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Abstract
In real-world situations, federated learning often
needs to process non-IID (non-independent and
identically distributed) data with multiple skews,
causing inadequate model performance. Existing
federated learning methods mainly focus on ad-
dressing the problem with a single skew of non-
IID, and hence the performance of global mod-
els can be degraded when faced with dual skewed
non-IID data caused by heterogeneous label distri-
butions and sample sizes among clients. To ad-
dress the problem with dual skewed non-IID data,
in this paper, we propose a federated learning algo-
rithm based on local graph, named FBLG. Specif-
ically, to address the label distribution skew, we
firstly construct a local graph based on clients’ lo-
cal losses and Jensen-Shannon (JS) divergence, so
that similar clients can be selected for aggregation
to ensure a highly consistent global model. Af-
terwards, to address the sample size skew, we de-
sign the objective function to favor clients with
more samples as models trained with more sam-
ples tend to carry more useful information. Exper-
iments on four datasets with dual skewed non-IID
data demonstrate FBLG outperforms nine baseline
methods and achieves up to 9% improvement in ac-
curacy. Simultaneously, both theoretical analysis
and experiments show FBLG can converge quickly.

1 Introduction
Federated learning has been widely applied in many fields.
For example, in the medical field, federated learning can help
medical institutions of different levels share patient data to
provide more accurate treatment plans. In the Internet of
Things (IoT), federated learning is used for shared training
among multiple devices to improve the performance of smart
devices. Additionally, federated learning has been applied in
various fields such as finance and transportation to address the
data privacy and distributed learning [Li et al., 2020a]. With
the federated learning framework, clients can collaboratively

train models without exposing data. Firstly, clients train mod-
els on local devices. Subsequently, the clients send updates
of local models to the central server, which aggregates these
updated local models and sends the resulting global model to
each client [McMahan et al., 2017].

A major challenge in federated learning is the non-IID
data, which arises when the data distributions on different de-
vices are not independent and identically distributed [Liao et
al., 2023; Shang et al., 2022]. The non-IID data can cause
drift in the optimization of both local and global models,
resulting in slower convergence [Karimireddy et al., 2020;
Li et al., 2020c]. Existing study indicates that causes of non-
IID data can be subdivided into five categories: feature dis-
tribution skew, label distribution skew, concept drift with dif-
ferent features, concept drift with different labels, and sample
size skew [Kairouz et al., 2021]. However, nearly all exist-
ing federated learning methods focus on researching non-IID
data with only one specific type of skew. For instance, FedLC
[Zhang et al., 2022] proposed a fine-grained calibrated cross-
entropy loss to reduce the bias in local updates to improve the
performance of global models with label distribution skews;
Tijani et al.[2021] proposed a data extension strategy aimed
at generating placeholders for absent classes within a local
dataset to address the label distribution skew.

However, in real-world situations, lots of non-IID data
comprises dual or even multiple skews. For example, con-
sider three hospitals: a tertiary hospital, a children’s hospital,
and a tumor hospital. The distribution of tumor labels among
these hospitals tends to be skewed, and simultaneously, the
sample sizes also tend to be skewed due to differing sizes
of these hospitals [Wu et al., 2023]. Existing studies [Hsu
et al., 2019; Hsieh et al., 2020] have demonstrated that the
sole skew caused by heterogeneous label distributions among
clients can reduce the performance of the global model by
40%. Furthermore, the presence of dual skews caused by het-
erogeneous label distributions and sample sizes among clients
can lead to performance degradation by 56% for the global
model, highlighting the substantial impact of dual skews on
global model performance. As the complexity of address-
ing non-IID data consisting of multiple skews will be signifi-
cantly increased, it remains an open problem that is far from
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being resolved [Li et al., 2022]. So far, there are very lim-
ited studies focusing on non-IID data characterized by dual
or multiple skews [Zhu et al., 2021]. Therefore, as an ini-
tial effort, our primary focus is to address the dual skewed
non-IID data caused by heterogeneous label distributions and
sample sizes among clients. We hope this work will provide a
solid foundation for handling more intricate cases with mul-
tiple skews which require in-depth research in the future.

