
Exploring Learngene via Stage-wise Weight Sharing
for Initializing Variable-sized Models

Shi-Yu Xia , Wenxuan Zhu , Xu Yang∗ and Xin Geng∗

School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary

Applications (Southeast University), Ministry of Education, China
{shiyu xia, zhuwx, xuyang palm, xgeng}@seu.edu.cn

Abstract
In practice, we usually need to build variable-sized
models adapting for diverse resource constraints in
different application scenarios, where weight initial-
ization is an important step prior to training. The
Learngene framework, introduced recently, firstly
learns one compact part termed as learngene from
a large well-trained model, after which learngene
is expanded to initialize variable-sized models. In
this paper, we start from analysing the importance
of guidance for the expansion of well-trained learn-
gene layers, inspiring the design of a simple but
highly effective Learngene approach termed SWS
(Stage-wise Weight Sharing), where both learngene
layers and their learning process critically contribute
to providing knowledge and guidance for initializ-
ing models at varying scales. Specifically, to learn
learngene layers, we build an auxiliary model com-
prising multiple stages where the layer weights in
each stage are shared, after which we train it through
distillation. Subsequently, we expand these learn-
gene layers containing stage information at their
corresponding stage to initialize models of variable
depths. Extensive experiments on ImageNet-1K
demonstrate that SWS achieves consistent better per-
formance compared to many models trained from
scratch, while reducing around 6.6× total training
costs. In some cases, SWS performs better only af-
ter 1 epoch tuning. When initializing variable-sized
models adapting for different resource constraints,
SWS achieves better results while reducing around
20× parameters stored to initialize these models
and around 10× pre-training costs, in contrast to the
pre-training and fine-tuning approach.

1 Introduction
Vision Transformers (ViTs) have become increasingly popular,
showcasing their remarkable performance across a wide range
of vision tasks [Dosovitskiy et al., 2021; Liu et al., 2021;
Wang et al., 2022b; Oquab et al., 2023; Yan et al., 2023].
In practical deployment, it is often necessary to train models

∗Co-corresponding author.

of various scales to flexibly accommodate different resource
constraints. These constraints may exhibit significant diver-
sity, such as mobile devices with limited available resources
and computing centers with substantial computational capa-
bilities. Clearly, training each target model from scratch pro-
vides a straightforward solution, where weight initialization
is a crucial step prior to training which aids in model conver-
gence and affects the final quality of the trained model [Glo-
rot and Bengio, 2010; He et al., 2015; Arpit et al., 2019;
Huang et al., 2020].

Nowadays, a variety of large-scale pretrained models, de-
veloped by the research and industry community, are readily
available to transfer and finetune the learned weights for di-
verse downstream tasks [Radford et al., 2021; He et al., 2022;
Touvron et al., 2023; Oquab et al., 2023]. However, such
scheme needs to reuse the original whole pretrained model
parameters every time facing different downstream tasks re-
gardless of the available resources. Unfortunately, for many
pretrained model families (MAE [He et al., 2022]), even the
smallest model (86M ViT-Base [Dosovitskiy et al., 2021]) can
be considered extremely large for some resource-constrained
settings. To tackle this, developers would have to first pre-
train target model to meet certain resource demand, which
is time-consuming, computationally expensive and lacks the
flexibility to initialize models of varying scales. Thus, how to
flexibly initialize diverse models to satisfy different resource
constraints arises as an important research question.

Recently, [Wang et al., 2023] proposes a novel learning
paradigm known as Learngene to achieve this goal. As
shown in Fig. 1(a), Learngene firstly learns one compact part
termed as learngene, which contains generalizable knowledge,
from a large well-trained network termed as ancestry model
(Ans-Net). Subsequently, learngene is expanded to initialize
variable-sized descendant models (Des-Net), after which they
undergo normal fine-tuning. Based on the gradient informa-
tion of Ans-Net, Vanilla-LG [Wang et al., 2022a] extracts a
few high-level layers as learngene and combines them with
randomly-initialized layers to build Des-Nets. TLEG [Xia et
al., 2024] extracts two layers as learngene which is linearly
expanded to build varying Des-Nets. LearngenePool [Shi et
al., 2024] distills one large model into multiple small ones
whose layers are used as learngene instances and then stitches
them to build Des-Nets. However, there exist several lim-
itations in previous works. Firstly, the extracted learngene

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5254



How to 
expand?

Large loss
discrepancy

Stage 1 Stage 2 Stage 3
Negligible loss

discrepancy

(b) Simple-LG

(c) Stage-wise weight sharing (SWS) (d) Visualization of validation loss value

Well-trained 3 layers

Stage 1 Stage 2 Stage 3

Des-Net

Learngene layers
(Stage information)

Weight sharing

...

Ancestry moel

Condense

Learngene

Expand

Descendant models

(a) Learngene framework

...

Expansion guidance

Expanded
Well-trained

Figure 1: (a) Learngene. (b) Simple-LG and (c) SWS, here we take 3-layer learngenes as an example. (d) Visualization of validation loss value.

itself only contains well-trained parameters but lacks crucial
knowledge essential for the subsequent expansion process.
Secondly, the learngene learning process provides insufficient
guidance about how to effectively and conveniently expand
the learngene, thereby constraining its potential for initializa-
tion. Thirdly, empirical performance still lags far behind the
pre-training and fine-tuning approach.

