
FedFa: A Fully Asynchronous Training Paradigm for Federated Learning
Haotian Xu1 , Zhaorui Zhang1* , Sheng Di2 , Benben Liu3 ,

Khalid Ayed Alharthi4 and Jiannong Cao1

1The Hong Kong Polytechnic University, Hong Kong
2Argonne National Laboratory, USA

3The University of Hong Kong, Hong Kong
4Department of Computer Science, College Of Computing,

University of Bisha, Bisha 61922, P.O. Box 551, Saudi Arabia.
haotian.xu@connect.polyu.hk, {zhaorui.zhang, jiannong.cao}@polyu.edu.hk,

sdi1@anl.gov, benbenliu@hku.hk, kharthi@ub.edu.sa

Abstract
Federated learning has been identified as an effi-
cient decentralized training paradigm for scaling
the machine learning model training on a large
number of devices while guaranteeing the data
privacy of the trainers. FedAvg has become a
foundational parameter update strategy for feder-
ated learning, which has been promising to elim-
inate the effect of the heterogeneous data across
clients and guarantee convergence. However, the
synchronization parameter update barriers for each
communication round during the training signifi-
cant time on waiting, slowing down the training
procedure. Therefore, recent state-of-the-art solu-
tions propose using semi-asynchronous approaches
to mitigate the waiting time cost with guaran-
teed convergence. Nevertheless, emerging semi-
asynchronous approaches are unable to eliminate
the waiting time completely.
We propose a full asynchronous training paradigm,
called FedFa, which can guarantee model conver-
gence and eliminate the waiting time completely
for federated learning by using a few buffered re-
sults on the server for parameter updating. Further,
we provide theoretical proof of convergence rate
for our proposed FedFa. Extensive experimental
results indicate our approach effectively improves
the training performance of federated learning by
up to 6× and 4× speedup compared to the state-of-
the-art synchronous and semi-asynchronous strate-
gies while retaining high accuracy in both IID and
Non-IID scenarios.

1 Introduction
Federated learning has achieved great success in recent years
thanks to its data privacy protection mechanism while also
facing challenges, such as data heterogeneity and communi-
cation bottlenecks. The goal of federated learning is to train a

* Zhaorui Zhang is the corresponding author.

good machine learning model to be used by all participants
together under the condition that each participant doesn’t
send out their own data. It not only greatly expands the size
of the available training dataset but also utilizes the compu-
tational resources of each participant. However, a price of-
ten arises from what is gained. Federated learning gains data
privacy protection but faces more challenges in communica-
tion, resource scheduling, and data heterogeneity[Kairouz et
al., 2021]. In federated learning, the training clients are often
located in different places connected by low bandwidth net-
works. The training data set is also diverse across different
clients, which affects the convergence behaviors of federated
learning significantly.

To deploy federated learning in practice, it is necessary for
the federated learning systems not only to be accurate but
also to satisfy a number of pragmatic constraints regarding
issues such as efficiency and system performance. Emerging
synchronous parameter update strategies, such as FedAvg,
[McMahan et al., 2017] and its variants, have become fun-
damental parameter update strategies in federated learning.
However, due to the arithmetic and communication hetero-
geneity of the devices, the time required to complete the
training task and transmit the model parameters to the server
varies significantly across clients. Specifically, in FedAvg,
the server needs to wait for all the selected clients to complete
local training and report their model updates before aggrega-
tion. Such a design results in the time required for each round
of federated learning training being determined by the slow-
est client, which leads to great waiting time and inefficiency
in computational resources.

Scheduling the parameter update in an asynchronous
paradigm [Zhang and Wang, 2022] is a new direction aim-
ing to reduce the wall-clock time with a well-preserved target
accuracy. The asynchronous parameter update strategy elim-
inates wait times at the system level, where the server does
not need to wait for all its selected clients to report their lo-
cal training results for the aggregation and will update the
global model as soon as the model updates from one client
arrives [Chai et al., 2020; Zhang and Wang, 2021]. However,
the distribution of client speeds is often heavy-tailed in feder-
ated learning. Fast clients update the global model frequently,

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5281



while slower clients make very little progress with the global
model. The slower clients often report outdated training re-
sults to the server, affecting the global model’s performance.
To address this issue, most of the recent asynchronous strate-
gies are semi-asynchronous [Nguyen et al., 2022; Su and
Li, 2022] or semi-synchronous [Zhang et al., 2022] strate-
gies, where the server will buffer several model updates from
clients and then aggregate to update the parameters. These
solutions, however, can only reduce part of the waiting time
of global barriers but cannot eliminate them.

Why do the asynchronous federated learning approaches
nowadays almost not use a fully asynchronous scheme? We
identify three challenges for the fully asynchronous parame-
ter update strategy in federated learning environments.

Firstly, the slower participant clients affect both the syn-
chronous and asynchronous parameter update strategies,
which causes long barrier times for model aggregation on
the server for the synchronous scheme and results in the
model performance degradation for asynchronous mode due
to its large staleness. How to migrate the effectiveness of the
slower participant clients for the performance of the global
model is challenging in the asynchronous parameter update
scheme in federated learning.