In this paper, we propose a Federated learning algorithm
Based on Local Graph, named FBLG that can simultaneously
address the dual skewed non-IID data caused by heteroge-
neous label distributions and sample sizes among clients. The
main components of the algorithm include:

(i) Addressing the skew caused by heterogeneous label dis-
tributions among clients. After each communication round,
the server firstly sorts clients according to their local losses.
Then, the server selects clients with larger local losses to con-
struct a local graph and calculates the JS divergence among
clients as the weights of edges in the local graph. Based on
the local graph, clients with larger local losses and higher
similarities are selected for aggregation to make the global
model highly consistent.

(ii) Addressing the skew caused by heterogeneous sample
sizes among clients. Considering that the model trained with
more samples tends to carry more useful information, the
sample size is used to further select clients with more sam-
ples when designing the objective function.

In summary, the algorithm considers selecting clients with
larger local losses, higher similarities, and more samples for
aggregation. Experimental results demonstrate the FBLG al-
gorithm can achieve higher accuracy than existing baseline
methods on four datasets when both the label distribution and
sample size are skewed among clients. Theoretical analy-
sis and experiments show the FBLG algorithm can converge
quickly.

Our contributions in this paper are as follows:
• We propose the FBLG algorithm to address dual skewed

non-IID data caused by heterogeneous label distribu-
tions and sample sizes among clients.

• We construct a local graph based on clients’ local losses
and JS divergence among clients. Subsequently, similar
clients are selected for aggregation based on the local
graph to address the label distribution skew. Addition-
ally, considering that models trained with more samples
tend to contain more useful information, we use the sam-
ple size to select clients with more samples when de-
signing the objective function to address the sample size
skew.

• Through comparison experiments with nine existing
baseline methods and theoretical analysis, it is veri-
fied that the FBLG algorithm can achieve higher accu-
racy and quicker convergence under situations with dual
skewed non-IID data caused by heterogeneous label dis-
tributions and sample sizes among clients.

2 Related Work
Federated learning is a distributed machine learning method
that involves sharing data across multiple clients for model

training while protecting individual privacy. Existing fed-
erated learning frameworks are divided into vertical feder-
ated learning and horizontal federated learning [Zhang et al.,
2021a]. This paper is based on the horizontal federated learn-
ing framework, where participants typically share identical
features while possessing distinct sample sets.

However, due to the difference in distributions of data
owned by various clients participating in federated learning,
non-IID data has become an important issue. The existence of
non-IID data can lead to performance degradation in models,
thus affecting the overall effectiveness of federated learning
[Zhao et al., 2018; Li et al., 2022].

In recent years, some progress has been made to address
non-IID data. However, current work mainly focuses on solv-
ing non-IID data with only one certain kind of skew among
clients, such as label distribution skew, feature distribution
skew, or sample size skew. To address the label distribution
skew, Ramakrishna et al. [2022] proposed approximate in-
ference methods for category label distribution based on pa-
rameter updates of clients; FedOV [Diao et al., 2023] deleted
the original features of a few classes and learned them as ad-
versaries. To address the feature distribution skew, FedBN
[Li et al., 2021b] added a batch normalization layer to the lo-
cal model to mitigate feature bias before model aggregation;
FedRDN [Yan and Zhu, 2023] randomly injected statistical
information from the entire federation’s dataset into clients’
data. To address the sample size skew, Wang et al. [2021]
monitored and designed a new loss to make weight updates
proportional to the number of samples in different categories;
Zhang et al. [2021b] proposed a client selection system, en-
abling clients to decide participation in each training round
based on their individual and global data distribution proba-
bilities.

However, existing studies [Hsu et al., 2019; Hsieh et al.,
2020] have shown that dual skewed non-IID data caused by
heterogeneous label distributions and sample sizes among
clients degrade the performance more than the sole skew
caused by heterogeneous label distributions among clients.
Therefore, based on existing studies, this paper addresses the
dual skewed non-IID data caused by heterogeneous label dis-
tributions and sample sizes among clients to improve the ef-
fectiveness of federated learning.

