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Abstract
Inertial sensors, serving as attitude and motion
sensing components, are extensively used in vari-
ous portable devices spanning consumer electron-
ics, sports health, aerospace, etc. However, the se-
vere intrinsic errors of inertial sensors greatly re-
strict their capability to implement advanced func-
tions, such as motion tracking and semantic recog-
nition. Although generative models hold significant
potential for signal enhancement, unsupervised or
weakly-supervised generative methods may not
achieve ideal generation results due to the absence
of guidance from paired data. To address this,
we propose a scale and direction-guided genera-
tive adversarial network (SDG-GAN), which pro-
vides dual guidance mechanisms for GAN with un-
paired data across two practical application sce-
narios. In the unsupervised scenario where only
unpaired signals of varying quality are available,
our scale-guided GAN (SG-GAN) forces the gen-
erator to learn high-quality signal characteristics
at different scales simultaneously via the proposed
self-supervised zoom constraint, thereby facilitat-
ing multi-scale interactive learning. In the weakly-
supervised scenario, where additional experimen-
tal equipment can provide some motion informa-
tion, our direction-guided GAN (DG-GAN) intro-
duces auxiliary tasks to supervise signal generation
while avoiding interference from auxiliary tasks
on the main generation task. Extensive experi-
ments demonstrate that both the unsupervised SG-
GAN and the weakly-supervised DG-GAN signifi-
cantly outperform all comparison methods, includ-
ing fully-supervised approaches. The combined
SDG-GAN achieves remarkable results, enabling
unimaginable tasks based on the original inertial
signal, such as 3D motion tracking.

1 Introduction
Inertial sensors, which can capture the movement and ori-
entation of objects, are widely used in navigation, robotics,
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gaming, and health monitoring due to their portable wear-
ing and low power consumption [Li et al., 2022; Ehatisham-
ul Haq et al., 2021; Montesinos et al., 2018]. Compared
with optical sensors, ultrasonic sensors, and other motion
capture equipment, inertial sensors are not affected by light,
occlusion, noise, and other external environments during
data acquisition [Zhang et al., 2020; Gromov et al., 2019;
Liu et al., 2020a].

In localization and navigation, inertial sensors are indis-
pensable for estimating the position and trajectory of objects
or vehicles, especially in areas where GPS signals are weak
or non-existent, such as indoors, underground, or underwa-
ter [Chen et al., 2018; Ferrera et al., 2019]. They can also
be integrated with other sensors to enhance the precision and
stability of localization and navigation systems [Madgwick
et al., 2011; Caesar et al., 2020]. Inertial sensors also play
a crucial role in mapping unknown territories by tracking
movements [Esfahani et al., 2019b]. In healthcare and sports
engineering, these sensors can be worn or attached to medi-
cal equipment to monitor physical activities and health status
[Harle, 2013]. They offer valuable feedback for rehabilita-
tion, training, and performance improvement [Herath et al.,
2020]. For example, they measure the gait of patients with
Parkinson disease and detect falls or unusual behaviors of the
elderly or patients [Brossard et al., 2020a]. In gaming and vir-
tual reality, inertial sensors enrich user experiences by track-
ing their movements and orientations [Weber et al., 2021], al-
lowing for more immersive interactions. Inertial sensors are
also used to control the movement of virtual characters by
recording the user’s actions [Wang and Zhao, 2024a]. More-
over, an inertial measurement unit (IMU) can simulate real-
istic physical effects such as gravity, inertia, and collisions in
virtual environments [Liu et al., 2020b]. In summary, inertial
sensors are versatile and powerful for object orientation and
tracking in various contexts [Li et al., 2023].

However, the major drawback of inertial sensors in prac-
tice is their serious noise, including quantization noise, scale
factor error, cross-coupling error, etc., which severely affect
their accuracy and reliability [Wang and Zhao, 2024b]. Noise
can originate from various sources, such as thermal fluctua-
tions, manufacturing defects, and sensor aging [Saha et al.,
2022]. Furthermore, these errors can be accumulated in the
calculation, thereby making the function realization of iner-
tial signals much more challenging, especially for low-cost
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inertial sensors with lower quality and precision [Esfahani et
al., 2019a]. Therefore, signal enhancement is critical to en-
sure the effective utilization of inertial sensors in diverse ap-
plication scenes [Brossard et al., 2020b].

