
PDENNEval: A Comprehensive Evaluation of Neural Network Methods for
Solving PDEs∗

Ping Wei , Menghan Liu , Jianhuan Cen , Ziyang Zhou , Liao Chen and
Qingsong Zou†

School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
Guangdong Province Key Laboratory of Computational Science, Guangzhou, China

{weip7, liumh59, cenjh3, zhouzy36, chenliao}@mail2.sysu.edu.cn, mcszqs@mail.sysu.edu.cn

Abstract

The rapid development of neural network (NN)
methods for solving partial differential equations
(PDEs) has created an urgent need for evaluation
and comparison of these methods. In this study,
we propose PDENNEval, a comprehensive and sys-
tematic evaluation of 12 NN methods for PDEs.
These methods are classified into function learning
type and operator learning type based on their dif-
ferent mathematical foundations. The evaluation is
implemented using a diverse dataset comprising 19
distinct PDE problems selected from various sci-
entific fields such as fluid, materials, finance, and
electromagnetic. Several evaluation results are re-
ported, aiming to provide guidance for further re-
search in this field. Our code and data are pub-
licly available at https://github.com/Sysuzqs/PDE
NNEval.

1 Introduction
Owing to their exceptional approximation capabilities
[Hornik, 1991; Barron, 1994] and multi-level feature extrac-
tion abilities [LeCun et al., 2015], neural networks (NN)
based methods have been widely applied and have achieved
great success in various disciplines, including computer vi-
sion [Krizhevsky et al., 2012; He et al., 2016; Dosovitskiy et
al., 2020] and natural language processing ([Vaswani et al.,
2017; Devlin et al., 2018; Brown et al., 2020]). Recently, NN
methods have excelled in solving partial differential equa-
tions (PDEs), yielding significant breakthroughs in this field,
e.g. [E et al., 2017; E and Yu, 2018; Raissi et al., 2019;
Li et al., 2020; Lu et al., 2021a]. Compared to traditional nu-
merical PDEs methods like finite element methods, NN meth-
ods exhibit unique advantages. One notable advantage is that
they are mesh-free, making them immune to the curse of di-
mensionality. In addition, NN methods can learn patterns and
features from data which might be governed by multiple types
of equations[Raissi and Karniadakis, 2018]. This capability

∗An extendede version of this paper(with the Appendix included)
can be find in https://github.com/Sysuzqs/PDENNEval.

†Corresponding author.

enables a single solver to handle various types of equations,
offering a more versatile approach for solving PDEs.

The widespread development of NN methods for solv-
ing PDEs generates a pressing need for the assessment and
comparative analysis of these techniques. In 2021, Lu and
his colleagues compare the Physics-Informed Neural Net-
works (PINN) to a standard finite element method across var-
ious problems, including Poisson equation, Burgers’ equa-
tion, Volterra integral differential equation, Lorenz system
and Diffusion-Reaction systems in [Lu et al., 2021b]. In
2022, three benchmarks of NN methods for PDEs are pub-
lished. First, Lu and his colleagues[Lu et al., 2022] present
the relative performance of Deep Operator Network (Deep-
ONet) and Fourier Neural Operator (FNO) by using 16 differ-
ent benchmarks covering Burgers’ equation, Darcy problem,
Advection equation, Compressible Euler equations, electro-
convection problem and Navier-Stokes equation, etc. Sec-
ondly, a side-by-side analysis, called PDEArena, is presented
in [Gupta and Brandstetter, 2022] to show the performance
of NN methods FNO, ResNet, and U-Net on Shallow-Water
equations and Navier-Stokes equations. Thirdly, a versatile
benchmark suite[Takamoto et al., 2022b], called PDEBench,
is proposed to compare NN methods FNO, U-Net, PINN, us-
ing datasets derived from 11 hydromechanical field PDEs, in-
cluding Advection, Navier-Stokes equations, etc. In 2023, a
benchmark[Hao et al., 2023], called PINNacle, is designed
to assess the performance of 10 PINN variants, encompassed
tasks derived from over 20 different PDEs spanning various
domains, such as heat conduction, fluid dynamics, biology,
and electromagnetic.

Previous research primarily benchmarks some popular
methods such as DeepONet, FNO, U-Net, and PINN. How-
ever, a comprehensive evaluation of some other important
NN methods is lacking. Additionally, different types of NN
methods are often compared in the same setting without be-
ing classified and evaluated based on their distinct mathemat-
ical foundations. On the other hand, despite the selection of
various types of PDE problems in previous work, some cru-
cial equations, such as phase-field equations, have not been
included in the evaluation tasks. Furthermore, challenging
problems like PDEs with singular solutions have also been
omitted. In summary, the development of the evaluation and
comparison works for NN methods have not kept pace with
the advancement of NN methods themselves.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5181

In this work, we propose a comprehensive and system-
atic evaluation of various NN methods for solving diversified
PDE problems, considering accuracy, efficiency and robust-
ness.

Our evaluations are integrated into a benchmarks suite
called PDENNEval, with some key features listed below.

• We provide a code reference that integrates 12 advanced
NN methods, including six function learning-based NN
methods: the Deep Ritz Method(DRM) [E and Yu,
2018], PINN [Raissi et al., 2019], Weak Adversarial
Network (WAN) [Zang et al., 2020], Derivative-Free
Loss Method (DFLM)[Han et al., 2020], Random Fea-
ture Method (RFM) [Chen et al., 2022], Deep Finite
Volume Method (DFVM) [Cen and Zou, 2023], and
six operator learning-based NN methods: U-Net[Ron-
neberger et al., 2015], Message Passing Neural PDE
Solvers (MPNN)[Brandstetter et al., 2022], FNO [Li
et al., 2020], DeepONet[Lu et al., 2021a], Physics-
Informed Neural Operator (PINO)[Li et al., 2021], U-
shaped Neural Operators (U-NO)[Rahman et al., 2022].
We systematically evaluate the performance of these two
categories in different setting.