Secondly, federated learning is designed to meet each data
owner’s requirements for secure transmission and privacy
protection, while the privacy protection will be broken when
adopting the fully asynchronous parameter update strategies.
The client updates the parameters with the server individu-
ally, making it easy for other clients to access the updated
information from this client in the vanilla fully asynchronous
parameter update strategy, which results in information leak-
age. The semi-asynchronous algorithm eliminates such in-
formation leakage by aggregating model updates from sev-
eral clients, which is the same as synchronous strategies.
However, semi-asynchronous and semi-synchronous param-
eter update strategies bring strong synchronization overhead,
thus slowing down the training.

Thirdly, providing theoretical proof and guaranteeing the
convergence of asynchronous parameter update strategies is
challenging. This is caused by the uncertain sequence in
which the server updates parameters from clients, which is
heavily influenced by the network status and computation re-
sources of participating clients.

In this article, to address the above challenges, we provide
new insights about the three-parameter update paradigms for
federated learning: synchronous, asynchronous, and semi-
asynchronous and design a fully asynchronous parameter up-
date strategy for federated learning, called FedFa.

We summarize our contributions as follows:

• We propose a fully asynchronous parameter update strat-
egy without any barrier setting for federated learning,
called FedFa, which updates the global model on the
server once it receives an update request from clients,
thus eliminating waiting time completely to improve the
training performance (different from FedBuff). To mit-
igate the impact of model updates from slower clients,
FedFa merges multiple historical model updates into
currently received updates through a sliding window.

• We conduct an in-depth statistical analysis for the con-
vergence rate of our proposed FedFa, deriving a theoret-
ical bound, which can be extensively used to guarantee
the quality of service in practice.

• We perform a comprehensive evaluation for FedFa on
the most popular models, including the Language Model
(Bert), CNN model (ResNet18), and Language Model
FineTune, in both IID and Non-IID scenarios. Evalu-
ation results show that FedFa improves the wall clock
time by a factor of 6× and 4×, respectively, and the
number of communication rounds by a factor of 1.4×
and 1.9×, when compared to state-of-the-art synchro-
nization and semi-synchronization methods.

2 Related Work and Motivations

Symbol Description

k a certain client
[m] the full set of clients
wt

g tth version parameters on server

w
t−τk(t)

k t − τk(t) version parameters on server
τk(t) staleness
τmax the max staleness
St server’s update buffer at phase t
K size of the Sliding Window
ηg global learning rate
ηq
l local learning rate in step q
q the qth local steps
Q the number of local update steps
T communication rounds for converging

∇Fk(w) gradient calculated on client k
gk(w; ζk)) stochastic gradient

α data heterogeneity coefficient
βt aggregation weight for FedAsync
△t

k accumulated gradients at tth steps from client k
s(·) function of staleness for adaptive βt

f(·) loss function
1
T

∑T−1
t=0

∥∥∇f
(
wt

)∥∥2 the convergence rate
L, σl, σg, G symbolic upper bounds used in the proof

E the number of local epochs
lb local batch size

Table 1: Frequently Used Notations in this Article

2.1 Synchronous Federated Learning
Federated learning uses the synchronous parameter update
strategy of when it was first proposed. However, as Feder-
ated Learning is put into practical use, the problem of wait
times due to device heterogeneity becomes more and more
serious. The synchronization paradigm can reduce wait times
in several ways. For example, Fedprox [Li et al., 2020] adap-
tively adjusts the strength of the training tasks assigned to
different clients based on their computational power, such as
freezing a certain percentage of model parameters based on
the computing power of different clients to speed up training.
All these methods aim to align the training time of different
clients to reduce the waiting time. However, there are some
problems with such approaches. On the one hand, such meth-
ods either require fine-tuning a very large number of param-
eters about the device or require the user to elaborate usage
schemes, which is not easy to realize in practice. On the other
hand, it may lead to additional communication consumption
due to the increase in communication rounds. Moreover, this
type of method can only reduce, but not eliminate, the waiting
time since it is still a synchronized parameter update strategy.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5282



100 200 300
Communication Rounds

0

1000

2000

3000

4000
Ti

m
es

(s
)

1612

3357

4630

441
963

1482

294
637

959

Wall Clock Time for Different Strategies

FedAvg
Semi-Async
Async

Figure 1: The wall clock time comparison.

2.2 Semi-asynchronous and Asynchronous FL
The synchronized parameter update strategy is not necessary
for federated learning. Semi-asynchronous and asynchronous
algorithms can greatly reduce or even eliminate waiting times
right at the system level. Fig.1 shows the wall clock time
required for the three parameter update strategies to com-
plete the same amount of federated learning training. FedBuff
[Nguyen et al., 2022] is the most popular semi-asynchronous
federated learning algorithm nowadays. FedBuff waits for
several clients to complete the training task before perform-
ing parameter updates, which is different from our FedFa.