The inertial sensor signal enhancement methods can be
broadly classified into model-driven and data-driven cate-
gories. Model-driven methods leverage the physical prin-
ciples or intrinsic properties of the sensor signals to design
denoising algorithms [Nassar et al., 2004]. For instance,
Kalman filters, empirical mode decomposition, or wavelet
transforms separate the noise from the signal by relying on
prior knowledge of the signal or noise characteristics [Skog
and Handel, 2009]. In contrast, data-driven methods learn the
denoising function from data without relying on the knowl-
edge about signal characteristics, which can adapt to differ-
ent sensor types and noise patterns, such as non-stationary
and non-Gaussian noise [Yuan and Wang, 2023]. Particularly,
those generative deep learning models directly map inferior
signals to superior signals, providing a more effective way to
enhance signals.

Although generative deep learning models have great po-
tential in the signal enhancement task, their performance
relies on strictly paired training data, which is often im-
practical to obtain for inertial sensors [Wu et al., 2019;
Yang et al., 2024]. Without paired data as the label for
guidance, unsupervised generative models struggle to simul-
taneously focus on signal characteristics at different scales,
and weakly-supervised generative models integrating auxil-
iary tasks suffer from the interference of auxiliary tasks on
the main generation task. Therefore, there are few studies at-
tempting to apply GAN to improve inertial sensor signals. In
this paper, we enhance GAN under unsupervised and weakly-
supervised training scenarios by imposing scale and direction
guidance to GAN, thereby achieving inertial sensor signal en-
hancement based on unpaired data. The main contributions of
this paper are as follows.

• Considering that unsupervised GAN are prone to losing
attention to multi-scale features without the guidance of
paired data, we propose a scale guided GAN (SG-GAN),
which creates multi-scale generation pipelines and de-
signs zoom supervision to facilitate mutual learning be-
tween different scales, thereby avoiding poor generation
at certain resolutions.

• Considering that weakly-supervised GAN may be dis-
turbed by auxiliary tasks when receiving assistance from
them, we propose the learning direction guided GAN
(DG-GAN), which adjusts the impact of the auxiliary
task on the main task in real-time during training by
evaluating the feature consistency between the auxiliary
and main task.

• We comprehensively compare the existing IMU signal
enhancement methods in terms of Allan variance anal-
ysis and four downstream tasks. Experimental results
show that both SG-GAN and DG-GAN surpass all com-
parison methods in all static indicators and downstream
tasks. The fused SDG-GAN achieves an unprecedented
effect in improving the inertial signal.

2 Methodology
The primary challenge in enhancing low-cost sensor signals
is the inability to obtain strictly paired high and low-cost sen-
sor signals, so the end-to-end methods with fully-supervised
training are unusable for converting low-quality signals to
high-quality ones. To this end, we utilize CycleGAN [Zhu
et al., 2017] as the baseline to construct a mapping between
the unpaired signals with varying qualities. Considering that
no paired data is available as labels for generative guidance,
we propose two learning guidance methods for GAN accord-
ing to the differences in experimental scenarios.

2.1 Scale Guidance for Unsupervised Scenario
Signal features across different scales contain varied levels
of information [Saha et al., 2023]. For instance, lower-
resolution features primarily reflect global structures and se-
mantic content [Chen et al., 2020], whereas higher resolu-
tions capture intricate local details and textures [Burri et al.,
2016]. Models that focus on a single resolution tend to pro-
duce results that lack diversity and realism, often resulting
in either overly blurred or excessively sharp outputs [Yang et
al., 2023]. This issue is particularly critical in transferring
signals from low-cost to high-cost sensors, where capturing
multi-scale information is essential. To this end, we design
scale guidance for GAN, which creates transfer pipelines for
multiple scales, and propose zoom supervision to facilitate
mutual learning between scales, as shown in Fig. 1.

SG-GAN adopts cycleGAN as the baseline to cope with
unpaired input data, and it consists of two cycles. The cy-
cle with superior signals as input can be summarized as:
real superior signal → GANS2I → virtual inferior signal →
GANI2S → virtual superior signal, corresponding to the front
panel in Fig. 1. The cycle with inferior signals as input can
be summarized as: real inferior signal → GANI2S → virtual
superior signal → GANS2I → virtual inferior signal, corre-
sponding to the back panel in Fig. 1. Among them, the gener-
ator GANI2S transfers inferior signals to superior signals, and
the generator GANS2I transfers superior signals to inferior
signals. The two cycles have similar architectures and share
all the network parameters. Within each cycle, we simultane-
ously complete the signal transfer at three scales, 1.0x, 1.2x,
and 2.0x.