• We carefully select 19 representative PDE problems
from various fields such as fluid dynamics, materi-
als science, finance, and electromagnetism to evalu-
ate the performance of the aforementioned NN meth-
ods. These equations encompass some core mathemat-
ical challenges, including nonlinearity, singularity, high
dimensionality and complex geometry. It’s may worth
mentioning that it is the first time NN methods have been
evaluated by using a PDE with a singular solution. More
detailed descriptions for all PDEs are provided in Ap-
pendix A.

• We design a diverse and high-fidelity dataset, gen-
erated using high-precision conventional scientific-
computation methods. For instance, to generate the data
for the phase-field equations, spatial discretization is
accomplished using the spectral method, and time dis-
cretization is performed using the fourth-order Runge-
Kutta method.

• We select a set of metrics that are better suited for each
type of NN methods, including L2 norm relative error
and maximum error, to assess accuracy, Lipschitz con-
stant to evaluate robustness, and efficiency metrics en-
compassing training time, inference time, and conver-
gence time.

The rest of the paper is organized as below. In Section 2,
we outline the 12 representative NN methods and present 19
distinct PDE tasks which will be evaluated in PDENNEval. In
Section 3, we present an overview of the datasets and metrics
used in PDENNEval. In Section 4, we illustrate a standard-
ized testing procedure, and present the results of the pertinent
tests. Some brief concluding remarks are given in Section 5.

2 An Overview of Selected PDEs and NN
Methods

In this section, we briefly introduce the PDE problems and
NN methods integrated into the PDENNEval.

2.1 Selected PDE Tasks
A well-posed PDE system often involves three fundamental
components: the equation itself, boundary conditions, and
initial values. Let Ω ⊂ Rn be the spatial domain with bound-
ary ∂Ω, and let [0, T] be the time interval. A general PDE
system can be represented as:

F(u;x, t;λ) = f(x, t), (x, t) ∈ Ω× [0, T], (1)

where F represents a differential operator governing the be-
havior of the unknown function u, λ is an optional vector
of parameters, appearing often as constant or variable coef-
ficients of the differential operator, and f(x, t) is a vector-
valued function. This equation encapsulates the evolution of
the system over the spatiotemporal domain. Boundary condi-
tions are often expressed as:

B(u;x, t) = b(x, t), x ∈ ∂Ω, (2)

where b is a given vector-valued function defined on ∂Ω. The
boundary conditions B define how the solution behaves or is
constrained at the boundary of the domain. At t = 0, the
system’s state is often specified by initial values:

I(u; (x, t)|t=0) = i(x), x ∈ Ω, (3)

where i is a given vector-valued function defined only on Ω.
Usually, we call it as a forward problem when seeking a

function u to satisfy (1), (2) and (3), given the information
Ω, λ, f ,b, i. Conversely, we call it as an inverse problem if
we aim to seek parameters λ, or the shape of Ω, or initial con-
ditions, or other essential information about the system based
on some observed data or outcomes. In this bench, since an
inverse problem might be solved by training a NN using the
same loss function as its corresponding forward problem, we
will focus only on solving forward problems and encourage
subsequent researchers to benchmark their respective inverse
problems.

In our study, we aim to benchmark 19 forward problems of
PDEs, representing pivotal mathematical models in physics
and engineering that span various fields, including fluid dy-
namics, materials science, finance, and electromagnetism.
Within the realm of fluid dynamics, our benchmark incorpo-
rates 11 equations: 1D Advection, 1D and 2D Burgers’, 1D
Diffusion-Reaction, 1D Diffusion-Sorption, 2D Darcy Flow,
2D Shallow-Water, 1D, 2D, and 3D Navier-Stokes, and 3D
Euler equations. These equations model gas and liquid flow
phenomena, finding applications across aerospace, weather
prediction, oceanography, chemistry, and hydraulic engineer-
ing fields. Notably, while nine fluid-related PDEs have been
evaluated in PDEBench, they were restricted to only three
methods, whereas our assessment extends to twelve methods
in total. In materials science, our selection includes the 1D
and 2D Allen-Cahn equations and the 1D Cahn-Hilliard equa-
tion, employed in understanding material phase transitions,

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5182

crystal growth, and surface evolution phenomena. Regard-
ing finance, we encompass the 2D Black-Scholes-Barenblatt
equation, crucial in the pricing of European options. In the
domain of electromagnetism, our benchmark involves the
Poisson equation and 3D Maxwell’s equations, which model
the behaviors of electromagnetic field and serve as fundamen-
tal elements in the realms of communication technology, elec-
tromagnetic device design, and optical systems. Specifically
for the Poisson equation, we construct three distinct cases.

We select these PDEs to ensure that the benchmark intro-
duces a wide range of mathematical challenges, including

• Nonlinear behavior: Numerous PDEs showcase non-
linear or even chaotic dynamics, wherein minor alter-
ations in initial conditions result in significant diver-
gence within the outcomes. Addressing these nonlin-
earities illuminates a method’s capacity to capture in-
tricate and sensitive dependencies within the system’s
behavior. In particular, our set of equations includes pri-
marily nonlinear equations, such as the Navier-Stokes
equations, phase field equations, and the Black-Scholes-
Barenblatt equation.

• High dimensionality: Various fields, including mate-
rials, finance, and quantum mechanics, present high-
dimensional PDEs. To evaluate the capability of NN
methods in handling high-dimensional PDEs, we utilize
high-dimensional (d > 3) Poisson equations to compare
the performance of function learning-based NN meth-
ods.