Fully asynchronous algorithm, Fedasync performs aggre-
gation every time it receives an updated parameter, and the
aggregation process is shown in the formula (1), where wt

g

and wt
l indicate the parameters on the server and the param-

eters received by the server from a client at tth steps, respec-
tively. The aggregation weight βt is calculated based on the
staleness of the parameters by multiplying the initial aggre-
gation weight β and s(·), which is a function of staleness for
adaptive βt. We also list the frequently used symbols in this
article in Tab. 1. Previous works and our experimental re-
sults show that Fedasync often fails to converge to the target
accuracy due to the high data heterogeneity.{

wt+1
g = (1− βt)w

t
g + βtw

t
l

βt = β × s(t− τ)
(1)

2.3 Security and Privacy Protection
SecAgg is a privacy-enhancing technique based on crypto-
graphic primitives [Bonawitz et al., 2016; So et al., 2021] or
hardware-based Trusted Execution Environment (TEE) [Karl
et al., 2020]. The server can only see the gradients after ag-
gregation yet cannot know the original ones, which are pri-
vate to each client. In this way, SecAgg ensures that the up-
loaded model is not accessible to the server and other ma-
licious nodes or semi-honest nodes who follow the rules of
engagement but are curious about the information of others.

Since most cryptographic algorithms nowadays are based
on homomorphic encryption, they cannot handle the situation
in semi-asynchronous, where the parameters are aggregated
from different versions each time, and asynchronous algo-
rithms, where only one parameter is aggregated at a time.
Nowadays there are also new encryption algorithms, such
as BASecAgg[So et al., 2021], that can be applied to semi-
asynchronous algorithms to fulfill the requirements of secagg.

Regardless of whether cryptographic algorithms or TEEs
are used, the basic requirement for these methods to be usable

is that updates from one client can be hidden from updates
from multiple clients.

3 FedFa: Fully Asynchronous Federated
Average for Federated Learning

The fully asynchronous parameter update strategy has been
promised to eliminate the waiting time and reduce the wall
clock time for federated learning, while it also faces chal-
lenges for poor convergence performance and model accu-
racy degradation. In this section, we provide a detailed expla-
nation for our FedFa, a fully asynchronous parameter update
strategy for federated learning that can eliminate the waiting
time and guarantee the convergence of the federated learning.

3.1 The Design of FedFa
The fully asynchronous parameter update strategy in the fed-
erated learning environment often leads to the performance
oscillation of the global model on the server due to the het-
erogeneity of the data across different clients. Thus, to avoid
this performance degradation, we propose merging the histor-
ical version of the model collected by the server into the most
updated one that arrives in the server for parameter update.
We define a Sliding Window to buffer K historical version of
the model that arrived in the server and merge them into the
current one. The workflow of the server and client for our
proposed FedFa is introduced in Algorithm 1 and 2.

Algorithm 1: FedFa-Server
Input: Sliding window size K; Client learning rate ηl;

Client steps Q, Buffer Queue S
Output: Converged model

1 initialize t = 0 , w0
g ;

2 Broadcast the initialized server model parameters to the
clients which are selected in the first round;

3 repeat
4 if get update wt

l then
5 if t ≤ K then
6 S.Enqueue(wt

l ) ;
7 end
8 if t > K then
9 S.Enqueue(wt

l ) ;
10 S.Dequeue();
11 wt+1

g = 1
K

∑
k∈St w

t−τk(t)
k ;

12 end
13 t = t+1;
14 end
15 until converge;

During training, once the number of updates received in
the buffer equals K on the server, the regular training phase
begins. When the buffer receives an update, the oldest up-
date is removed so that the buffer always maintains the size
of K. The parameters of each round on the server side are
equal to the arithmetic mean of all parameters in the buffer.
Aggregation is performed in a sliding window-like manner. If
we do not perform this sliding window aggregation but wait
for all the updates in the buffer to be replaced with newly re-
ceived updates for each communication round, this is exactly

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5283



Algorithm 2: FedFa-Client
Input: Client learning rate ηl; Client steps Q; Server model

parameters wg; Local parameters at qth steps yq;
Function to calculate gradient g(·)

Output: Client updated parameters wl

1 y0 = wg;
2 q = 0;
3 while q < Q do
4 yq = yq−1 − ηlg(yq−1);
5 q = q + 1;
6 end
7 wl = yQ;
8 send wl to server;

equivalent to the FedBuff with buffer size K. Instead, we use
sliding windows for aggregation, tapping into some interme-
diate states between the two rounds to approach the global
optimization goal quickly.

3.2 Gradient OR Parameter Transmission
In the federated learning environment, exchanging the pa-
rameters and gradients between the server and clients are
two common approaches for parameter updates. In syn-
chronous parameter update strategies, transmission parame-
ters are equivalent to transmission gradients or accumulated
gradients. This can be obtained from the following formula
(2). In synchronous parameter update strategies, the server
receives the updated parameters as wt

k = wt−1
g +△t

k, where
the △t

k is the accumulated gradient in client k, and uses it to
update the model based on the following formula (2).

wt
g = 1

K

∑
k∈St

wt
k = 1

K

∑
k∈St

(wt−1
g +△t

k)

= wt−1
g + 1

K

∑
k∈St

△t
k

(2)

In asynchronous and semi-asynchronous update strategies,
the parameter update is calculated by wt

k = w
t−τt

k
g +△t

k. If
parameters are transmitted between the server and clients, the
parameter update of wt

k = w
t−τt

k
g + △t

k is not equivalent to
the above formula (2) due to the different phases at the start
of training for each weight participating in the aggregation.