3 Our Method
3.1 Preliminaries
In our work, we suppose there are N clients. For the k-th
client, its sample set is Dk, the number of samples is nk,
and the global model delivered by the server at t-th round is
θt. Firstly, for ∀d ∈ Dk, let fd(θt) be the local loss of each
sample on the client, then the local loss for the k-th client is
denoted as

Fk(θ
t) =

1

nk

∑
d∈Dk

fd(θ
t) (1)

For the k-th client, the optimization objective is to find the
local model θ∗k that minimizes the loss, denoted as

θ∗k = argmin
θk
{Fk(θk)} (2)
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Figure 1: The framework of FBLG.

We use the stochastic gradient descent (SGD) to optimize
the local loss Fk(θ

t) on the k-th client to obtain the local
model θt+1

k after a new round of local training. Then, we
upload Fk(θ

t) and θt+1
k at the same time to the server, which

constructs the local graph. Based on the local graph, we select
clients to achieve aggregation.

3.2 Framework of Our Proposed FBLG
This section introduces the framework of our proposed
FBLG, which is shown in Fig. 1 and Algorithm 1. Assuming
that the global model θt has been obtained after completing
the t-th round of iteration, the (t + 1)-th round in FBLG in-
cludes the following steps. Each step is labeled with their
corresponding line numbers in Algorithm 1.

Step 1: The server delivers the global model θt (Line 3).
Step 2: Each client performs local training based on θt. It

obtains the local loss Fk(θ
t) and the trained local model θt+1

k ,
then uploads them to the server (Lines 4 to 7).

Step 3: The server constructs a local graph based on the
local loss Fk(θ

t) and the JS divergence among clients (Lines
9 to 10).

Step 4: The server uses the local graph to select clients
with larger local losses, higher similarities, and more samples
(Lines 11 to 12).

Step 5: The server aggregates selected clients and gener-
ates the global model θt+1 (Lines 13 to 16).

The framework of FBLG is consistent with most federated
learning methods in stages of global model delivery, client lo-
cal training, and model aggregation, while the key difference
lies in the selection of clients (i.e. Steps 3 and 4).

3.3 Local Graph Construction
Next, we will introduce the construction of the local graph
(i.e. Step 3). Firstly, we need to select the top M = C × N

Algorithm 1: FBLG algorithm
Input: The global model θ, the sizes of clients’ local

data n, the total round T , the client number N ,
the number of local updating steps E, the
learning rate η, and the proportion C

1 Initialize the global model θ0 and M = C ×N
foreach communication round t = 1, 2, ..., T do

2 foreach client k = 1, 2, ..., N do
3 The server delivers the global model θt to the

client k
4 foreach local updating step u = 1, 2, ..., E do
5 θt+1

k,u+1 ← θtk,u − η∇Fk(θ
t
k,u)

6 end
7 The client k uploads Fk(θ

t) and θt+1
k to the

server
8 end
9 The server selects the top M clients with the

maximum Fk(θ
t) as the candidate set ct+1

10 Create the local graph G for the candidate set ct+1

based on the techniques in Sec.3.3
11 Compute the shortest-path distance of each pair

nodes on G by Floyd Algorithm to obtain H
12 The server selects clients as st+1 by

max
st+1≤ct+1

(
s⊤t+1Hst+1

M(M−1) +
s⊤t+1nkst+1∑

k∈st+1
nk

)

13 foreach client k ∈ st+1 do
14 w = nk∑

k∈st+1
nk

15 The server aggregates received local models
θt+1 =

∑
k∈st+1

wθt+1
k

16 end
17 end
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clients with larger local losses from N clients, where C is
the proportion of clients with larger local losses selected, and
we denote these M clients as c1, c2, · · · , cM . Then, we use
clients c1, c2, · · · , cM to construct a local graph and denote
the local graph as G(γ, V ), where γ = {c1, c2, · · · , cM} is
the node set of the local graph G(γ, V ), V ∈ RM×M is the
adjacency matrix of the local graph G(γ, V ), and the element
Vij is the weight between any two clients i and j, which is
mainly used to characterize the similarity between any two
clients i and j.