• Singularity: Singularities in partial differential equa-
tions represent unconventional solution properties, often
marked by unboundedness, discontinuities, or lack of
differentiability at specific points. In our PDENNEval,
we intentionally create a Poisson equation with a singu-
lar solution for assessment purposes.

• Complex geometry: PDEs of practical significance of-
ten extend beyond regular domains, underscoring the
importance of evaluating NN methods’ capability to
handle irregular domain scenarios. In our study, focus-
ing on the Poisson equation, we established a specific
case involving the resolution of the equation over an L-
shaped domain.

2.2 Selected NN Methods
An NN method heavily relies on its definition of the loss func-
tion L(θ) which depends on θ, the trainable parameters of the
NN. Generally, a loss L(θ) for PDEs consolidates four essen-
tial components into a unified expression as follows:

L(θ) = ωPDE LPDE(θ) + ωBC LBC(θ)

+ ωIC LIC(θ) + ωData LData(θ), (4)
where ωPDE, ωBC, ωIC, ωData are the weights of different loss
terms, and a breakdown of each loss term is explained as be-
low:

• PDE constraint loss (LPDE) enforces the PDE con-
straints within the domain Ω, defined as

LPDE(θ) =
1

N1

∑
(x,t)∈SPDE

∥F̂(uθ, f ;x, t;λ)∥2, (5)

where F̂ is a variant of the original equations (1), in-
cluding its strong, weak, stochastic forms; SPDE is the
set of training points in the interior of Ω × [0, T], and
N1 = #SPDE.

• Boundary condition loss (LBC) ensures adherence to
specified boundary conditions at ∂Ω, defined as

LBC(θ) =
1

N2

∑
(x,t)∈SBC

∥ (B(uθ)− b) (x, t)∥2, (6)

where SBC is the set of training points sampled from the
boundary ∂Ω× [0, T], and N2 = #SBC.

• Initial condition loss (LIC) enforces accuracy at the ini-
tial time t = 0, defined as

LIC(θ) =
1

N3

∑
x∈SIC

∥I(uθ(x, 0))− i(x)∥2, (7)

where SIC is the set of training points sampled from the
Ω, and N3 = #SIC.

• Data loss (LData) measures the discrepancy between
predicted and observed data at designated points, de-
fined as

LData(θ) =
1

N4

∑
(x,t)∈SData

∥uθ(x, t)− u(x, t)∥2, (8)

where SData is the set of training points at which the
value of the true solution u is known and N4 = #SData.

In general, physics-driven methods typically encompass
only the first three components of the loss function, i.e.,
ωData = 0, while data-driven methods exclude the PDE con-
straint loss. However, in practice, certain physics-driven ap-
proaches encompass all loss components, blurring the dis-
tinction between data-driven and physics-driven paradigms.
Hence, categorizing methods strictly into physics-driven and
data-driven techniques becomes inadequate, given the strong
coupling between these methodologies. The demarcation be-
tween these two approaches tends to be ambiguous.

In PDENNEval, we attempt to categorize NN methods for
solving PDEs into two principal categories distinguished by
their mathematical foundations. The first category employs
elaborated NN to fit the solution function of the equation,
rooted in the universal approximation theory[Hornik, 1991;
Barron, 1994; He et al., 2022]. The second category utilizes
NN to fit solution operators for a spectrum of PDEs, based on
the universal approximation of linear or nonlinear operators
by NN[Lu et al., 2021a]. Some details of these two methods
are described as below.

Function Learning Based NN Methods
NN methodologies for function learning largely fall under the
domain of physics-driven methods, resembling traditional ap-
proaches in their goal of approximating solutions to PDEs.
While traditional numerical methods often utilize piece-wise
polynomials, NN methods leverage networks for this pur-
pose. Typically, these methods involve training the networks
using the four aforementioned loss components. However,
similar to a traditional numerical method which solves a PDE

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5183

only using the equation itself, the boundary and initial condi-
tions, a function learning type NN method often does not need
to use exceptional data to train the NN. That is, ωData is often
set to 0. Certainly, data might contribute to the boundary and
initial value losses, but they are typically treated separately
from the data loss component.

Function learning based methods differ mainly in their
treatment of the PDE constraint loss item. Strong form-based
methods like PINN and RFM integrate the PDE constraint
loss utilizing the residual F̂ = F − f . PINN and RFM
both employ strong form-based loss functions, yet their op-
timization processes differ. PINN utilizes deep learning op-
timizers, while RFM, employing linear algebraic equations,
fixes the parameters of the preceding layers to compute the
final layer’s parameters. Weak form-based methods encom-
pass DRM, WAN, DFLM, and DFVM. DRM is rooted in the
variational format, emphasizing the principle of minimal po-
tential energy. WAN adopts the virtual-work-principle form,
focusing on finding weak solutions to the equations. DFLM
tailors its loss to match the equivalent stochastic-differential
form of the original PDE. DFVM aligns its loss with the
local-conservation form of the PDE.

Operator Learning Based NN Methods
Operator learning-based methods tackle solving a set of PDEs
by learning some operators, categorized into autoregressive
and non-autoregressive approaches. Autoregressive methods
focus on learning mappings from solutions at preceding time
steps to subsequent time steps, including FNO, MPNN, U-
Net, and U-NO. Non-autoregressive methods focus on learn-
ing mappings from auxiliary functions to solution functions,
including DeepONet and PINO.