We implement and evaluate our FedFa based on both the
parameters transmission and the difference transmission strat-
egy, called FedFa-Param and FedFa-Delta, respectively.

4 Convergence Analysis of FedFa
4.1 Problem Formulation
The iterative formulation of FedFa-Param and FedFa-Delta
can be outlined by equation (3) and (4). Both of them can
achieve the same convergence rate as FedBuff [Nguyen et al.,
2022] as long as the following 5 assumptions hold.

wt+1
g =

1

K

∑
k∈St

(
w

t−τk(t)
k

)
(3)

wt+1
g = wt

g +
1

K

∑
k∈St

(
△t−τk(t)

k

)
(4)

Assumptions: (without loss of generality)

• 1. Unbiasedness of client stochastic gradient

Eζk [gk(w; ζk))] = ∇Fk(w) (5)

• 2. Bounded local and global variance for all clients

Eζk|k

[
∥gk (w; ζk)−∇Fk(w)∥2

]
≤ σ2

ℓ (6)

• 3. Bounded gradient ∥∇Fk∥2 ≤ G, k ∈ [m]

• 4. Lipschitz gradient for all client k ∈ [m] and the gra-
dient is L-smooth

∥∇Fk(w)−∇Fk (w
′)∥2 ≤ L ∥w − w′∥2 (7)

• 5. Bounded Staleness. We use τk(t) to denote the stale-
ness of client k where we assume the server is in round
t, and τk(t) has an upper bound τmax:

1 ≤ τk(t) ≤ τmax (8)

4.2 The Proof for Convergence Rate of FedFa
Inspired by FedBuff [Nguyen et al., 2022], we provide an
analysis of the convergence rate for FedFa in this section.
Several previous works also analyze the convergence of syn-
chronous aggregation strategies [Li et al., 2020; U, 2018;
Wang et al., 2020; Zhao et al., 2018], and semi-asynchronous
strategies [Nguyen et al., 2022; Mania et al., 2015; Fraboni
et al., 2023; Koloskova et al., 2022]. Based on the above as-
sumptions, the convergence rate of FedFa can be calculated
as formula (9), where the 1

T

∑T−1
t=0 ∥∇f (wt)∥2 indicates the

convergence rate. The detailed proof of the convergence rate
can be found in the full version of our paper.
Theorem 1

1

T

T−1∑
t=0

∥∥∇f
(
wt

g

)∥∥2 ≤
2
(
f
(
w0

)
− f (w∗)

)
ηg

∑Q−1
q=0 η

(q)
ℓ T

+ 3L2Q

Q−1∑
q=0

(
η
(q)
ℓ

)2 (
η2gτ

2
max + 1

) (
σ2
ℓ + σ2

g +G
)

+
L

2

ηg
∑Q−1

q=0

(
η
(q)
ℓ

)2

∑Q−1
q=0 η

(q)
ℓ

σ2
ℓ

(9)

Corollary. Final convergence rate is in formula (10).

1

T

T−1∑
t=0

E
[∥∥∇f

(
wt

g

)∥∥2] ≤ O
(

F ∗
√
TQ

)
+O

(
σ2
ℓ√
TQ

)
+O

(
Qσ2

TK2

)
+O

(
Qσ2τ2max

TK2

) (10)

where F ∗ := f
(
w0

)
− f∗, σ2 := σ2

ℓ + σ2
g +G,

ηℓ = O(1/(K
√
TQ)), ηg = O(K).

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5284



0 50 100
client_id

9
8
7
6
5
4
3
2
1
0

la
be

ls
cifar10

(a) α = 0.1

0 50 100
client_id

9
8
7
6
5
4
3
2
1
0

la
be

ls

cifar10

(b) α = 0.5

0 50 100
client_id

9
8
7
6
5
4
3
2
1
0

la
be

ls

cifar10

(c) α = 5

Figure 2: Data distribution where a larger circle indicates a larger dataset size for each label 0-9 of CIFAR10.

The worst-case iteration complexity is captured by Corol-
lary, which provides an upper bound on the ergodic norm-
squared of the gradient—an essential metric in the study of
non-convex stochastic optimization. If this norm-squared di-
minishes as the number of iterations (T) increases, it indi-
cates that the norm-squared of the gradient at later iterations
is approaching zero, suggesting convergence towards a first-
order stationary point. Corollary 1 stems from Theorem 1
by employing a particular constant learning rate. It provides
insights into the trade-offs involving loss convergence, local
and global variance, the impact of client drift due to local
steps, the influence of staleness, and the effect of buffer size.
We can conclude that our both version of FedFa has the same
convergence rate as Fedbuff statistically and theoretically.

5 Performance Evaluation and Analysis
5.1 Prototype Implementation
We implement FedFa on top of Plota [Su and Li, 2022] and
Pytorch. Plota is a federated learning framework that supports
temporal simulation for asynchronous federated learning on a
single machine. Most of our experiments were performed on
an NVIDIA GeForce RTX 3090 graphic card. For the task of
fine-tuning the large language model, we performed it on 2×
NVIDIA GeForce RTX 4090 graphic cards.

