm returns a solution G̃ that has the
following quality guarantee by setting ϵ1 = ϵ2 = ϵ/16:

Cost−z(P, G̃) ≤ (1 + ϵ) · Cost−z(P, Sopt). (14)

1Coreset is an algorithmic technique for representing large-scale
data, which has been widely used for the optimization problems like
clustering and regression [Feldman, 2020].

Before proving Theorem 3, we provide the following two
key lemmas first. Lemma 5 shows that each obtained T̂j

can efficiently preserve the Wasserstein distance error for
Pj within any arbitrarily small bound, even in the pres-
ence of outliers. Lemma 6 further shows that the instance
T = {T̂1, T̂2, · · · , T̂m} yields a barycenter on the fix support
Ḡ which can approximately represent the barycenter on the
input instance P. The detailed proofs are placed to our full
paper [Yang and Ding, 2024].

Lemma 5. For each 1 ≤ j ≤ m, we have

W(Pj , T̂j) ≤
√
1.25ϵ1W−z(Pj , Sopt). (15)

Lemma 6. Let T = {T̂1, T̂2, · · · , T̂m} be a new instance of
k-sparse WB with outliers, then we have

Cost−z(T, G̃) ≤ (1 + ϵ2)
2(1 +

√
1.25ϵ1)

2Cost−z(P, Sopt). (16)

Proof. [of Theorem 3] We can combine Lemma 5 and
Lemma 6 to complete the proof. Let δ > 0 be a parameter
that will be determined later. First, we have

Cost−z(P, G̃) =
1

m

∑m

j=1
W2

−z(Pj , G̃)

≤ 1

m

∑m

j=1

(
W(Pj , T̂j) +W−z(T̂j , G̃)

)2

≤ 1

m

∑m

j=1

(
(1 + δ) W2(Pj , T̂j)

+ (1 +
1

δ
) W2

−z(T̂j , G̃)
)
, (17)

where the second inequality follows from the generalized
triangle inequality for any real numbers δ > 0, a, and b:
(a + b)2 ≤ (1 + δ)a2 + (1 + 1

δ )b
2. Then from (17) we

have Cost−z(P, G̃) ≤ (1 + δ) 1
m

∑m
j=1 W2

−z(Pj , Sopt) +

(1 + 1
δ )Cost−z(T, G̃) ≤ ((1 + δ)1.25ϵ21 + (1 + 1

δ )(1 +

ϵ2)
2(1 +

√
1.25ϵ1)

2)Cost−z(P, Sopt), where the second in-
equality follows from Lemma 5 and Lemma 6. Finally
we choose δ = 1/(

√
1.25ϵ1(1 + ϵ2)(1 +

√
1.25ϵ1)), then

we have Cost−z(P, G̃) ≤ (
√
1.25ϵ1 + (1 + ϵ2)(1 +√

1.25ϵ1))
2Cost−z(P, Sopt). By setting ϵ1 = ϵ2 = ϵ/16

we obtain Theorem 3.

Running time analysis. The running time is similar with
the complexity of Section 3, where the only difference is
adding the time complexity for building the anchor points and
constructing the support in our algorithm. Note that the com-
plexity of [Har-Peled and Mazumdar, 2004] is linear in the
input size n for each Pj . The total complexity for this extra

part is Õ
(
log(∆)(k + ẑ)αd/2ϵ−2d + n

)
.

Extension in doubling metric. Our result can be easily ex-
tended to the more general case in doubling metric. Infor-
mally speaking, the “doubling dimension” measures the in-
trinsic dimension of data (Euclidean dimension is one kind of
special doubling dimension) [Gupta et al., 2003]. We show
the extension with details in our full paper.
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5 Experiments
In this section, we illustrate the practical performance of our
algorithms and study the significance of considering outliers
for WB. Our experiments contain three parts. Firstly, we
conduct the experiments on synthetic datasets, where the po-
sitions of the barycenter supports are predefined, allowing
us to compute the exact optimal objective value for measur-
ing the approximation ratio of our algorithm. Secondly, we
compare our algorithms with several baselines on real-world
datasets. Finally, we provide the visualized results on the
MNIST dataset [LeCun et al., 2010]. Some omitted exper-
imental results are placed to our full paper [Yang and Ding,
2024].

Datasets. In our synthetic datasets, we set the supports size
k ∈ [10, 40] and the dimensionality d ∈ [10, 40]; each in-
stance comprises m ∈ [2, 10] different distributions, where
each distribution consists of n = 20, 000 points. The true
barycenter supports are uniformly sampled within a hyper-
cube with a side length of 10, and random weights are as-
signed to each center point. The points are randomly gener-
ated within Gaussian balls around the centers based on the
assigned weights. We introduce outliers by uniformly sam-
pling z points for each distribution within the cube, with z
ranging from 0 to 0.15× n.