Autoregressive methods learn mappings from preceding
time-step solutions to subsequent time-step solutions. These
methods fundamentally simulate an image-to-image map-
ping, forecasting the future state based on the current state,
which can be described as below :

G : u(x, t)|t=t0 7→ u(x, t)|t=t1 . (9)

These methods involve formulating the loss function to mini-
mize the difference between the predicted solution at the next
time step and the actual solution. This enables the network
to learn the temporal evolution of the system. For instance,
FNO focuses on parameterizing the integral kernel directly in
Fourier space, enabling an expressive and efficient architec-
ture for learning solution operators. MPNN operates on graph
data by iteratively generating messages, aggregating neigh-
bor information, and updating node representations. U-Net
adapts an autoregressive approach for solving time-dependent
PDEs. Its architecture predicts subsequent time step solutions
based on preceding sequences of solutions, making it adept
at capturing both local and global patterns for progressive
solutions. U-NO employs a U-shaped architecture, mitigat-
ing memory constraints while efficiently mapping functions
across different domains. By handling encoding and decod-
ing with skip connections, it offers an effective solution for
complex neural operator modeling.

Non-autoregressive methods involve learning an operator
which maps the known information (λ, f ,b, i) to solution

PDE DatasetPDE Dataset

Advection Ad1 Diffusion-Reaction DR1
Burgers 1D Bu1 Diffusion-Sorption DS1
Allen-Cahn 1D AC1 Cahn-Hilliard CH1
Comp Navier-Stokes 1D NS1 Comp Navier-Stokes 2DNS2
Allen-Cahn 2D AC2 Burgers 2D Bu2
Darcy Flow DF2 Shallow-Water SW2
Black-Scholes-BarenblattBS2 Comp Navier-Stokes 3DNS3
Maxwell’s Ma3 Euler Eu3

Table 1: The name of datasets corresponding to PDEs

functions u ∈ U , described as

G : (λ, f ,b, i) 7→ u. (10)

In other words, these methods aim to learn mappings from
right-hand side functions, boundary conditions, or other aux-
iliary information to the solution function. The loss function
formulation for such mappings varies based on specific model
designs and target functions, and may or may not involve the
explicit PDE constraint loss term. For instance, DeepONet
utilizes separate feed-forward neural networks (FNNs) to en-
code input functions and query locations, effectively mapping
auxiliary functions directly to solutions. PINO blends data
and physics information to learn resolution-invariant opera-
tors in Fourier space. It efficiently handles temporal PDEs by
combining data-driven and physics-driven methodologies for
accurate solutions across various resolutions and dimensions.

3 An Overview of Datasets and Metrics
In this section, we present two fundamental components of
PDENNEval: the datasets and the metrics.

3.1 Datasets
The PDENNEval datasets consist of 16 data files, each repre-
senting a distinct PDE, excluding three instances of the Pois-
son equation which are solved using only the first two loss
components in (4) (i.e. ωIC = ωData = 0). These 16 data files
are named using the following abbreviations of PDEs.

In each data file, we store multiple samples, each of which
is a solution of the related PDE. All solution samples are ob-
tained by using traditional numerical methods to solve the
PDE with different initial functions, sampled in a certain
function space according to a certain distribution. Each sam-
ple contains the spatiotemporal coordinates of the underlying
mesh and the values of the solution at those locations. Listed
in Table 2 is a summary of all 16 data files. In this table, Nd

is the number of spatial dimensions of the equation, and NS

is the size of the data file. Moreover, we use Nsp, Nt, Nsa
to denote the spatial resolution, the temporal resolution of the
underlying mesh, and the number of samples, respectively.
Note that, since the Darcy flow equation is time-independent,
we have not provided the number Nt for the dataset DF2.

Some details about the traditional numerical methods for
generating datasets are reported below. First, the following
four datasets: AC1, AC2, CH1, and Bu2 are generated using
the Matlab R2022a Software. More precisely, the samples in
AC1, AC2 and CH1 are obtained by discretizing the spatial

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5184

Dataset Nd NS Nsp Nt Nsa

Ad1 1 7.7 G 1024 201 10000
DR1 1 3.9 G 1024 101 10000
Bu1 1 7.7 G 1024 201 10000
DS1 1 4.0 G 1024 101 10000
AC1 1 3.9 G 1024 101 10000
CH1 1 3.9 G 1024 101 10000
NS1 1 12 G 1024 101 10000
Bu2 2 13 G 128× 128 101 1000
NS2 2 52 G 128× 128 21 10000
DF2 2 1.3 G 128× 128 - 10000
SW2 2 6.2 G 128× 128 101 1000
AC2 2 6.2 G 128× 128 101 1000
BS2 2 6.2 G 128× 128 101 1000
Ma3 3 5.9 G 32× 32× 32 8 1000
Eu3 3 83 G 128× 128× 128 21 100
NS3 3 83 G 128× 128× 128 21 100

Table 2: Summary of datasets

variable with a spectral method and discretizing the temporal
variable with a fourth-order Runge-Kutta scheme. The sam-
ples in the dataset Bu2 are obtained by discretizing the spatial
first-order derivatives with a first-order upwind scheme and
discretizing the spatial second-order derivatives with a cen-
tral difference scheme. Secondly, the datasets Ma3, BS2, Eu3
are generated using Python. To be more specific, the samples
in Ma3 are obtained by discretizing the 3D Maxwell equa-
tion using the finite-difference time-domain method (FDTD,
[Kunz and Luebbers, 1993]), and the resulting discrete alge-
braic system is solved with the leapfrog method. The BS2
dataset is sampled from some exact solutions of the Black-
Scholes-Barenblatt equation given in [Raissi, 2024]. The
samples in Eu3 are obtained by solving the Euler equation
utilizing the second-order HLLC scheme [Toro et al., 1994]
for the inviscid part, the MUSCL schemes [Van Leer, 1979]
for its inviscid counterpart, and a central difference scheme
for the viscous part. The remaining nine datasets are related
to PDEs in fluid dynamics, their samples are generated us-
ing the numerical methods which been used to generate the
dataset in the PDEBench [Takamoto et al., 2022a].