Existing similarity methods usually employ the cosine dis-
tance, which only focuses on the direction of vectors, dis-
regarding their specific magnitudes. This can lead to poor
results when computing the similarity of non-sparse data.
Therefore, we use JS divergence to measure the similarity be-
tween clients. In addition, once the feature vectors of clients
are given, we can easily get the adjacency matrix among
clients. However, it is crucial to note that feature vectors may
leak clients’ sensitive information. Taking inspiration from
FedGS [Wang et al., 2023], we introduce Gaussian noise in
the computation of JS divergence. The computation of JS di-
vergence is denoted as

Sij =
1

2

∫
ei log

ei
ei+ej

2

dx+
1

2

∫
ej log

ej
ei+ej

2

dx (3)

where ei = θi(ε)[r] is the average of the r-th layer’s network
embedding on a batch for each client after we feed the batch
of random Gaussian noise ε ∼ N(µ,Σ) to all the locally
trained models, while µ and Σ are respectively the mean and
covariance of a small validation dataset owned by the server.

Based on the JS divergence Sij between any two clients
i and j, the weight Vij between any two clients i and j is
denoted as

Vij =
1

Sij + 1
(4)

Based on the local graph G(γ, V ), the following explains
how to select clients.

3.4 Client Selection
Next, we will introduce how to select clients with larger local
losses, higher similarities, and more samples based on the lo-
cal graph (i.e. Step 4). To achieve quicker error convergence
of the model [Cho et al., 2020], we naturally prioritize the
selection of clients with larger local losses, as we consider
clients with larger local losses as one of our construction in-
dicators when constructing the local graph.

Then, to address the label distribution skew among clients,
we select clients with higher similarities for aggregation.
Firstly, we calculate the shortest path distance matrix H =
[hij ]M×M between each node pair in the local graph G(γ, V )
by the Floyd algorithm, where hij is the shortest path distance
between any two clients i and j. Subsequently, based on the
shortest path distance matrix H , we use an optimization ob-
jective to select a larger shortest path. The optimization ob-
jective (O1) is denoted as

max
st+1≤ct+1

(
s⊤t+1Hst+1

M(M − 1)

)
(5)

where st+1 =
{
s1t+1, s

2
t+1, · · · , sMt+1

}
is the selection result

at (t+ 1)-th round, skt+1 ∈ (0, 1), 1 ≤ k ≤M , when skt+1 =
1, it means that the k-th client is selected to participate in
(t + 1)-th round of aggregation, conversely, when skt+1 = 0,
it means that the k-th client is not selected, M is the number
of nodes in the local graph G(γ, V ), and M(M − 1) is the
number of node pairs in the local graph G(γ, V ).

According to the optimization objective of Eq. (5) and the
definition of Eq. (4), we can observe that when the shortest
path distance matrix H is relatively large, it implies that the
JS divergence between clients needs to be as small as possible
and hence we need to select clients with higher similarities.

Finally, to address the sample size skew among clients,
we prioritize selecting clients with more samples, as models
trained with more samples tend to carry more useful informa-
tion. To this end, the optimization objective (O2) is denoted
as

max
st+1≤ct+1

(
s⊤t+1nkst+1∑

k∈st+1
nk

)
(6)

where
∑

k∈st+1
nk is the total sample size of all clients.