5.2 Evaluation Methodology
Benchmarks. For the CV task, we compare our method
FedFa with other baselines on the most popular CV dataset,
cifar10[K. and Geoffrey, 2009]. For the NLP task, we per-
form full-parameter fine-tuning on the sent140 [Caldas et
al., 2018] task and on the STT2 task using the parameter-
efficient fine-tuning method LoRA [Hu et al., 2021]. For
these three tasks mentioned above, we perform experiments
using the ResNet18 [He et al., 2016], pre-trained Language
Model Tiny-Bert [Bhargava et al., 2021], and the pre-trained
Language Model bert-base model, respectively. To simulate
the Non-IID environments, we partition the whole training
data based on the Dirichlet Distribution and use a coefficient
α to control the heterogeneity of the data distribution across
clients [Hsu et al., 2019], where a small α represents higher
data heterogeneity among each client, shown in Fig. 2. We
subject the datasets Cifar10 and STT2 to the above division
method that satisfies the Non-IID setting. The Sent140 is a
dataset of sentiment categories collected from Twitter, which
is naturally divided into federal settings by treating each user
as a client, where we choose users with at least 100 samples.

Experiment setup. We deploy 100 clients and sample 10
clients for each communication round for ResNet18 trained
on Cifar10. In the case of Tiny-Bert trained on Sent140,
the number of clients is determined by the actual number of
users in the dataset (i.e. 146) while maintaining 10 clients
for training simultaneously. There was no manual setting for
the number of clients. For the Bert-base model fine-tuned on
the STT2 dataset, we deploy 10 clients and maintain 5 clients
performing the training task simultaneously.
Simulation of delay time. In the experiments, each client
needs to wait for a delay time t before communicating with
the server for data transmission after completing the training
task. This delay time t is simulated by the server and sent
to each client. We set the simulated delay time for all clients
with a long-tailed distribution. There are more clients with
faster training and communication speeds and fewer clients
with slower speeds.
Hyperparameters. For the ResNet18 on Cifar10, the learn-
ing rate ηg is set as 0.01 with local epoch E = 10 and local
mini-batches lb = 32. For the Tiny-Bert experiments on the
Sent140 dataset, we set ηg = 0.0004, E = 15, lb = 5, which
is inspired by [Cho et al., 2022]. For fine-tuning Bert on the
STT2 dataset, we set ηg = 1e − 4, E = 1, lb = 32. For the
hyperparameter in LoRA settings, we set r = 1,αLoRA = 1.
Baselines. We compare our FedFa with five other related
approaches: (i) FedAvg [McMahan et al., 2017], which is
an approach in synchronous federated learning; (ii) FedBuff
[Nguyen et al., 2022], which is a semi-asynchronous ap-
proach for federated learning; (iii) FedAsync, the vanilla
asynchronous approach for federated learning; (iv) Port [Su
and Li, 2022], which is also a semi-asynchronous approach.

5.3 Results and Analysis
Time Efficiency of FedFa. In this section, we analyze the
validation accuracy in terms of the wall clock time based on
different benchmarks that are shown in Fig. 3(a)(b). These
figures show that FedFa can achieve the same accuracy as
semi-asynchronous and synchronous parameter update strate-
gies using less time. Furthermore, the previous Fedasync
strategy cannot converge to the target accuracy. We also give
detailed results about the wall clock time to achieve the target
accuracy for different benchmarks in Tab. 2. We find that in
terms of time efficiency, the fully asynchronous algorithm is
more efficient than the semi-asynchronous and synchronous
algorithms due to the natural effects of the system design.
The Fedasync algorithm fails to achieve the target accuracy.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5285



0 1000 2000 3000 4000 5000
time

0.1

0.2

0.3

0.4

0.5

0.6

ac
cu

ra
cy

ResNet18

FedAvg
FedFa
port urgent
FedBuff
port-no-urgent
fedasync

(a) α = 0.1

0 250 500 750 1000 1250 1500 1750 2000

time
0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

ResNet18

FedAvg
FedFa
port urgent
FedBuff
port-no-urgent
Fedasync

(b) α = 5

Figure 3: Performance comparison of different training strategies on
both IID and Non-IID data settings regarding the wall clock time.

To further evaluate the efficiency of our proposed FedFa, we
also conduct experiments based on the parameter update strat-
egy, called FedFa-Delta, in which clients send the parameter
difference to the server, and the server sends the updated pa-
rameters to clients for each communication round. The pa-
rameter update strategy in which clients send parameters to
the server and the server sends updated parameters to clients
is called FedFa-Para. From Tab. 2, we observe that both
of the two versions of our method outperform existing ap-
proaches, especially for FedFa-Delta. FedFa-Delta achieves
up to 7× and 5× speedup compared to synchronous methods
and semi-asynchronous methods, respectively. At the same
time, from Fig. 3 and Tab. 2, we can see that Fedasync does
not achieve the target accuracy, which also shows that our
method can not only improve the time efficiency but also sta-
bilize the training process.