All datasets are stored in HDF5 format, which is conve-
nient to use and share and widely supported in a host of pro-
grams including Python, R and Matlab. The data and usage
example can be found in https://github.com/Sysuzqs/PDENN
Eval. More details of datasets can be found in Appendix C.

3.2 Metrics
In this section, we briefly introduce the metrics used in
PDENNEval. To evaluate the accuracy, efficiency, and ro-
bustness of our selected NN methods, we collect 7 metrics
which can be categorized into two groups: performance met-
rics and functional metrics. They are summarized in Table
3. Furthermore, we provide the definition of one metric from
each of the aforementioned groups. The L2 norm relative er-
ror is defined as L2RE = ∥uθ − u∥2/∥u∥2. The Lipschitz
constant Lips is defined as the smallest L satisfying

∥uθ(x)− uθ(y)∥2 ≤ L∥x− y∥2, ∀x,y.

Group Metrics Symbolic meanings

Performance

L2RE L2 norm relative error
mERR L∞ norm error
ttrain Model training time
tinfer Model inference time for one sample
tconv The time of model convergence

Functional Cove Model’s coverage ability on multiple tasks
Lips The Lipschitz constant

Table 3: Metrics of PDENNEval

Here ∥·∥2 is the L2 norm, uθ is the predictive solution, and u
is the reference solution. The definition of other metrics and
their detailed description are given in Appendix D.

4 A Selection of Evaluation Results
In this section, we separately present partial experimental re-
sults for function learning-based NN methods and operator
learning-based NN methods. Additional results can be found
in Appendix F. For a fair comparison, all our experiments are
conducted using the following system configuration: CPU :
2× Intel Xeon Gold 6230R @ 2.10GHz; GPU : 1 × NVIDIA
TITAN RTX; Software : PyTorch@1.13.1, CUDA@11.6.

Recall that we have introduced 12 NN methods and 19
PDE tasks in Section 2. In our experiments, to test the perfor-
mance of function learning NN methods, we introduce three
additional PDE tasks PS , PL, PH which will be explained in
details in Section 4.1. Apparently, in PDENNEval, not every
method has been applied to all 19 PDE tasks. Listed in Ta-
ble 4 is a summary of tasks coverage by our selected 12 NN
methods.

From this table, we observe that PINN, DFVM, and RFM
have been used to solve all 19 PDE problems; Meanwhile,
the function learning methods WAN, DRM, and DFLM have
only been applied to a part of these PDE problems. Follow-
ing the vanilla methods, we use DRM [E and Yu, 2018] and
DFLM [Han et al., 2020] only to solve symmetric and time-
independent problems PS , PL, PH and DF2. In the same
way, we use WAN [Zang et al., 2020] only to solve scalar
problems. In contrast, all operator learning type methods
have not been used to solve the three Poisson tasks. More-
over, DeepONet, PINO and MPNN do not solve 3D prob-
lems, while the MPNN does not solve the time-independent
problem DF2 either. It is worth mentioning that we do
not mean that a specific NN method can not be applied to
solve some specific PDE problems if it has not been done in
our PDENNEval, it simply suggests that implementing this
NN method for individual equation problems may pose chal-
lenges.

4.1 Results on Function Learning Methods
As already pointed out in Table 4, function learning-based
NN methods can solve almost all kinds of PDE tasks. Here,
we primarily present the experimental results of three tasks
PH , PS and PL, which tackle three special mathematical
challenges high-dimensionality, singularity, and complex ge-
ometry. The governing PDE of these three tasks is the Poisson

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5185

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

PS ✓ ✓ ✓ ✓ ✓ ✓ × × × × × ×
PL ✓ ✓ ✓ ✓ ✓ ✓ × × × × × ×
PH ✓ ✓ ✓ ✓ ✓ ✓ × × × × × ×
Ad1 ✓ ✓ ✓ ✓ × × ✓ ✓ ✓ ✓ ✓ ✓
DR1 ✓ ✓ ✓ ✓ × × ✓ ✓ ✓ ✓ ✓ ✓
Bu1 ✓ ✓ ✓ ✓ × × ✓ ✓ ✓ ✓ ✓ ✓
DS1 ✓ ✓ ✓ ✓ × × ✓ ✓ ✓ ✓ ✓ ✓
AC1 ✓ ✓ ✓ ✓ × × ✓ ✓ ✓ ✓ ✓ ✓
CH1 ✓ ✓ ✓ × × × ✓ ✓ ✓ ✓ ✓ ✓
NS1 ✓ ✓ ✓ × × × ✓ ✓ ✓ ✓ ✓ ✓
Bu2 ✓ ✓ ✓ × × × ✓ ✓ ✓ ✓ ✓ ✓
NS2 ✓ ✓ ✓ × × × ✓ ✓ ✓ ✓ ✓ ✓
DF2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ×
SW2 ✓ ✓ ✓ × × × ✓ ✓ ✓ ✓ ✓ ✓
AC2 ✓ ✓ ✓ ✓ × × ✓ ✓ ✓ ✓ ✓ ✓
BS2 ✓ ✓ ✓ ✓ × × ✓ ✓ ✓ ✓ ✓ ✓
Ma3 ✓ ✓ ✓ × × × × × ✓ ✓ ✓ ×
Eu3 ✓ ✓ ✓ × × × × × ✓ ✓ ✓ ×
NS3 ✓ ✓ ✓ × × × × × ✓ ✓ ✓ ×

Table 4: Tasks coverage of NN methods. Here M1-M12 denote the NN methods PINN, DFVM, RFM, WAN, DRM, DFLM, DeepONet,
PINO, U-NO, FNO, U-Net, MPNN, respectively.

d PINN DFVM RFM WAN DRM DFLM

L2RE

3 0.0019 0.0019 0.0074 0.0672 0.0176 0.0311
5 0.0017 0.0017 0.0479 0.0431 0.0035 0.0034