In summary, to simultaneously address the dual skewed
non-IID data caused by heterogeneous label distributions and
sample sizes among clients, we define the total optimization
objective (O1 +O2) when selecting clients as

max
st+1≤ct+1

(
s⊤t+1Hst+1

M(M − 1)
+

s⊤t+1nkst+1∑
k∈st+1

nk

)
(7)

3.5 Global Aggregation
After selecting clients based on the local graph through
Eq. (7), local models are aggregated using the traditional
weighted aggregation method to produce the global model
(i.e. Step 5). During the aggregation process, considering
that clients with more samples should have a larger weight in
the aggregation, we define the weights based on sample sizes
within clients as

w =
nk∑

k∈st+1
nk

(8)

This approach allows us to further alleviate the sample size
skew among clients by assigning larger weights to clients
with larger sample sizes and smaller weights to clients with
smaller sample sizes. Finally, the global model at (t + 1)-th
round is denoted as

θt+1 =
∑

k∈st+1

wθt+1
k (9)

3.6 Convergence Analysis
We analyze the convergence of our proposed FBLG from a
global perspective under the assumption that the loss function
is non-convex. First, according to Bubeck et al. [2015], if
the loss function ∇F (θ) is β-smooth, then for any θ, θ′ ∈
Rd, there exists ∥∇F (θ)−∇F (θ′)∥ ≤ β ∥θ − θ′∥. Second,
according to Tian et al. [2022], if F (θ) is locally convex,
then for any θ, θ′ ∈ Rd, φ ∈ [0, 1], the distance between θ
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Figure 2: Visualization of three skewed data.

and the locally optimum θ′ within a radius r(>0), there exists
F (φθ + (1− φ)θ′) ≤ φF (θ) + (1− φ)F (θ′).

Next, we first prove that the model θ based on our pro-
posed FBLG converges within the range selected by clients
each time during the training process.
Theorem 1. If η < 1/β, β is a constant, then there exists∥∥F (θt+1)− F (θ∗)

∥∥ ≤ ∥F (θt)− F (θ∗)∥, where F (θt) rep-
resents the loss function of the global model at t-th round, θt
and θ∗ represents the model and the optimized model defined
in Eq. (2) on the server, respectively.

Proof. See Appendix A.

We then discuss the reasons why convergence improves
when similar clients are aggregated. In federated learning,
there are N clients with sample sets D1, D2, ...Dn, each of
which belongs to one of the pl(l = 1, 2, ..., (≤ n)) dis-
tributions. Assuming that the stochastic gradient gl(·) ob-
tained from the distribution pl at t-th round is unbiased, i.e.
E[gl(θt)] = ∇F l(θt). Since clients selected based on the
FBLG are highly similar, it is natural to assume that data of
selected clients come from almost the same distribution.
Theorem 2. Suppose that FBLG selects a set of local models
trained with the same distribution of datasets. Compared with
the FedAvg, we get E∥θtl − θ∗l ∥

2 ≤ E
∥∥θ̄t − θ∗l

∥∥2, where θ∗l
is the optimized model for the dataset fitting the distribution
pl, θtl denotes the global model aggregated by FBLG for the
distribution pl, while θ̄t denotes the uniform global model of
FedAvg at t-th round.

Proof. See Appendix B.

We use the loss function to measure convergence and theo-
retically justify our proposed FBLG. If the loss function value
converges stably to 0, it equivalently reflects that the trained
model can converge to the optimal.

4 Evaluation
This section aims to answer the following research questions:
RQ1. How do the dual skewed non-IID data caused by het-
erogeneous label distributions and sample sizes among clients
affect the accuracy of federated learning?
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Figure 3: Impact of the dual skewed non-IID data caused by hetero-
geneous label distributions and sample sizes among clients.

RQ2. How is the performance of our proposed FBLG
method compared with baseline methods?

RQ3. How do different components (including similarity
metrics and objective functions) affect our proposed FBLG?

4.1 Experimental Settings
Datasets. According to most papers in federated learning
[McMahan et al., 2017; Wang et al., 2020a; Huang et al.,
2022], we validate our proposed FBLG algorithm on four
commonly used datasets: MNIST [LeCun et al., 1998],
Fashion-MNIST (FMNIST) [Xiao et al., 2017], CIFAR10
[Krizhevsky et al., 2009] and SVHN [Netzer et al., 2011]. To
create data with dual skewed non-IID data caused by hetero-
geneous label distributions and sample sizes among clients,
we assign label distribution and sample size to 20 clients
through Dirichlet distribution i.e. Yk ∼ Dir(αΥ), where
α denotes the degree of skews among clients, Υ denotes the
global label distribution [Hsu et al., 2019]. The smaller α in-
dicates the data is more skewed. The sole label skew is set
by shards [Wang et al., 2023]. Our codes, some supplemen-
tary experiments and appendices mentioned in the paper are
available at https://github.com/YingLi-Y/FBLG.git.