Dataset Sent140 STT2 Cifar10

Non-IID Non-IID Non-IID IID

Target-Acc 0.71 0.85 0.6 0.7

FedAvg 1139(6×) 4660(7×) 9833(5×) 5040(6×)
Fedasync failed failed failed failed
FedBuff 485(3×) 2985(4.5×) 4375(2×) 1541(2×)

Port-Urgent 767(5×) 2325(3.5×) 3000(1.6×) 1503(1.7×)
Port-Non-Urgent 662(4×) 2770(4.2×) 3320(1.7×) 1668(2×)

FedFa-Param 191(1.1×) 829(1.2×) 2282(1.2×) 1102(1.3×)
FedFa-Delta 165 652 1917 855

Table 2: Wall Clock Time for Target Accuracy

Communication Efficiency of FedFa. In this section, we
analyze the validation accuracy of the communication rounds
based on different benchmarks shown in Fig. 4. We also pro-
vide the communication rounds required to achieve the tar-
get accuracy for different benchmarks in Tab. 3. Typically,
more communication rounds mean a longer period of time is
used in the federated learning training. However, since semi-
asynchronous and fully asynchronous federated learning al-
gorithms reduce and eliminate the waiting time to some ex-
tent, these algorithms, while time efficient, may require more
communication rounds to reach the target accuracy. In Tab. 3,
we observe that our proposed FedFa-Delta outperforms other
existing approaches by up to 3×. Combining the wall clock
time that is shown in Tab. 2, the FedFa-Delta also outper-
forms the existing approaches for the whole training time.

Dataset Sent140 STT2 Cifar10

Non-IID Non-IID Non-IID IID

Target-Acc 0.71 0.85 0.6 0.7

FedAvg 70(2×) 120(1.6×) 540(1.2×) 320 (1.4×)
Fedasync failed failed failed failed
FedBuff 70(2×) 123(1.6×) 880(1.9×) 325(1.4×)

Port-Urgent 110(3×) 98(1.3×) 620(1.3×) 305(1.3×)
Port-Non-Urgent 95(2×) 112(1.5×) 565(1.2×) 320(1.4×)

FedFa-Param 45(1.3×) 133(2×) 645(1.4×) 315(1.4×)
FedFa-Delta 36 73 465 230

Table 3: Communication Rounds for Target Accuracy

0 100200300400500600700800900
Communication rounds

0.1

0.2

0.3

0.4

0.5

0.6

ac
cu

ra
cy

ResNet18

FedAvg
FedFa
port urgent
FedBuff
port-no-urgent
fedasync

(a) α = 0.1

0 50 100 150 200 250 300 350 400

Communication rounds
0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

ResNet18

FedAvg
FedFa
port urgent
FedBuff
port-no-urgent
Fedasync

(b) α = 5

Figure 4: Performance comparison of different training strategies on
both IID and Non-IID data settings regarding communication round.

Best Accuracy. Tab. 4 shows the optimal accuracy of the
three foundational paradigms within a fixed number of com-
munication rounds. We observe that FedFa-Delta achieves
the highest accuracy for both Sent140 and Cifar10-IID, and
FedAvg achieves the highest accuracy for Cifar10-NonIID.
The accuracy of all three paradigms is similar to each other,
while our fully asynchronous approach FedFa-Delta is time
efficient. Thus, FedFa is more suitable for scaling up the
training scales in federated learning by eliminating the wait-
ing time (without the barrier setting) compared to the syn-
chronous and semi-asynchronous strategies.

Dataset Sent140 STT2 Cifar10

Non-IID Non-IID Non-IID IID

FedAvg 0.7209 0.891 0.6570 0.7690
FedBuff 0.7209 0.871 0.6557 0.7776

FedFa-Param 0.7291 0.88 0.6539 0.7781
FedFa-Delta 0.7403 0.883 0.6474 0.7831

Table 4: Best Accuracy Comparison

Effective of the Buffer Size K. Fig. 5 shows the current op-
timal model accuracy ladder diagram of FedFa-Param with
different buffer sizes K. Changing the buffer size K within
a reasonable range does not significantly impact the model
accuracy, while vastly increasing the K will slow down the
training (e.g., K = 20). This is reasonable because it will
excessively average the outdated information during each ag-
gregation when setting the K = 20. These results indicate
that our proposed FedFa is robust to the buffer size K.
Effective of concurrency McThe number of clients sampled
at the beginning of the federated learning training is called the
number of concurrency Mc. Whenever K clients complete the

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5286



0 500 1000 1500 2000 2500
time

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

resnet18 time usage with different buffer size K

buffer size K=3
buffer size K=5
buffer size K=7
buffer size K=10
buffer size K=11
buffer size K=20

Figure 5: The comparison of different buffer sizes K.

training task and upload the parameters to the server, other K
clients are resampled to maintain the number of concurrency
Mc. Therefore, it also means the number of simultaneously
active clients. In most federated learning experiment setups,
Mc is set as 1/10 to 1/5 of the total number of clients. In
asynchronous algorithms, increasing the number of sampling
clients may lead to worse training results because staleness is
directly related to the number of clients sampled. As shown
in Tab. 5, the results of all the algorithms show some decrease
in model accuracy as Mc increases. Moreover, our algorithm
is less insensitive to Mc than other algorithms.