To validate the importance of such knowledge and guid-
ance, we study from an idea termed Simple-LG: we first train
a vanilla 5-layer model whose layers compose learngene lay-
ers, and then expand its layer to initialize Des-Nets of required
depth, as shown in Fig. 1(b). Obviously, neither the well-
trained layers nor the learning process of the 5-layer model
possess knowledge or guidance for the subsequent expansion
process. As a result, this strategy brings severe performance
degradation compared to well-trained ones. For example, it
leads to a 27.1% accuracy degradation of initialized 12-layer
Des-Net in ImageNet-1K [Deng et al., 2009] classification
without any fine-tuning. Moreover, we display the validation
loss value of these initialized models in Fig. 1(d), which deliv-
ers two important messages: 1) These initialized models are
not fine-tuned, yet they attain meaningful loss value, which
demonstrates the potential of expanding learngene layers to
initialize models. 2) With the increasing layer number of
models, i.e., the increasing number of expanding layers, the
discrepancy between the validation loss of initialized models
and that of well-trained ones becomes larger.

Upon closer observation, if we treat each learngene layer
as an individual stage, we can recursively update each layer
at its stage, which equals to sharing weights across multiple
layers within each stage throughout the training, shown in
left of Fig. 1(c). In this way, we seamlessly integrate stage
information into each learned learngene layer, i.e., learngene
layer actually contains knowledge of multiple weight-shared
layers within its stage. Moreover, we could emulate the learn-
gene expansion process via adding weight-shared layers within
each stage during learngene training, thereby providing clear
guidance on how to expand, namely, expanding the weight-
shared layers at its corresponding stage, shown in Fig. 1(c).
Both stage information and expansion guidance are necessary:
1) expanding learngene layers which lacks stage information
destroys the intrinsic layer connection (See Simple-LG). 2)
Without expansion guidance, the position of expanded layers
remains uncertain. Based on this insight, we present Stage-

wise Weight Sharing (SWS), a simple but effective Learngene
approach for efficient model initialization. SWS divides one
Transformer into multiple stages and shares the layer weights
within each stage during the training process. Specifically, we
design and train an auxiliary model (Aux-Net) whose layer
weights are shared via SWS to obtain learngene layers. Then
we can expand these layers at their corresponding stage to
initialize variable-sized Des-Nets. As shown in Fig. 1(d), we
observe that the validation loss of models initialized by SWS
can be significantly reduced with the increasing layer numbers.

We systematically investigate the design of weight sharing
and the initialization strategy. With extensive experiments,
we show the superiority of SWS: 1) Compared to training
from scratch, SWS achieves better performance with much
less training efforts on ImageNet-1K. Take Des-B as an exam-
ple, SWS performs better while reducing around 6.6× total
training costs. 2) When transferring to downstream classifi-
cation datasets, SWS surpasses existing Learngene methods
by a large margin, e.g., +5.6% on Cars-196. 3) When di-
rectly evaluating on ImageNet-1K without any tuning after
initialization, SWS outperforms existing initialization methods
by a large margin, e.g., +9.4% with Des-B (86M). 4) When
building variable-sized models, SWS achieves better results
while reducing around 20× parameters stored to initialize and
around 10× pre-training costs, in contrast to the pre-training
and fine-tuning. Our main contributions are summarized as:

• We propose a simple but effective Learngene approach
termed SWS for efficient model initialization, which is
the first work to systematically explore the potential of
weight sharing for initializing variable-sized models.

• We present the design of weight sharing and the initial-
ization strategy, which firstly highlights the importance
of stage information and expansion guidance.

• Extensive experiments demonstrate the effectiveness
and efficiency of SWS, e.g., compared to training from
scratch, training with compact learngenes can achieve
better performance while reducing huge training costs.

2 Related Work
2.1 Weight Initialization
Weight initialization is a pivotal step prior to training one
model and crucially affects the model performance [Glorot

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5255



Layer 1

Layer 2

Layer 3

Layer N

...

Stage 1

Stage 2

Stage 3

Stage 4

Distill

Ans-Net Aux-Net

 1. Learngene layers
(Stage information)

2. Expansion Guidance

Phase 1: learngene learning process Phase 2: initialization with learngene

Layer 1

.
.
.

Expanded layer
Weight 
sharing

Layer 2

Layer 3

Stage 1

Layer 4

Layer 5

Stage 2

Layer 1
2

Stage 4

Layer 1

.
.
.

Layer 2

Stage 1

Layer 3

Stage 2

Layer 6

Stage 4

12-layer Des-Net

6-layer Des-Net

Learngene layer Forward

Fine-tune

Fine-tune

PC

Server

Figure 2: In the first phase, we build an auxiliary model comprising multiple stages. The layer weights in each stage are shared. Note that the
number of layers in each stage and the number of stages are both configurable. Then we train it via distillation. After the learngene learning
process, learngene layers containing stage information and expansion guidance are adopted to initialize descendant models of variable depths
in the second phase. Finally, these models are fine-tuned normally and deployed to practical scenarios with diverse resource constraints.

and Bengio, 2010; He et al., 2015; Mishkin and Matas, 2015;
Arpit et al., 2019; Huang et al., 2020]. Proper initialization
aids in model convergence and training efficiency [LeCun et
al., 2002], while arbitrary initialization may hinder the training
process [Mishkin and Matas, 2015]. Comprehensive initializa-
tion strategies have been proposed, such as default initializa-
tion from Timm library [Paszke et al., 2019], Xavier initializa-
tion [Glorot and Bengio, 2010] and Kaiming initialization [He
et al., 2015]. Nowadays, a plethora of pretrained models are
readily accessible, offering an excellent initialization for fine-
tuning models across a range of downstream tasks [Bao et al.,
2022; Oquab et al., 2023]. However, this approach needs to
reuse the entire model for each distinct downstream task, irre-
spective of the available resources. Furthermore, we need to
pre-train again in instances where a pretrained model of the re-
quired size is unavailable, which is extremely time-consuming
and computationally expensive. Recently, [Xu et al., 2023;
Samragh et al., 2023] propose to initialize small models with a
larger pretrained model. By contrast, we seek to train compact
learngenes once via stage-wise weight sharing and then we
can initialize variable-sized models.