Baselines. We compare our FBLG method with: (i) Fe-
dAvg [McMahan et al., 2017] based on weight aggregation,
(ii) MDSample [Li et al., 2020b] based on the client’s local
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Dataset MNIST CIFAR10 FMNIST SVHN

Method / α 0.8 0.05 0.01 0.8 0.05 0.01 0.8 0.05 0.01 0.8 0.05 0.01

FedAvg 98.86 97.99 97.32 60.28 42.60 41.57 89.04 81.97 77.26 91.09 78.18 61.74
MDSample 98.80 98.07 97.41 60.77 40.78 47.49 89.12 82.63 80.35 91.20 69.32 62.27
Power-Of-Choice 98.83 98.36 98.40 58.16 34.31 38.03 87.89 83.24 81.11 92.17 71.58 60.82
FedProx (ϕ = 0.1) 98.63 96.77 95.96 60.99 45.75 45.86 89.23 79.46 77.32 92.40 73.12 59.76
Moon 98.31 92.77 90.54 58.32 37.59 38.13 88.39 80.48 68.83 90.13 67.76 56.87
Scaffold 98.80 97.08 92.89 60.76 37.27 39.12 88.62 77.42 67.47 91.87 70.08 60.45
FedAvgM 98.77 97.66 97.30 61.00 45.83 41.56 88.99 81.90 79.66 91.50 78.54 66.77
FedNova 98.60 95.49 96.93 57.87 32.65 39.59 88.70 77.48 75.44 91.47 70.07 59.46
FedGS 98.62 97.98 97.45 60.08 46.49 38.03 87.97 82.77 82.23 91.94 80.35 68.84

FBLG (C = 0.5) 98.86 98.36 98.27 61.08 54.01 55.08 89.23 86.34 83.54 92.76 85.38 78.10
FBLG (C = 0.4) 98.93 98.24 98.20 61.55 52.51 53.30 88.51 86.03 83.22 92.32 84.79 71.47

Table 1: Accuracy (%) comparison results on four datasets under different degrees of skews. The best results are marked in bold. The
second-best results are underlined.

data size, (iii) Power-Of-Choice [Cho et al., 2020] based on
the client’s local loss, (iv) FedProx [Li et al., 2020b] based
on the proximal term, (v) Moon [Li et al., 2021a] based on
the model comparison loss, (vi) Scaffold [Karimireddy et al.,
2020] based on control variables, (vii) FedAvgM [Hsu et al.,
2019] based on regularization, (viii) FedNova [Wang et al.,
2020b] based on the speed of local training on the client, (ix)
FedGS [Wang et al., 2023] based on the data distribution de-
pendency graph and the sampling frequency of the client.
Parameter Settings. For each dataset, the number of sam-
ples selected by the client for one training session is B = 64,
the number of local iterations is E = 5, the learning rate is
η = 0.05, the learning rate is fully attenuated by a factor of
0.998, and the optimization algorithm used for local training
of clients is SGD.
Implementation. All our experiments are run on the AISta-
tion server with 1 NVIDIA A100-SXM4-40GB and 4 CPUs.
All codes are implemented in Pytorch 1.12.1.

4.2 Impact of Dual Skewed Non-IID Data (RQ1)
We take the MNIST dataset as an example to more intu-
itively illustrate the label distribution skew among clients, the
sample size skew among clients, and the dual skews caused
by heterogeneous label distributions and sample sizes among
clients. The visualization of the three types of data mentioned
above is shown in Fig. 2, where the x-axis denotes the num-
ber of samples, the y-axis denotes the client ID, and the color
of the block denotes the label type of samples.