10 0.0026 0.0025 0.3079 0.0573 0.0047 0.0038
20 0.0035 0.0035 0.5133 0.2503 0.0062 0.0043
40 0.0037 0.0036 0.5108 0.1316 0.0090 0.0057
80 0.0067 0.0062 0.5678 0.0159 0.0378 0.0296

120 0.0129 0.0112 0.6654 0.0230 0.1066 0.1053

ttrain(s)

3 395.5 145.3 - 115.7 147.1 302.8
5 549.7 156.0 - 135.1 150.1 303.1

10 1,289 221.6 - 171.4 299.6 320.6
20 2,512 290.3 - 291.8 314.2 324.6
40 4,526 412.7 - 444.4 314.3 325.7
80 7,472 776.0 - 818.7 328.2 329.7

120 10,701 1,151 - 1,272 344.3 370.1

Table 5: L2RE and ttrain of function learning methods for problem
PH .

equation

−∆u = f, in Ω, u = g, on ∂Ω. (11)

where Ω, f, g will be specified later.
1) High dimensional case (PH). In the first case, we eval-

uate the performance of function learning-based NN meth-
ods on high dimensional Poisson equations. Let Ω =
[−1, 1]d, here d = 3, 5, 10, 20, 40, 80, 120 is the spatial di-
mension. The functions f and g are chosen so that u(x) =(

1
d

∑d
i=1 xi

)2

+ sin
(

1
d

∑d
i=1 xi

)
, ∀x ∈ Rd, which is suf-

ficiently smooth.
Listed in Table 5 are L2 norm relative error and training

times of function learning methods for PH . From Table 5,
we observe that all methods are immune to the curse of di-
mensionality. That is, the computation time of no method

PINN DFVM RFM WAN DRM DFLM

L2RE 1.0793 0.0209 1.0298 0.0543 1.0050 0.0207
ttrain(s) 235.7 134.0 - 175.4 141.2 228.9

Table 6: L2RE and ttrain of function learning methods for problem
PS .

increases exponentially in terms of the dimension. Moreover,
PINN exhibits superior performance in terms of the L2RE
metric. The L2RE of the DFVM is almost as good as the
PINN. In addition, on evaluation on the training time metric
ttrain, the WAN excels for the 3, 5, 10, 20 dimensional cases,
while DRM excels for the 40, 80 and 120 dimension cases. It
is worth mentioning that since the RFM solution is obtained
by solving a linear system of algebraic equations instead of
training, no training time has been reported for this method.

2) Singular case (PS). In the second case, we consider the
equation 11 with a singular solution. Precisely, let Ω = [0, 1]2

and f, g be selected to ensure u(x1, x2) = x2
1 if 0 ≤ x1 ≤ 1

2

and u(x1, x2) = (1 − x1)
2 otherwise. Note that the exact

solution u is continuous but not smooth at the location x1 =
1
2 .

Listed in Table 6 are L2RE and ttrain of function learning
methods for this Poisson singular problem. We observe that
in this case, the error of the DFLM is the smallest, followed
by the DFVM. Moreover, the training time of the DFVM is
the shortest. The error of the PINN and the RFM seems to be
too big, which might be caused by the fact that they use the
strong form PDE to construct their loss.

3) L-shape domain case (PL). In the third case, we choose
Ω = [−1, 1]2\(0, 1]2 and f = 1, g = 0. There is no analyti-
cal solution for this problem. We utilize the software COM-
SOL to generate a numerical solution whose configuration is
shown in Fig1.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5186

Figure 1: The solution of the problem PL.

PINN DFVM RFM WAN DRM DFLM

L2RE 0.0042 0.0043 0.0189 0.0539 0.0216 0.5576
ttrain(s) 233.9 289.9 - 182.1 94.80 173.5

Table 7: L2RE and ttrain of function learning methods for problem
PL.

Listed in Table 7 are the L2 norm relative errors and train-
ing times for the problem PL. We observe that the error of
the PINN is the smallest, followed by the DFVM. The train-
ing time of the DRM is the shortest.

Note that here, only results concerning L2RE and ttrain are
reported, those concerning other metrics such as mERR, tinfer
and tconv will be presented in the Appendix F.

4.2 Results on Operator Learning Methods
The six operator learning methods to be measured in PDEN-
NEval are DeepONet, PINO, U-NO, FNO, U-Net, and
MPNN, which are data-driven. Therefore, they are applied
to solve 16 PDE problems except the three Poisson problems
in the previous section, as shown in Table 4. Due to the space
limitation, here we only present the evaluation results of the
following three equations: the 1D Advection equation (Ad1),
the 2D Allen-Cahn equation (AC2), and the 2D Darcy Flow
equation (DF2). In our experiments, 90% of the data in each
dataset is used for training, and 10% is used for testing. More-
over, here we only report the evaluation results in terms of the
accuracy metric L2RE and three time metrics: the training
time ttrain, the inference time tinfer, and the convergence time
tconv.

Listed in Table 8 are the L2 norm relative error of the
six operator learning methods. We observe that the U-NO
achieves the best computational accuracy for problems Ad1
and AC2, while PINO achieves the best accuracy for the prob-
lem DF2. Note that we did not employ MPNN to solve the
DF2.

Listed in Table 9 are the training, inference and conver-
gence time. We observe that for all three PDE problems,

DeepONet PINO U-NO FNO U-Net MPNN

Ad1 0.0792 0.0191 0.0069 0.0128 0.0699 0.0451
AC2 0.9999 0.0191 0.0054 0.0084 0.1117 0.0079
DF2 0.3971 0.0709 0.0702 0.1328 0.0828 -

Table 8: L2RE of operator learning methods for Ad1,AC2 and DF2.