2.2 Learngene
Learngene proposes to firstly learn a compact part, referred to
as learngene, from a large well-trained model termed as an-
cestry model (Ans-Net) [Wang et al., 2023; Feng et al., 2024].
Subsequently, learngene is expanded to initialize variable-
sized descendant models (Des-Net), after which they undergo
normal fine-tuning. Vanilla-LG [Wang et al., 2022a] extracts
a few high-level layers as learngene and combines them with
randomly initialized layers to build Des-Nets. TLEG [Xia
et al., 2024] linearly expands learngene which consists of
two layers to initialize Des-Nets of varying scales. Learn-
genePool [Shi et al., 2024] distills one pretrained model into
multiple small ones whose layers are used as learngene in-
stances, after which they are stitched to build Des-Nets. In
contrast, we firstly investigate integration of stage information
into learned learngenes and explore obtaining useful guidance
about how to expand learngenes from the learngene learning
process, thus better initializing Des-Nets.

2.3 Weight Sharing
Weight sharing is a parameter-efficient model compression
strategy [Dabre and Fujita, 2019; Lan et al., 2020; Takase and
Kiyono, 2021; Zhang et al., 2022; DING et al., 2023], which
effectively alleviates over-parameterization problem [Bai et
al., 2019; Kovaleva et al., 2019] in large pretrained Trans-
formers [Devlin et al., 2018]. Different from existing works,
we seek to initialize variable-sized models using learngene
learned via stage-wise weight sharing, which to our knowledge
remains unexplored in the literature.

3 Approach
Fig. 2 depicts the overall pipeline of SWS. In phase 1, we
design an auxiliary Transformer model (Aux-Net) comprising
several distinct stages, where the layer weights in each stage
are shared. We train the Aux-Net through distilling from
the ancestry model (Ans-Net) to help learn learngene layers
and note that the weights of only one layer is trained in each
stage due to the sharing mechanism. In phase 2, the well-
trained learngene layers containing stage information as well
as expansion guidance are adopted to initialize descendant
models (Des-Net) of variable depths. Finally, these Des-Nets
are fine-tuned normally without the restriction of stage-wise
weight sharing. Next, we firstly introduce some preliminaries.

3.1 Preliminaries
Thanks to the modular design of modern vision transformer
(ViT) [Dosovitskiy et al., 2021; Touvron et al., 2021], a typical
ViT of L layers equipped with parameters θ can be defined as a
composition of functions: fθ = fL ◦ · · · ◦f1, where fθ : X →
Y transforms the inputs in an input space X to the output space
Y , fi means the function of the i-th layer and ◦ indicates the
composition. Each layer contains Multi-head Self-Attention
(MSA) and Multi-Layer Perceptron (MLP) block, where Layer
Normalization (LN) [Ba et al., 2016] and residual connections
are used before and after each block. The basic idea of weight
sharing involves sharing parameters across layers, which is a
simple but effective strategy to improve parameter efficiency.
For multi-stage weight sharing, weight sharing in the m-th

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5256



Balanced Sharing

Unbalanced Sharing

(a) Layer assignment strategy

Learngene
Layer

Target
Des-Net

Selection ① ④ ② ⑤ ③

Cyclic Initialization
Random-assigned 

Initialization
(b) Initialization strategy 

① ④ ②⑤③

Front->Last->Mid

(c) Initialization order 

Learngene
Layer

Target
Des-Net

Selection

Figure 3: Taking M = 3 as an example, we show (a) Layer assignment strategy, (b) Initialization strategy and (c) Initialization order.

stage can be defined as a recursive update of one shared layer:

Zi+1 = Hm(Zi, θm), i = 0, 1, ..., Lm − 1, (1)

where Hm denotes the function of m-th stage, Lm denotes the
number of weight-shared layers in the m-th stage, Zi denotes
the representations in the i-th layer of m-th stage and θm
represents the parameters of Hm, i.e., shared weights of the
Lm layers. Note that the parameters of layers in each stage are
shared, i.e., the number of updated parameters in each stage
during training equals to that of one layer, but the parameters
between stages are not shared. Thus ViT with parameters θ
can be further defined as fθ = HM ◦ · · · ◦H1 in multi-stage
weight sharing setting, where M denotes the number of stages.

3.2 Stage-wise Weight Sharing of Learngene
As discussed before, we could seamlessly integrate stage infor-
mation into each learned learngene layer via sharing weights
across multiple layers within each stage throughout the train-
ing. Drawing from this insight, we propose to share the
parameters of one learngene layer to form multiple weight-
shared layers in each stage. Thus, the number of learngene
layers equals to that of stages. By configuring the number
of stages M , we can obtain different number of learngenes
θlg = {θ1, ..., θM}. To ensure clarity, taking the 16-layer
ViT-B (114M) [Dosovitskiy et al., 2021] and M = 5 as an
example, θlg comprises about 36M parameters which is ap-
proximately equivalent to the parameter numbers of five layers
and only 36M parameters are updated during the learngene
learning process. In the following, we detail the layer assign-
ment strategy and learngene learning process.

Layer Assignment Strategy. Given the number of stages
M , there are two options to assign the number of lay-
ers within each stage: Balanced and Unbalanced sharing
mechanism. As shown in Fig. 3(a), Balanced sharing en-
sures uniformity in the layer numbers across most stages,
whereas Unbalanced sharing sets uneven layer numbers within
most stages. However, as Balanced sharing is more aligned
with the existing weight sharing principle [Lan et al., 2020;
Takase and Kiyono, 2021], we will show in Section 4.3 that it
achieves more stable and better learngenes than Unbalanced
sharing. In this case, we take Balanced sharing as the default
sharing mechanism in SWS.