• Fig. (a) visualizes the case where only the label distribu-
tion is skewed among clients when the number of shards
is 12. Here, each client has a consistent sample size, but
the label distribution of each client is inconsistent.

• Fig. (b) visualizes the case where only the sample size
is skewed among clients when α = 17. Here, each client
has a consistent label distribution but the sample size of
each client is inconsistent.

• Fig. (c) visualizes the case where the label distribution
and sample size are both skewed among clients when
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Figure 4: Test loss curves respectively on FMNIST and CIFAR10
when α = 0.01.

α = 0.8. Here, some clients have 3 labels, while oth-
ers have only 1 label, and the sample size per client is
inconsistent.

To demonstrate the impact of data with only the label distri-
bution skew among clients, only the sample size skew among
clients, and the dual skews caused by heterogeneous label dis-
tributions and sample sizes among clients in federated learn-
ing, we use the classic FedAvg algorithm as an example. We
plot the classification accuracies of the three skews with 20
clients over 20 communication rounds with the line graph, as
shown in Fig. 3. We observe that only the label distribution
skew among clients and only the sample size skew among
clients can achieve relatively high accuracy within the first
4 communication rounds. Specifically, only the sample size
skew among clients can even achieve 99.02% accuracy within
20 communication rounds. However, the dual skews caused
by heterogeneous label distributions and sample sizes among
clients can only reach 90.20% accuracy within 20 commu-
nication rounds and the convergence of the global model is
unstable. It is clear that dual skewed non-IID data caused
by heterogeneous label distributions and sample sizes among
clients has a greater impact on the performance of the global
model.
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Similarity Metrics MNIST CIFAR10 FMNIST SVHN AVG

JS divergence 98.86 61.08 89.23 92.76 85.48
cosine distance 98.79 60.65 89.17 92.12 85.18
euclidean distance 98.84 60.70 89.02 92.30 85.21

Table 2: Impact of similarity metrics when α = 0.8. The best results are marked in bold.

Objective Functions MNIST CIFAR10 FMNIST SVHN

FBLG (O1) 98.60 58.53 88.57 92.32
FBLG (O2) 98.79 60.54 89.14 92.40
FBLG (O1 +O2) 98.86 61.08 89.23 92.76

Table 3: Impact of objective functions when α = 0.8. The best results are marked in bold.

4.3 Results of Performance Comparison (RQ2)
We conducted experiments on four datasets with 20 clients
over 300 communication rounds when α = {0.8, 0.05, 0.01},
and the accuracy results are shown in Table 1. We observe
that: (i) the accuracy of most baseline methods decreases as
α decreases, which indicates that highly skewed data can se-
riously affect the performance of baseline methods. (ii) our
proposed FBLG (C = 0.5) can achieve high accuracy on al-
most all four datasets, where C is the proportion of clients
with larger local losses selected. When α = 0.05, it can
improve at least 6.02% on the CIFAR10 dataset, and even
achieve relatively high accuracy on extremely skewed data
(i.e. α = 0.01), while existing nine baseline methods cannot.
In addition, our proposed FBLG can achieve higher classifi-
cation accuracy on MNIST and CIFAR10 datasets at C = 0.4
when α = 0.8. (iii) Although Power-Of-Choice and FedProx
(ϕ = 0.1) can achieve the same high accuracy as FBLG (C
= 0.5) proposed in this paper on two of the experimental re-
sults, Power-Of-Choice outperforms ours in an experimental
result, we plot the test loss curves of each algorithm under
extremely skewed data (i.e. α = 0.01) respectively on the
FMNIST and CIFAR10 datasets, as shown in Fig. 4. We
observe that the test loss of FBLG is small and converges
quickly, consistently outperforming other baseline methods.
Thus, our proposed FBLG can effectively address the impact
of dual skewed non-IID data caused by heterogeneous label
distributions and sample sizes among clients. More details
about the data visualization and test loss are in Appendix C.