DeepONet PINO U-NO FNO U-Net MPNN

ttrain

Ad1 6.6e02 9.0e03 2.9e04 1.1e04 2.4e04 2.6e04
AC2 5.3e03 8.5e05 2.0e05 9.0e04 6.7e04 3.1e04
DF2 1.1e03 1.4e05 2.2e04 8.4e03 1.3e04 -

tinfer

Ad1 8.0e-04 2.1e-03 2.9e-01 2.5e-01 7.7e-02 1.8e-02
AC2 6.1e-02 1.7e-02 4.3e-01 3.6e-01 3.7e-01 3.8e-01
DF2 1.3e-03 2.1e-03 2.3e-01 2.1e-01 3.6e-03 -

tconv

Ad1 5.7e02 7.2e03 2.7e04 8.7e03 2.3e04 2.6e04
AC2 3.2e01 8.5e04 4.2e04 1.9e04 6.7e04 3.1e04
DF2 8.8e02 8.2e03 1.8e04 5.1e03 1.2e04 -

Table 9: Training, inference and convergence time of operator learn-
ing methods.

DeepONet demonstrates noteworthy efficiency.

5 Concluding Remarks

In this study, we evaluate 6 function learning and 6 opera-
tion learning NN methods for solving 19 PDEs. Our exper-
iments with function learning methods demonstrate that, for
the PDEs with smooth solution, the PINN exhibits highest
accuracy, and the DRM and WAN exhibits excellent train-
ing speed. In the case of PDE with non-smooth solution,
the DFVM and WAN perform very well. Our experiments
with operator learning methods reveal that, for autoregres-
sive tasks, both U-NO and FNO perform admirably, while for
non-autoregressive tasks, DeepONet exhibits the best perfor-
mance.

Certainly, many other important NN methods, including
variants of PINN, and many other fundamental PDE tasks
such as multiscale problems in various fields have not been
covered yet in PDENNEval. Our evaluation system is scal-
able and easily accessible, everyone is welcome to contribute
data and/or codes to the https://github.com/Sysuzqs/PDENN
Eval.

Developing PDE solvers with high accuracy, efficiency,
and strong generalization is the pursuit of many computa-
tional scientists. The combination of traditional numeri-
cal methods and NN methods provides technical possibili-
ties for achieving this pursuit. It can be anticipated that in
the near future, there will likely be the emergence of many
large NN models capable of efficiently solving lots of com-
plex PDEs simultaneously (see e.g. [Yang et al., 2023a;
Yang et al., 2023b]). Therefore, in the future, we will pay
much attention to the evaluation of large NN models for solv-
ing PDE problems.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5187

Acknowledgments
This work was supported by the National Science and Tech-
nology Major Project (2022ZD0117805), by the National
Natural Science Foundation of China under grants 92370113
and 12071496, and by the Natural Science Foundation of the
Guangdong Province grant 2023A1515012097.

We thank graduate students Haolong Fan, Hongji Li and
Changye He, all from Sun Yat-sen University, for their helps
with numerical experiments.

References
[Barron, 1994] Andrew R Barron. Approximation and es-

timation bounds for artificial neural networks. Machine
learning, 14:115–133, 1994.

[Brandstetter et al., 2022] Johannes Brandstetter, Daniel
Worrall, and Max Welling. Message passing neural pde
solvers. arXiv preprint arXiv:2202.03376, 2022.

[Brown et al., 2020] Tom Brown, Benjamin Mann, Nick Ry-
der, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, et al. Language models are few-shot
learners. Advances in neural information processing sys-
tems, 33:1877–1901, 2020.

[Cen and Zou, 2023] Jianhuan Cen and Qingsong Zou. Deep
finite volume method for high-dimensional partial differ-
ential equations. arXiv preprint arXiv:2305.06863, 2023.

[Chen et al., 2022] Jingrun Chen, Xurong Chi, Zhouwang
Yang, et al. Bridging traditional and machine learning-
based algorithms for solving PDEs: The random feature
method. arXiv preprint arXiv:2207.13380, 2022.

[Devlin et al., 2018] Jacob Devlin, Ming-Wei Chang, Ken-
ton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805, 2018.

[Dosovitskiy et al., 2020] Alexey Dosovitskiy, Lucas Beyer,
Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Min-
derer, Georg Heigold, Sylvain Gelly, et al. An image is
worth 16x16 words: Transformers for image recognition
at scale. arXiv preprint arXiv:2010.11929, 2020.

[E and Yu, 2018] Weinan E and Bing Yu. The deep ritz
method: a deep learning-based numerical algorithm for
solving variational problems. Communications in Math-
ematics and Statistics, 6(1):1–12, 2018.

[E et al., 2017] Weinan E, Jiequn Han, and Arnulf Jentzen.
Deep learning-based numerical methods for high-
dimensional parabolic partial differential equations and
backward stochastic differential equations. Communi-
cations in Mathematics and Statistics, 5(4):349–380,
2017.

[Gupta and Brandstetter, 2022] Jayesh K Gupta and Jo-
hannes Brandstetter. Towards multi-spatiotemporal-
scale generalized pde modeling. arXiv preprint
arXiv:2209.15616, 2022.

[Han et al., 2020] Jihun Han, Mihai Nica, and Adam R
Stinchcombe. A derivative-free method for solving ellip-
tic partial differential equations with deep neural networks.
Journal of Computational Physics, 419:109672, 2020.

[Hao et al., 2023] Zhongkai Hao, Jiachen Yao, Chang Su,
Hang Su, Ziao Wang, Fanzhi Lu, Zeyu Xia, Yichi Zhang,
Songming Liu, Lu Lu, et al. PINNacle: A comprehen-
sive benchmark of physics-informed neural networks for
solving PDEs. arXiv preprint arXiv:2306.08827, 2023.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[He et al., 2022] Juncai He, Lin Li, and Jinchao Xu. Ap-
proximation properties of deep relu cnns. Research in the
mathematical sciences, 9(3):38, 2022.