Learngene Learning Process. As the learngene layer is
the Transformer layer, but some other components like the
patch projection and task-specific head are also required to
compose a complete Transformer model. Therefore, we also
add them to build the Aux-Net, after which we train it through

distillation. Specifically, we consider adopting prediction-
based distillation [Hinton et al., 2015] to condense knowledge
from the Ans-Net, which is achieved by minimizing cross-
entropy loss between the probability distributions over the
output predictions of the Ans-Net and those of the Aux-Net.
Overall, one distillation loss is defined as:

Ld = CE(ϕ(ps/τ), ϕ(pt/τ)), (2)

where CE(·, ·) denotes soft cross-entropy loss, pt denotes the
output logits of the pretrained Ans-Net (e.g., Levit-384 [Gra-
ham et al., 2021]), ps denotes the output logits of the Aux-Net,
τ denotes the temperature value of distillation and ϕ denotes
the softmax function. Moreover, we can seamlessly incor-
porate advanced distillation techniques [Zhang et al., 2022;
Ren et al., 2023; Ji et al., 2023; Li et al., 2024; Li et al.,
2025] into our training process. Besides distillation, we also
introduce one classification loss:

Lcls = CE(ϕ(ps), y), (3)

where y denotes ground-truth label. Therefore, our total train-
ing loss is defined as:

L = (1− α)Lcls + αLd, (4)

where α denotes the trade-off. Noteworthy, the weight sharing
constraint always exists during training, i.e., although Aux-
Net contains L layers, only θlg = {θ1, ..., θM} which contains
parameters of M layers are updated.

3.3 Initialization with Learngene
After obtaining learngene which is composed of well-trained
{θ1, ..., θM}, we can flexibly initialize Des-Nets of varying
depths Lds, fitting diverse resource constraints with much
less fine-tuning efforts. In the following, we describe the
initialization strategy and the initialization order.
Initialization Strategy. During the learngene learning pro-
cess, sharing weights in a stage-wise fashion provides im-
portant expansion guidance for initializing Des-Nets, i.e., ex-
panding the weight-shared layers at its corresponding stage
to initialize the target Des-Net. Specifically, we present two
initialization strategies: Cyclic Initialization and Random-
assigned Initialization. As shown in Fig. 3(b), we illustrate
the initialization process of a 5-layer Des-Net with 3 learn-
gene layers as an example. Cyclic Initialization involves the
sequential selection of learngene layers in a specific order
to initialize corresponding layers of the Des-Net. In contrast,
Random-assigned strategy initializes the Des-Net by randomly
selecting learngene layers. However, as Cyclic Initialization is
more aligned with the learngene learning process (i.e., keeping

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5257



～20x faster

(a) Des-S-6 (11.4M)

～20x faster

(b) Des-S-7 (13.2M)

～20x faster

(c) Des-S-8 (15.0M)

～20x faster

(d) Des-S-9 (16.7M)

～20x faster

(e) Des-S-10 (18.5M)

(f) Des-S-11 (20.3M)

～20x faster

(g) Des-S-12 (22.1M) (h) Des-S-13 (23.8M)

1 20 40 60 80 100
Epoch

0

20

40

60

80

To
p-
1(
%
)

0.4

29.9

50.1

69.5
76.5

56.9
66.3

75.675.276.7

Scratch
TLEG
SWS(Ours)

(i) Des-S-14 (25.6M) (j) Des-S-15 (27.4M)
～20x faster

(k) Des-B-6 (44.0M)

～20x faster

(l) Des-B-7 (51.1M)

～20x faster

(m) Des-B-8 (58.2M)

～20x faster

(n) Des-B-9 (65.3M)

～20x faster

(o) Des-B-10 (72.4M)
～20x faster

(p) Des-B-11 (79.5M)

～20x faster

(q) Des-B-12 (86.6M)

～20x faster

(r) Des-B-13 (93.7M)

～20x faster

(s) Des-B-14 (100.7M)

～20x faster

(t) Des-B-15 (107.8M)

Figure 4: Performance comparisons on ImageNet-1K between several baselines and SWS. Number in bracket of (a)-(t) means Params(M).

the stage order the same as the Aux-Net), we will show in Sec-
tion 4.3 that it achieves more stable and better performance
than Random-assigned initialization. In this case, we take
Cyclic Initialization as the default initialization strategy.
Initialization Order. Besides, different initialization orders
lead to differences in initialization focus. For example, in the
case of “Front-Last-Mid”, such initialization focuses more on
the front and last part of the Des-Net, as shown in Fig. 3(c).
With Cyclic Initialization, different initialization orders bring
similar performance of Des-Net. Therefore, we take “Front-
Mid-Last” as the default initialization order in SWS.

4 Experiments
4.1 Experimental Setup
We perform experiments on ImageNet-1K [Deng et al., 2009]
and several downstream datasets including CIFAR-10, CIFAR-
100 [Krizhevsky et al., 2009], Food-101 [Bossard et al., 2014]
and Cars-196 [Krause et al., 2013]. Model performance is
measured by Top-1 classification accuracy (Top-1(%)). And
we report Params(M) and FLOPs(G) as the number of model
parameters and indicators of theoretical complexity of model.