We also select three widely-used datasets from the UCI
repository [Dua and Graff, 2017]: Bank [Moro et al., 2012]
(4, 521 points in R3) represents the individual telephone calls
during a marketing campaign, which contains the information
of the customers. We have m = 3 distributions categorized
based on marital status. Credit card [Yeh, 2016] (30, 000
points in R14) includes the information about the credit card
holders. We partitioned the data into m = 9 distributions
based on marriage and education. Adult [Becker and Ko-
havi, 1996] (32, 561 points in R5) represents the individual
information from the 1994 U.S. Census. We partitioned it
into m = 10 distributions based on sex and race. Finally, 5%
random noise are added to each dataset as outliers.

Baselines and our implementation. It is worth noting that
there is no method that explicitly addresses k-sparse WB
with outliers or fair clustering with outliers, to the best of
our knowledge. We employ three baselines. First, follow-
ing Remark 3, we consider the fixed-support WB with out-
liers algorithm, utilizing k random centers as support, and
compute the optimal weight distribution via LP (denoted as
“Random O”). The other two baselines include a fair clus-
tering algorithm that does not consider outliers (denoted as
“FC O”) [Bera et al., 2019], and a non-fair clustering method
considering outliers “k-means- - O” [Chawla and Gionis,
2013]. For the FC algorithm, we identify the farthest points in
each class as outliers; for k-means- -, after obtaining the sup-
port positions, a new fair clustering solution can be obtained
through LP. Additionally, we also test their three “plain” ver-
sions that do not discard outliers, aiming to study the signif-
icance of considering outliers (denoted as “Random”, “FC”,
“k-means- -”, respectively).

In our implementation, we use the k-means++[Arthur and
Vassilvitskii, 2007] as Algorithm A and k-means- -[Chawla
and Gionis, 2013] as Algorithm B; we also employ the LP

solver [Gurobi Optimization, LLC, 2023] as the subroutine
for solving fixed-support WB with outliers. To ensure a fair
comparison, although Theorem 2 suggests removing 2z out-
liers, we remove only z outliers in reality. Also, to keep k-
sparsity for the result returned by A, we only retain the top
k centers with the largest cluster sizes. We use “Our A” and
“Our B” to denote them.

Results on synthetic datasets. We compute the optimal
cost Costopt for the WB problem by using the pre-specified
barycenter support. Subsequently, we execute our algorithm
under various parameters to obtain the Cost and calculate the
approximation ratio, defined as Cost

Costopt
. Part of the results ob-

tained by Algorithm A is presented in Table 1. We can see
that our algorithm consistently achieves favorable approxi-
mation ratios across different dimensions and outlier propor-
tions, where more than 70% of them are less than 1.5.

Proportion of Outliers z/n
d k 0 0.025 0.05 0.075 0.1 0.125 0.15

10

10 1.321 1.380 1.477 1.651 1.547 1.452 1.493
20 1.346 1.326 1.395 1.435 1.475 1.497 1.527
30 1.370 1.375 1.397 1.434 1.476 1.496 1.558
40 1.367 1.380 1.413 1.450 1.490 1.498 1.554

20

10 1.332 1.412 1.695 1.714 1.746 1.353 1.399
20 1.349 1.459 1.789 1.423 1.429 1.455 1.485
30 1.373 1.468 1.412 1.441 1.485 1.497 1.538
40 1.386 1.422 1.420 1.495 1.520 1.575 1.602

Table 1: The approximation ratios of our algorithm for m = 10.

Results on real datasets. The results are illustrated in Fig-
ure 1. As can be seen, even with only 5% outliers, the plain
versions of the three baselines take almost double costs than
their counterparts who consider outliers. Moreover, our al-
gorithms demonstrate even lower costs across all the datasets
with different values of k.

4 6 8 10 12 14 16 18

k

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

C
os

t

bank

4 6 8 10 12 14 16 18

k

1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
4.4

adult

4 6 8 10 12 14 16 18

k

2
3
4
5
6
7
8
9

10
11

creditcard

Our A
Our B

FC O
FC

Random O
Random

k-means- - O
k-means- -

Figure 1: The obtained costs on real datasets.

Visualized results. In Figure 2 and Figure 3, we show the
40-sparse barycenters obtained by Our A and Our B for digit
0-9 in the MNIST dataset, with 2% of outliers removed from
each digit. It is evident that the obtained set of 40 points
effectively captures the distinctive features for each digit.
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Figure 2: k-sparse WB obtained by Our A for k = 40.

Figure 3: k-sparse WB obtained by Our B for k = 40.

6 Conclusions
In this paper, we study the problem of k-sparse WB with
outliers and present several efficient approximate algorithms
with theoretical quality guarantees. Some omitted proofs
are placed to our full paper [Yang and Ding, 2024]. Fol-
lowing this work, there are several interesting problems de-
served to study in future. For example, inspired by the
local search method for designing the PTAS algorithm for
ordinary k-means clustering with outliers [Friggstad et al.,
2019], an interesting theoretical question is that whether we
can also apply it to achieve a PTAS for k-sparse WB with
outliers in low-dimensional space. Our current paper fo-
cuses more on the theoretical quality for computing WB with
outliers, so an ignored question is that how to improve the
time complexity (e.g., using some randomization techniques).
From the perspective of applications, it is deserved to con-
sider that using WB with outlier to handle some complex
data fusion problems [Cheng et al., 2021; Mao et al., 2018;
Buchin et al., 2019].
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