[Hornik, 1991] Kurt Hornik. Approximation capabilities
of multilayer feedforward networks. Neural networks,
4(2):251–257, 1991.

[Krizhevsky et al., 2012] Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural infor-
mation processing systems, 25, 2012.

[Kunz and Luebbers, 1993] Karl S Kunz and Raymond J
Luebbers. The finite difference time domain method for
electromagnetics. CRC press, 1993.

[LeCun et al., 2015] Yann LeCun, Yoshua Bengio, and Ge-
offrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

[Li et al., 2020] Zongyi Li, Nikola Kovachki, Kamyar Az-
izzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural op-
erator for parametric partial differential equations. arXiv
preprint arXiv:2010.08895, 2020.

[Li et al., 2021] Zongyi Li, Hongkai Zheng, Nikola B. Ko-
vachki, David Jin, Haoxuan Chen, Burigede Liu, Kam-
yar Azizzadenesheli, and Anima Anandkumar. Physics-
informed neural operator for learning partial differential
equations. CoRR, abs/2111.03794, 2021.

[Lu et al., 2021a] Lu Lu, Pengzhan Jin, Guofei Pang,
Zhongqiang Zhang, and George Em Karniadakis. Learn-
ing nonlinear operators via deeponet based on the univer-
sal approximation theorem of operators. Nature machine
intelligence, 3(3):218–229, 2021.

[Lu et al., 2021b] Lu Lu, Xuhui Meng, Zhiping Mao, and
George Em Karniadakis. DeepXDE: A deep learning li-
brary for solving differential equations. SIAM review,
63(1):208–228, 2021.

[Lu et al., 2022] Lu Lu, Xuhui Meng, Shengze Cai, Zhip-
ing Mao, Somdatta Goswami, Zhongqiang Zhang, and
George Em Karniadakis. A comprehensive and fair com-
parison of two neural operators (with practical extensions)
based on FAIR data. Computer Methods in Applied Me-
chanics and Engineering, 393:114778, 2022.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5188

[Rahman et al., 2022] Md Ashiqur Rahman, Zachary E
Ross, and Kamyar Azizzadenesheli. U-NO: U-shaped
neural operators. arXiv preprint arXiv:2204.11127, 2022.

[Raissi and Karniadakis, 2018] Maziar Raissi and
George Em Karniadakis. Hidden physics models:
Machine learning of nonlinear partial differential equa-
tions. Journal of Computational Physics, 357:125–141,
2018.

[Raissi et al., 2019] Maziar Raissi, Paris Perdikaris, and
George E Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and in-
verse problems involving nonlinear partial differential
equations. Journal of Computational physics, 378:686–
707, 2019.

[Raissi, 2024] Maziar Raissi. Forward-backward stochastic
neural networks: deep learning of high-dimensional par-
tial differential equations. In Peter Carr Gedenkschrift:
Research Advances in Mathematical Finance, pages 637–
655. World Scientific, 2024.

[Ronneberger et al., 2015] Olaf Ronneberger, Philipp Fis-
cher, and Thomas Brox. U-Net: Convolutional networks
for biomedical image segmentation. In Medical Image
Computing and Computer-Assisted Intervention–MICCAI
2015: 18th International Conference, Munich, Germany,
October 5-9, 2015, Proceedings, Part III 18, pages 234–
241. Springer, 2015.

[Takamoto et al., 2022a] Makoto Takamoto, Timothy Pradi-
tia, Raphael Leiteritz, Dan MacKinlay, Francesco Ale-
siani, Dirk Pflüger, and Mathias Niepert. PDEBench
Datasets, 2022.

[Takamoto et al., 2022b] Makoto Takamoto, Timothy Pradi-
tia, Raphael Leiteritz, Daniel MacKinlay, Francesco Ale-
siani, Dirk Pflüger, and Mathias Niepert. PDEBench:
An extensive benchmark for scientific machine learn-
ing. Advances in Neural Information Processing Systems,
35:1596–1611, 2022.

[Toro et al., 1994] Eleuterio F Toro, Michael Spruce, and
William Speares. Restoration of the contact surface in the
hll-riemann solver. Shock waves, 4:25–34, 1994.

[Van Leer, 1979] Bram Van Leer. Towards the ultimate con-
servative difference scheme. v. a second-order sequel to
godunov’s method. Journal of computational Physics,
32(1):101–136, 1979.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in neural information processing systems,
30, 2017.

[Yang et al., 2023a] Liu Yang, Siting Liu, Tingwei Meng,
and Stanley J. Osher. In-context operator learn-
ing with data prompts for differential equation prob-
lems. Proceedings of the National Academy of Sciences,
120(39):e2310142120, 2023.

[Yang et al., 2023b] Liu Yang, Siting Liu, and Stanley J. Os-
her. Fine-tune language models as multi-modal differential
equation solvers. arXiv preprint arXiv:2308.05061, 2023.

[Zang et al., 2020] Yaohua Zang, Gang Bao, Xiaojing Ye,
and Haomin Zhou. Weak adversarial networks for high-
dimensional partial differential equations. Journal of Com-
putational Physics, 411:109409, 2020.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5189

	Introduction
	An Overview of Selected PDEs and NN Methods
	Selected PDE Tasks
	Selected NN Methods
	Function Learning Based NN Methods
	Operator Learning Based NN Methods

	An Overview of Datasets and Metrics
	Datasets
	Metrics

	A Selection of Evaluation Results
	Results on Function Learning Methods
	Results on Operator Learning Methods

	Concluding Remarks