In the first phase, we set two variants of Aux-Net as Aux-S/B
where we adopt SWS on DeiT-S/B [Touvron et al., 2021], after
which we train Aux-S/B on ImageNet-1K for 150/100 epochs
to obtain learngenes, respectively. Specifically, we set 5 stages
for Aux-S/B, where the shared layer number in each stage is
3,3,4,3 and 3. We choose Levit-384 [Graham et al., 2021] as
the ancestry model. In the second phase, we set two variants
of Des-Net as Des-S/B where we change the layer numbers
based on DeiT-S/B, e.g., we name the 6-layer Des-S as Des-
S-6. Then we initialize Des-S/B with cyclic initialization and
fine-tune them for 10 epochs, except that 15 epochs for Des-
S-13, Des-S-14 and Des-S-15 for better performance. Source
code is available at https://github.com/AlphaXia/SWS.

4.2 Main Results
SWS achieves better performance while reducing huge
training efforts in contrast to from scratch training on
ImageNet-1K. We report ImageNet-1K classification per-
formance of 20 different Des-Nets in Fig. 4, where “Scratch”
denotes training from scratch, “TLEG” denotes linearly ex-
panding learngenes to initialize [Xia et al., 2024]. Compared
to Scratch, SWS can achieve better performance and signif-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5258



0 50 100 150 200 250 300
Epoch

60

65

70

75

80

85

90
To
p-
1(
%
)

SWS(Ours)
Scratch
TLEG
Vanilla-LG
PF

(a) CIFAR-100

0 50 100 150 200 250 300
Epoch

70

75

80

85

90

95

100

To
p-
1(
%
)

SWS(Ours)
Scratch
TLEG
Vanilla-LG
PF

(b) CIFAR-10

0 50 100 150 200 250 300
Epoch

60

65

70

75

80

85

90

To
p-
1(
%
)

SWS(Ours)
Scratch
TLEG
Vanilla-LG
PF

(c) Food-101

0 50 100 150 200 250 300
Epoch

50
55
60
65
70
75
80
85

To
p-
1(
%
)

SWS(Ours)
TLEG
PF

(d) Cars-196

0 50 100 150 200 250 300
Epoch

65

70

75

80

85

90

To
p-
1(
%
)

SWS(Ours)
Scratch
TLEG
Vanilla-LG
PF

(e) CIFAR-100

0 50 100 150 200 250 300
Epoch

75

80

85

90

95

100

To
p-
1(
%
)

SWS(Ours)
Scratch
TLEG
Vanilla-LG
PF

(f) CIFAR-10

0 50 100 150 200 250 300
Epoch

60

65

70

75

80

85

90

To
p-
1(
%
)

SWS(Ours)
Scratch
TLEG
Vanilla-LG
PF

(g) Food-101

0 50 100 150 200 250 300
Epoch

65

70

75

80

85

90

To
p-
1(
%
)

SWS(Ours)
TLEG
PF

(h) Cars-196

Figure 5: Performance comparisons on several downstream classification datasets of (a)-(d): Des-S-12 and (e)-(h): Des-B-12.

Lds Params FLOPs Trained IMwLM Vanilla TLEG SWS(M) (G) (100ep) -LG

6 44.0 8.8 75.4 3.3 0.1 39.9 59.9
7 51.1 10.3 76.5 5.8 0.1 60.4 68.5
8 58.2 11.7 77.2 12.2 0.1 69.8 74.4
9 65.3 13.1 78.0 24.2 0.1 73.8 76.5

10 72.4 14.6 78.2 42.2 0.1 75.7 78.0
11 79.5 16.0 79.0 59.2 0.1 76.4 78.9
12 86.6 17.5 79.6 69.9 0.1 76.6 79.3
13 93.7 18.9 79.0 76.2 0.1 76.7 80.0
14 100.7 20.4 79.1 78.6 0.1 76.5 80.1
15 107.8 21.8 79.4 79.3 0.1 76.0 80.5

Table 1: Performance comparisons on ImageNet-1K of Des-B with
different layer numbers without any tuning after initialization.

icantly improve training efficiency. Take 10 Des-Bs as an
example, SWS performs better while reducing around 6.6×
total training costs (10×100 epochs vs. 100+10×5 epochs),
compared to training each Des-B from scratch for 100 epochs.
For each Des-B, SWS can reduce around 20× training costs.
In some cases such as from Des-B-10 to Des-B-15, SWS per-
forms better only after 1 epoch tuning, which demonstrates the
effectiveness of initialization via SWS. Compared to TLEG,
SWS performs better and further enhances the efficiency. Take
10 Des-Bs as an example, SWS performs better while reduc-
ing around 2.5× total training costs (100+10×40 epochs vs.
100+10×10 epochs). In a nutshell, the efficiency of SWS be-
comes more obvious with the number of Des-Nets increasing
as we only need to train learngenes once.

When transferring to downstream classification datasets,
SWS presents competitive results. We compare SWS
against pre-training and fine-tuning (PF), Scratch, Vanilla-

Lds Params PF SWS
(M) P-S(M) Top-1(%) P-S(M) Top-1(%)

6 43.4 44.0 87.99

37.0

88.11
7 50.4 51.1 88.04 88.75
8 57.5 58.2 88.35 89.01
9 64.6 65.3 88.40 89.35
10 71.7 72.4 88.04 89.06
11 78.8 79.5 88.80 89.21
12 85.9 86.6 88.47 89.59
13 93.0 93.7 88.36 89.80
14 100.1 100.7 88.24 89.28
15 107.1 107.8 88.34 89.20

Table 2: Performance comparisons on CIFAR-100 of Des-B with
different layer numbers. For each target model, PF transfers all the
pretrained parameters (P-S(M)) to initialize, which totally requires
759.3M for 10 Des-Bs. In contrast, SWS only needs to store 37.0M
parameters to initialize each Des-B, which significantly reduces the
parameters stored for initialization by 20× (759.3M vs. 37.0M).