4.4 Ablation Study (RQ3)
Similarity Metrics. We first verify the impact of the simi-
larity metric based on JS divergence adopted in this paper on
our FBLG’s performance when α = 0.8. Here, we respec-
tively replace the similarity metric with cosine distance and
euclidean distance, then plot the impact of the three similarity
metrics on the classification accuracy of our proposed FBLG
into a table, as shown in Table 2. We observe that our pro-
posed FBLG performs best with the similarity metric based
on JS divergence, achieving up to 0.46% higher accuracy on
the SVHN dataset. This preference is attributed to the robust
nature of JS divergence in handling extreme values or out-
liers, making it more capable of addressing skewed data.

Objective Functions. We then compare the objective func-
tion that considers both the similarity and the number of sam-
ples among clients, the objective function that only consid-
ers the similarity among clients, and the objective function
that only considers the number of samples among clients,
and verify the impact of these three situations on the clas-
sification accuracy of our proposed FBLG algorithm when
α = 0.8. We denote Eq. (5) that only considers the similarity
among clients to address the label distribution skew among
clients as FBLG (O1) and denote Eq. (6) that only considers
the number of samples among clients to address the sample
size skew among clients as FBLG (O2). Simultaneously, the
Eq. (7) that considers both the similarity and the number of
samples among clients to address dual skewed non-IID data
caused by heterogeneous label distributions and sample sizes
among clients is denoted as FBLG (O1+O2). The impact of
the above three situations on the classification accuracy of our
proposed FBLG is drawn into a table, as shown in Table 3. We
observe that considering both the similarity and the number
of samples among clients in Eq. (7) can bring better perfor-
mance than only considering the similarity among clients or
only considering the number of samples among clients.

5 Conclusion
In this paper, we proposed a new federated learning algorithm
based on local graph (FBLG) to address dual skewed non-IID
data caused by heterogeneous label distributions and sample
sizes among clients. Specifically, (i) To address the label dis-
tribution skew, we construct a local graph based on the local
losses of clients and the JS divergence among clients. Based
on the local graph, similar clients are selected for aggrega-
tion to make the global model highly consistent; (ii) To ad-
dress the sample size skew, we use the sample size to select
clients with more samples when designing the objective func-
tion. Experimental results demonstrated the accuracy of our
proposed FBLG is higher than that of baseline methods. Es-
pecially with the increasing degrees of data skewness, the ad-
vantage of FBLG becomes more obvious. Meanwhile, both
theoretical analysis and experimental results have success-
fully proven that our proposed FBLG can converge quickly.
In the future, we will explore to address the problem of non-
IID data consisting of more complex multiple skews.
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[Bubeck, 2015] Sébastien Bubeck. Convex optimization:

Algorithms and complexity. Foundations and Trends in
Machine Learning, pages 231–357, 2015.

[Cho et al., 2020] Yae Jee Cho, Jianyu Wang, and Gauri
Joshi. Client selection in federated learning: Convergence
analysis and power-of-choice selection strategies. arXiv
preprint arXiv:2010.01243, 2020.

[Diao et al., 2023] Yiqun Diao, Qinbin Li, and Bingsheng
He. Towards addressing label skews in one-shot federated
learning. In ICLR, 2023.

[Hsieh et al., 2020] Kevin Hsieh, Amar Phanishayee, Onur
Mutlu, and Phillip Gibbons. The non-iid data quagmire
of decentralized machine learning. In ICML, pages 4387–
4398, 2020.

[Hsu et al., 2019] Tzu-Ming Harry Hsu, Hang Qi, and
Matthew Brown. Measuring the effects of non-identical
data distribution for federated visual classification. arXiv
preprint arXiv:1909.06335, 2019.

[Huang et al., 2022] Wenke Huang, Mang Ye, and Bo Du.
Learn from others and be yourself in heterogeneous feder-
ated learning. In CVPR, pages 10143–10153, 2022.

[Kairouz et al., 2021] Peter Kairouz, H Brendan McMa-
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