Mc 2 5 10 20

FedAvg 0.7101 0.6757 0.6207 0.6017
FedBuff 0.7137 0.6688 0.6327 0.6045

FedFa-Delta 0.718 0.6755 0.642 0.6356

Table 5: The best accuracy of the model which is trained within a
defined period of time in different scales of Mc

Combined with Synchronous Optimization Methods.
FedFa is highly portable and extensible since it only involves
a change in the aggregation paradigm. It is easy to extend
other synchronous federated learning optimization methods
into their versions under the fully asynchronous paradigm
of FedFa. Moreover, such an extension can also eliminate
the waiting time and improve the efficiency of the federated
learning training process.
We integrate two synchronous federated learning optimiza-
tion algorithms, Fedprox [Li et al., 2020] and Fednova [Wang
et al., 2020], into our proposed FedFa-Delta, which is a fully
asynchronous paradigm. The synchronous federated learn-
ing versions of these two algorithms and the version under
the full asynchronous paradigm, respectively, are used to per-
form the experiments on the Cifar10 dataset mentioned be-
fore. The number of communication rounds and the number
of wall-clock times to achieve the target accuracy using these
algorithms are shown in Tab. 6. We observe that the wall-
clock time for the whole federated learning training process
is reduced to 1/3 of the original time with only 1/10 more
communication rounds consumption. As shown in Fig. 6, the
convergence of the FedFa with Fedprox is similar to the orig-
inal algorithm. However, the training process of the FedFa
with Fednova has become unstable. This is reasonable be-

cause the training process of asynchronous algorithms is in-
herently more unstable than synchronous algorithms.

Metrics Fednova w/o Fedprox w/o

Comm-Rounds 331 / 390 320 / 290
Wall Time 1290 / 4576 1184 / 3469

Table 6: Comparison of communication rounds and wall clock time
for target accuracy between optimization methods with (w/) and
without (w/o) extending to the FedFa paradigm.

0 50 100 150 200 250 300 350 400
Number of communication rounds

0.1

0.2

0.3

0.4

0.5

0.6

ac
cu

ra
cy

resnet18 comm-rounds to achieva target acc

Fedprox
Fedprox+FedFa
Fednova
Fednova+FedFa

Figure 6: Comparison of the model convergence between Original
and FedFa versions of the optimization algorithm

6 Conclusion and Future Work
We propose FedFa, a fully asynchronous parameter update
strategy for federated learning. Unlike previous fully asyn-
chronous algorithms, it satisfies the paradigm of secure ag-
gregation and guarantees a stable and fast training process.
Compared to the synchronous and semi-asynchronous algo-
rithms, it improves the training performance considerably by
up to 6× and 4.0× speed up for different benchmarks. Also,
unlike other asynchronous algorithms, our approach provides
some speedup in the number of communication rounds. We
also give theoretical proof of the convergence rate of our pro-
posed FedFa, which has the same convergence upper bound
as the widely used FedBuff. Finally, we also briefly imple-
ment the fully asynchronous version of some synchronous
federated optimization algorithms in our FedFa paradigm to
make them more time efficient. We will explore more param-
eter update strategies for federated learning in the future.

Acknowledgments
This research was supported by the National Natural Science
Foundation of China 62302420 and the U.S. Department of
Energy, Office of Science, Advanced Scientific Computing
Research (ASCR), under contract DE-AC02-06CH11357.
The authors extend their appreciation to the Deanship of Sci-
entific Research, University of Bisha, for funding this re-
search through the promising program under grant number
(UB-Promising-40-1445). This work is partially supported
by HK RGC General Research Fund (Ref. No.: PolyU-
15220922 and PolyU-15228623) and NSFC/RGC Collabo-
rative Research Scheme (Ref. No.: CRS PolyU501/23).

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5287



References
[Bhargava et al., 2021] Prajjwal Bhargava, Aleksandr

Drozd, and Anna Rogers. Generalization in nli: Ways
(not) to go beyond simple heuristics, 2021.

[Bonawitz et al., 2016] Keith Bonawitz, Vladimir Ivanov,
Ben Kreuter, Antonio Marcedone, H Brendan McMa-
han, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn
Seth. Practical secure aggregation for federated learning
on user-held data. arXiv preprint arXiv:1611.04482, 2016.

[Caldas et al., 2018] Sebastian Caldas, Sai Meher Karthik
Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Bren-
dan McMahan, Virginia Smith, and Ameet Talwalkar.
Leaf: A benchmark for federated settings. arXiv
preprint:1812.01097, 2018.

[Chai et al., 2020] Zheng Chai, Yujing Chen, Liang Zhao,
Yue Cheng, and Huzefa Rangwala. Fedat: A
communication-efficient federated learning method with
asynchronous tiers under non-iid data. ArXivorg, 2020.

[Cho et al., 2022] Yae Jee Cho, Andre Manoel, Gauri Joshi,
Robert Sim, and Dimitriadis. Heterogeneous ensemble
knowledge transfer for training large models in federated
learning. arXiv preprint arXiv:2204.12703, 2022.