LG [Wang et al., 2022a] and TLEG [Xia et al., 2024] on 4
classification datasets. As shown in Fig. 5, we observe that
SWS consistently outperforms several baselines, which ver-
ifies the effectiveness of initializing with learngenes trained
via SWS. Take Des-B-12 as an example, SWS consistently
outperforms PF by 1.12%, 0.35%, 1.65% and 2.28% re-
spectively on CIFAR-100, CIFAR-10, Food-101 and Cars-196.
SWS significantly outperforms initialization baselines
when directly evaluating on ImageNet-1K without any tun-
ing after initialization. To validate the initialization quality
of SWS, we compare SWS against Trained, Vanilla-LG [Wang
et al., 2022a], TLEG [Xia et al., 2024] and IMwLM [Xu et al.,
2023] on ImageNet-1K, where Trained means models trained
from scratch for 100 epochs and IMwLM means initializing

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5259



Lds Params(M) FLOPs(G) Simple-LG SWS

8 58.2 11.7 66.5 74.4
9 65.3 13.1 63.4 76.5

10 72.4 14.6 59.9 78.0
11 79.5 16.0 57.2 78.9
12 86.6 17.5 52.5 79.3

Table 3: Performance comparisons of Des-Bs on ImageNet-1K ini-
tialized from learngenes trained with or without SWS. Simple-LG
means initializing from a normally well-trained 5-layer Des-B.

Lds Params(M) FLOPs(G) RI CI-order1 CI-order2

7 51.1 10.3 50.5 68.5 70.0
8 58.2 11.7 47.8 74.4 72.6
9 65.3 13.1 71.2 76.5 74.2

10 72.4 14.6 70.7 78.0 78.0
11 79.5 16.0 76.8 78.9 78.9
12 86.6 17.5 75.2 79.3 79.9

Table 4: Performance of Des-Bs on ImageNet-1K under different
strategies. “RI” means Random-assigned Initialization. “CI-order1”
and “CI-order2” mean Cyclic Initialization with different orders.

small models from a larger model. From Table 1, we observe
that SWS significantly outperforms all baselines by a large
margin. For example, SWS outperforms IMwLM by 52.3%,
35.8%, 19.7% and 9.4% respectively on Des-B-9, Des-B-
10, Des-B-11 and Des-B-12. Notably, we also find that directly
initializing via SWS without any tuning can achieve compara-
ble performance with well-trained models. For example, SWS
outperforms Trained by 1.0%, 1.0% and 1.1% respectively
on Des-B-13, Des-B-14 and Des-B-15, which verifies that the
stage-wise information has been preserved to learngenes.

When initializing variable-sized models, SWS notably re-
duces the parameters stored to initialize compared with
pre-training and fine-tuning (PF). We report the results of
Des-Bs initialized from learngenes and those initialized from
pretrained parameters whose number equals to that of target
model. From Table 2, SWS achieves better performance and
significantly reduces 20× (759.3M vs. 37.0M) parameters
stored to initialize, in constrast to PF. Furthermore, SWS only
needs to train learngene once while PF requires pretraining
each Des-B individually, thereby significantly reducing the
pre-training costs. Specifically, SWS reduces pre-training
costs by 10× (10×100 epochs vs. 1×100 epochs) compared
to PF. It is noteworthy that the efficiency of SWS becomes
more obvious with the increasing number of Des-Nets.

4.3 Ablation and Analysis
The effect of stage-wise weight sharing. As shown in Ta-
ble 3, we observe that SWS significantly outperforms Simple-
LG when directly evaluating on ImageNet-1K without any
tuning after initialization, which demonstrates the importance
of stage information and expansion guidance for initializing
Des-Nets. For example, SWS outperforms Simple-LG by
18.1% and 21.7% respectively on Des-B-10 and Des-B-11.

Method Params FLOPs Top-1
(M) (G) (%)

Scratch 86.6 17.5 79.6
TLEG [Xia et al., 2024] 15.7 17.6 76.7

Mini-DeiT [Zhang et al., 2022] 44.1 17.5 80.9
MS-WS1 (2,2,2,2,2,2) 44.0 17.5 80.7

MS-WS1 (wo dis) 44.0 17.5 77.7
MS-WS2 (1,4,1,1,4,1) 44.0 17.5 80.0
MS-WS3 (1,5,1,4,1) 37.0 17.5 79.4
MS-WS4 (4,1,6,1,4) 37.0 23.3 80.7
MS-WS5 (4,1,5,2,3) 37.0 21.8 fail
MS-WS6 (3,3,4,3,3) 37.0 23.3 80.9

Table 5: Performance of Aux-B on ImageNet-1K under different
SWS strategies. Number in brackets means the shared layer number
in each stage, separated by commas. “wo dis” means training without
distillation. Take “MS-WS6 (3,3,4,3,3)” as an example, it means 5
stages where the shared layer number in each stage is 3,3,4,3,3.

Aux-S CIFAR-100 CIFAR-10 Food-101 Cars-196

76.4 (100) 87.40 98.26 89.19 84.50
78.7 (150) 88.54 98.58 89.83 87.88

Table 6: Performance of Des-S-12 with learngenes trained under
different epochs. “Aux-S” means the performance of Aux-S on
ImageNet-1K. The number in bracket means training epochs.

The effect of different stage-wise weight sharing strategies.
We present the performance of Aux-B to show the quality of
trained learngenes. From Table 5, we observe that MS-WS6
outperforms MS-WS4 and MS-WS5 fails to converge, which
reflects balanced sharing is more stable and better than un-
balanced one. Moreover, we find that MS-WS4 outperforms
MS-WS3, which demonstrates starting from a weight-sharing
stage is better. Also, MS-WS5 achieves comparable perfor-
mance in contrast to Mini-DeiT [Zhang et al., 2022].

The effect of different initialization strategies. From Ta-
ble 4, we find that performance of Des-Nets with Cyclic Ini-
tialization (CI) outperforms that with Random-assigned Initial-
ization (RI) when directly evaluating on ImageNet-1K without
any tuning after initialization. For example, CI-order1 outper-
forms RI by 5.3% and 7.3% respectively on Des-B-9 and
Des-B-10.

The effect of learngenes on Des-Nets. We train Aux-S for
more epochs. As shown in Table 6, we find that better perfor-
mance of Des-S-12 can be consistently achieved with better
learngenes. For example, performance on CIFAR-100 can be
improved from 87.40% to 88.54% with better learngenes.

5 Conclusion
In this paper, we proposed a well-motivated and highly effec-
tive Learngene approach termed SWS to initialize variable-
sized Transformers, enabling adaptation to diverse resource
constraints. Experimental results under various initialization
settings demonstrated the effectiveness and efficiency of SWS.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5260



Acknowledgements
This research is supported by the National Science Foundation
of China (62125602, 62076063, 62206048), Natural Science
Foundation of Jiangsu Province (BK20220819), Young Elite
Scientists Sponsorship Program of Jiangsu Association for
Science and Technology Tj-2022-027 and the Big Data Com-
puting Center of Southeast University.

References
[Arpit et al., 2019] Devansh Arpit, Vı́ctor Campos, and

Yoshua Bengio. How to initialize your network? robust ini-
tialization for weightnorm & resnets. Advances in Neural
Information Processing Systems, 32, 2019.

[Ba et al., 2016] Jimmy Lei Ba, Jamie Ryan Kiros, and Ge-
offrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[Bai et al., 2019] Shaojie Bai, J Zico Kolter, and Vladlen
Koltun. Deep equilibrium models. Advances in Neural
Information Processing Systems, 32, 2019.

[Bao et al., 2022] Hangbo Bao, Li Dong, Songhao Piao, and
Furu Wei. Beit: Bert pre-training of image transformers.
ICLR, 2022.

[Bossard et al., 2014] Lukas Bossard, Matthieu Guillaumin,
and Luc Van Gool. Food-101–mining discriminative com-
ponents with random forests. In Computer Vision–ECCV
2014: 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part VI 13, pages
446–461. Springer, 2014.

[Dabre and Fujita, 2019] Raj Dabre and Atsushi Fujita. Re-
current stacking of layers for compact neural machine trans-
lation models. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 6292–6299, 2019.

[Deng et al., 2009] Jia Deng, Wei Dong, Richard Socher, Li-
Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on
computer vision and pattern recognition, pages 248–255.
Ieee, 2009.

[Devlin et al., 2018] Jacob Devlin, Ming-Wei Chang, Ken-
ton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[DING et al., 2023] Yahao DING, Mohammad SHIKH-
BAHAEI, Zhaohui YANG, Chongwen HUANG, and Weijie
YUAN. Secure federated learning over wireless communi-
cation networks with model compression. ZTE Communi-
cations, 21(1):46–54, 2023.

[Dosovitskiy et al., 2021] Alexey Dosovitskiy, Lucas Beyer,
Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Min-
derer, Georg Heigold, Sylvain Gelly, et al. An image is
worth 16x16 words: Transformers for image recognition at
scale. ICLR, 2021.

[Feng et al., 2024] Fu Feng, Jing Wang, and Xin Geng. Trans-
ferring core knowledge via learngenes. arXiv preprint
arXiv:2401.08139, 2024.

[Glorot and Bengio, 2010] Xavier Glorot and Yoshua Bengio.
Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth interna-
tional conference on artificial intelligence and statistics,
pages 249–256. JMLR Workshop and Conference Proceed-
ings, 2010.

[Graham et al., 2021] Benjamin Graham, Alaaeldin El-
Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé
Jégou, and Matthijs Douze. Levit: a vision transformer in
convnet’s clothing for faster inference. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 12259–12269, 2021.

[He et al., 2015] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification.
In Proceedings of the IEEE international conference on
computer vision, pages 1026–1034, 2015.

[He et al., 2022] Kaiming He, Xinlei Chen, Saining Xie,
Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 16000–16009, 2022.

[Hinton et al., 2015] Geoffrey Hinton, Oriol Vinyals, and Jeff
Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

[Huang et al., 2020] Xiao Shi Huang, Felipe Perez, Jimmy
Ba, and Maksims Volkovs. Improving transformer opti-
mization through better initialization. In International Con-
ference on Machine Learning, pages 4475–4483. PMLR,
2020.

[Ji et al., 2023] Zhong Ji, Jingwei Ni, Xiyao Liu, and Yanwei
Pang. Teachers cooperation: team-knowledge distillation
for multiple cross-domain few-shot learning. Frontiers of
Computer Science, 17(2):172312, 2023.

[Kovaleva et al., 2019] Olga Kovaleva, Alexey Romanov,
Anna Rogers, and Anna Rumshisky. Revealing the dark
secrets of bert. EMNLP, 2019.

[Krause et al., 2013] Jonathan Krause, Michael Stark, Jia
Deng, and Li Fei-Fei. 3d object representations for fine-
grained categorization. In Proceedings of the IEEE inter-
national conference on computer vision workshops, pages
554–561, 2013.

[Krizhevsky et al., 2009] Alex Krizhevsky, Geoffrey Hinton,
et al. Learning multiple layers of features from tiny images.
Technique Report, 2009.

[Lan et al., 2020] Zhenzhong Lan, Mingda Chen, Sebastian
Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. Albert: A lite bert for self-supervised learning of
language representations. ICLR, 2020.