[Fraboni et al., 2023] Yann Fraboni, Richard Vidal, Laetitia
Kameni, and Marco Lorenzi. A general theory for fed-
erated optimization with asynchronous and heterogeneous
clients updates. Journal of Machine Learning Research,
24(110):1–43, 2023.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[Hsu et al., 2019] Tzu-Ming Harry Hsu, Hang Qi, and
Matthew Brown. Measuring the effects of non-identical
data distribution for federated visual classification. arXiv
preprint arXiv:1909.06335, 2019.

[Hu et al., 2021] Edward J Hu, Yelong Shen, Phillip Wallis,
Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large
language models. arXiv preprint arXiv:2106.09685, 2021.

[K. and Geoffrey, 2009] Alex K. and H. Geoffrey. Learning
multiple layers of features from tiny images. 2009.

[Kairouz et al., 2021] Peter Kairouz, H Brendan McMa-
han, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles,
Graham Cormode, Rachel Cummings, et al. Advances
and open problems in federated learning. Foundations and
Trends® in Machine Learning, 14(1–2):1–210, 2021.

[Karl et al., 2020] Ryan Karl, Jonathan Takeshita, Nirajan
Koirla, and Taeho Jung. Cryptonite: A framework for flex-
ible time-series secure aggregation with online fault toler-
ance. Cryptology ePrint Archive, Paper 2020/1561, 2020.

[Koloskova et al., 2022] Anastasiia Koloskova, Sebastian U
Stich, and Martin Jaggi. Sharper convergence guarantees

for asynchronous sgd for distributed and federated learn-
ing. Advances in Neural Information Processing Systems,
35:17202–17215, 2022.

[Li et al., 2020] Tian Li, Anit Kumar Sahu, Manzil Zaheer,
Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Pro-
ceedings of MLSys, 2:429–450, 2020.

[Mania et al., 2015] Horia Mania, Xinghao Pan, Dimitris
Papailiopoulos, Benjamin Recht, Kannan Ramchandran,
and Michael I Jordan. Perturbed iterate analysis for
asynchronous stochastic optimization. arXiv preprint
arXiv:1507.06970, 2015.

[McMahan et al., 2017] Brendan McMahan, Eider Moore,
Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and
statistics, pages 1273–1282. PMLR, 2017.

[Nguyen et al., 2022] John Nguyen, Kshitiz Malik,
Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat,
Mani Malek, and Dzmitry Huba. Federated learning
with buffered asynchronous aggregation. In International
Conference on Artificial Intelligence and Statistics, pages
3581–3607. PMLR, 2022.

[So et al., 2021] Jinhyun So, Başak Güler, and A Salman
Avestimehr. Turbo-aggregate: Breaking the quadratic ag-
gregation barrier in secure federated learning. IEEE Jour-
nal on Selected Areas in Information Theory, 2021.

[Su and Li, 2022] Ningxin Su and Baochun Li. How asyn-
chronous can federated learning be? In 2022 IEEE/ACM
30th International Symposium on Quality of Service
(IWQoS), pages 1–11. IEEE, 2022.

[U, 2018] Sebastian U. Local sgd converges fast and com-
municates little. arXiv preprint arXiv:1805.09767, 2018.

[Wang et al., 2020] Jianyu Wang, Qinghua Liu, Hao Liang,
Gauri Joshi, and H Vincent Poor. Tackling the objective in-
consistency problem in heterogeneous federated optimiza-
tion. NeurIPS, 2020.

[Zhang and Wang, 2021] Zhaorui Zhang and Choli Wang.
Sapus: Self-adaptive parameter update strategy for dnn
training on multi-gpu clusters. IEEE Transactions on Par-
allel and Distributed Systems, 33(7):1569–1580, 2021.

[Zhang and Wang, 2022] Zhaorui Zhang and Choli Wang.
Mipd: An adaptive gradient sparsification framework for
distributed dnns training. IEEE Transactions on Parallel
and Distributed Systems, 33(11):3053–3066, 2022.

[Zhang et al., 2022] Zhaorui Zhang, Zhuoran Ji, and Choli
Wang. Momentum-driven adaptive synchronization model
for distributed dnn training on hpc clusters. Journal of
Parallel and Distributed Computing, 159:65–84, 2022.

[Zhao et al., 2018] Yue Zhao, Meng Li, Liangzhen Lai,
Naveen Suda, Damon Civin, and Vikas Chandra. Fed-
erated learning with non-iid data. arXiv preprint
arXiv:1806.00582, 2018.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5288


	Introduction
	Related Work and Motivations
	Synchronous Federated Learning
	Semi-asynchronous and Asynchronous FL
	Security and Privacy Protection

	 FedFa: Fully Asynchronous Federated Average for Federated Learning
	The Design of FedFa
	Gradient OR Parameter Transmission

	Convergence Analysis of FedFa
	Problem Formulation
	The Proof for Convergence Rate of FedFa

	Performance Evaluation and Analysis
	Prototype Implementation
	Evaluation Methodology
	Results and Analysis

	Conclusion and Future Work