[LeCun et al., 2002] Yann LeCun, Léon Bottou, Genevieve B
Orr, and Klaus-Robert Müller. Efficient backprop. In
Neural networks: Tricks of the trade, pages 9–50. Springer,
2002.

[Li et al., 2024] Lei Li, Chengyu Wang, Minghui Qiu, Cen
Chen, Ming Gao, and Aoying Zhou. Accelerating bert

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5261



inference with gpu-efficient exit prediction. Frontiers of
Computer Science, 18(3):183308, 2024.

[Li et al., 2025] Shaoyuan Li, Yuxiang Zheng, Ye Shi,
Shengjun Huang, and Songcan Chen. Kd-crowd: A knowl-
edge distillation framework for learning from crowds. Fron-
tiers of Computer Science, 19(1):191302, 2025.

[Liu et al., 2021] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yix-
uan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using
shifted windows. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pages 10012–10022,
2021.

[Mishkin and Matas, 2015] Dmytro Mishkin and Jiri Matas.
All you need is a good init. arXiv preprint
arXiv:1511.06422, 2015.

[Oquab et al., 2023] Maxime Oquab, Timothée Darcet, Théo
Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khali-
dov, Pierre Fernandez, Daniel Haziza, Francisco Massa,
Alaaeldin El-Nouby, et al. Dinov2: Learning robust
visual features without supervision. arXiv preprint
arXiv:2304.07193, 2023.

[Paszke et al., 2019] Adam Paszke, Sam Gross, Francisco
Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In Proceedings of the
33th Annual Conference on Neural Information Processing
Systems, pages 8024–8035, 2019.

[Radford et al., 2021] Alec Radford, Jong Wook Kim, Chris
Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. Learning transferable visual models from natural lan-
guage supervision. In International conference on machine
learning, pages 8748–8763. PMLR, 2021.

[Ren et al., 2023] Sucheng Ren, Fangyun Wei, Zheng Zhang,
and Han Hu. Tinymim: An empirical study of distilling
mim pre-trained models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 3687–3697, 2023.

[Samragh et al., 2023] Mohammad Samragh, Mehrdad Fara-
jtabar, Sachin Mehta, Raviteja Vemulapalli, Fartash
Faghri, Devang Naik, Oncel Tuzel, and Mohammad Raste-
gari. Weight subcloning: direct initialization of trans-
formers using larger pretrained ones. arXiv preprint
arXiv:2312.09299, 2023.

[Shi et al., 2024] Boyu Shi, Shiyu Xia, Xu Yang, Haokun
Chen, Zhiqiang Kou, and Xin Geng. Building variable-
sized models via learngene pool. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38,
pages 14946–14954, 2024.

[Takase and Kiyono, 2021] Sho Takase and Shun Kiyono.
Lessons on parameter sharing across layers in transformers.
arXiv preprint arXiv:2104.06022, 2021.

[Touvron et al., 2021] Hugo Touvron, Matthieu Cord,
Matthijs Douze, Francisco Massa, Alexandre Sablayrolles,

and Hervé Jégou. Training data-efficient image trans-
formers & distillation through attention. In International
conference on machine learning, pages 10347–10357.
PMLR, 2021.

[Touvron et al., 2023] Hugo Touvron, Thibaut Lavril, Gautier
Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

[Wang et al., 2022a] Qiu-Feng Wang, Xin Geng, Shu-Xia
Lin, Shi-Yu Xia, Lei Qi, and Ning Xu. Learngene: From
open-world to your learning task. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36,
pages 8557–8565, 2022.

[Wang et al., 2022b] Wenhui Wang, Hangbo Bao, Li Dong,
Johan Bjorck, Zhiliang Peng, Qiang Liu, Kriti Aggar-
wal, Owais Khan Mohammed, Saksham Singhal, Subhojit
Som, et al. Image as a foreign language: Beit pretraining
for all vision and vision-language tasks. arXiv preprint
arXiv:2208.10442, 2022.

[Wang et al., 2023] Qiufeng Wang, Xu Yang, Shuxia Lin, and
Xin Geng. Learngene: Inheriting condensed knowledge
from the ancestry model to descendant models. arXiv
preprint arXiv:2305.02279, 2023.

[Xia et al., 2024] Shiyu Xia, Miaosen Zhang, Xu Yang,
Ruiming Chen, Haokun Chen, and Xin Geng. Transformer
as linear expansion of learngene. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38,
pages 16014–16022, 2024.

[Xu et al., 2023] Zhiqiu Xu, Yanjie Chen, Kirill Vishniakov,
Yida Yin, Zhiqiang Shen, Trevor Darrell, Lingjie Liu, and
Zhuang Liu. Initializing models with larger ones. arXiv
preprint arXiv:2311.18823, 2023.

[Yan et al., 2023] Jintao Yan, Tan Chen, Bowen Xie, Yuxuan
Sun, Sheng Zhou, and Zhisheng Niu. Hierarchical federated
learning: Architecture, challenges, and its implementation
in vehicular networks. ZTE Communications, 21(1):38–45,
2023.

[Zhang et al., 2022] Jinnian Zhang, Houwen Peng, Kan Wu,
Mengchen Liu, Bin Xiao, Jianlong Fu, and Lu Yuan.
Minivit: Compressing vision transformers with weight mul-
tiplexing. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12145–
12154, 2022.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5262


	Introduction
	Related Work
	Weight Initialization
	Learngene
	Weight Sharing

	Approach
	Preliminaries
	Stage-wise Weight Sharing of Learngene
	Initialization with Learngene

	Experiments
	Experimental Setup
	Main Results
	Ablation and Analysis

	Conclusion