To force generation pipelines of different scales to learn
from each other, we devise a zoom constraint, which provides
a supervision that the signal generated at a higher resolution
and then downsampled is consistent with the signal gener-
ated at a lower resolution. This zoom constraint imposes con-
current demands on the generator across various scales. The
zoom loss Lzoom is defined as equation 1.

Lzoom =
1

2

∥∥∥DS(n)(G(x(1)))−Θ(n)(G(DS(n)(
↔
x
(n)

)))
∥∥∥2
2
,

(1)
where x(1) is the input signal, DS(n) denotes n× downsam-
pling, and G is the generator. The first term, DS(n)(G(x(1))),
is the result of input signal x(1) being processed by the gen-
erator G and then undergoing downsampling. Within the sec-

ond term, ↔
x
(n)

denotes a signal centered on x(1) and with a
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Figure 1: The diagram of scale guidance mechanism. The front and back panels respectively display the two cycles dealing with unpaired
input data, which have similar structures and share network structures such as generators and discriminators. In addition, the generation
pipelines with different scales also share generators and discriminators. In each cycle, the signals of varying lengths are processed into
signals of uniform length but with different resolutions for input into the generator.

length n times that of x(1). After performing n times down-

sampling DS(n) on ↔
x
(n)

, the length of DS(n)(
↔
x
(n)

) meets
the input requirement of the generator. Θ(n)(sig) is a devised
signal extraction operator, which extracts the 1/n segment of

the signal sig centered at sig, e.g. x(1) = Θ(n)(
↔
x
(n)

). The
expression of Θ(n) is as follows:

Θ(n)(sig) = sig[
n− 1

2n
len(sig),

n+ 1

2n
len(sig)]. (2)

where len(sig) denotes the length of the signal sig.

2.2 Direction Guidance for Weakly-Supervised
Scenario

When the experimental conditions are upgraded with ad-
vanced motion capture instruments such as robotic arms and
optical systems, these tools can provide detailed displace-
ment, trajectory, and other motion-related information ac-
companying inertial signals. While still lacking strictly paired
data for generative guidance, the inclusion of this richer su-
pervised information brings the possibility of further signal
enhancement. Therefore, we use the robotic arms to record
three kinds of motion information during inertial signal col-
lection: attitude, displacement, and motion pattern (such as
writing characters), which supports the introduction of three
auxiliary tasks: attitude estimation (AE), displacement pre-
diction (DP), and semantic recognition (SR). The GAN is re-
quired to synchronously complete these auxiliary tasks dur-
ing the signal generation process, which forces the generator
to provide the signal with higher quality.

However, considering the difference between auxiliary and
main generation tasks, auxiliary tasks may also disrupt the
learning direction of the generator when providing assistance.
To this end, we design a learning direction guidance mech-
anism. When the learning direction of the auxiliary tasks is
consistent with that of the generation task, auxiliary tasks will
be given larger weights to better assist the generation task in
extracting features from input data. When there is a signifi-
cant difference between auxiliary tasks and the main task in
the learning direction, the weights of auxiliary tasks are sup-
pressed or even zeroed to prevent them from harming the fea-
ture extraction of the generation task. The diagram of learn-
ing direction guidance is shown in Fig. 2.

The features close to the data end in the generator are gen-
erally called low-level features, the features far away from the
data end are generally called high-level features, and the fea-
tures between them are called mid-level features. We set up
some auxiliary tasks imposing to different feature layers in
the generator consisting of an encoder and a decoder. Specif-
ically, the attitude estimation task is imposed on low-level
features in the encoder and decoder, corresponding to losses
Le
l and Ld

l , respectively. The displacement prediction task
is imposed on mid-level features in the encoder and decoder,
corresponding to losses Le

m and Ld
m, respectively. The se-

mantic recognition task is imposed on high-level features in
the encoder and decoder, corresponding to losses Le

h and Ld
h,

respectively. These auxiliary tasks provide more supervisory
information to aid in high-quality signal generation. How-
ever, there are differences between the targets of auxiliary and
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Figure 2: The diagram of direction guidance mechanism. The input low-cost inertial signal is fed into a generator consisting of an encoder
and a decoder to generate the high-quality inertial signal. Different auxiliary tasks act on different layer features of the encoder and decoder.

main generation tasks, and naturally, there are differences in
the features they rely on. Therefore, the feature extraction
process of auxiliary tasks may interfere with the main task,
especially in the middle or later stage of training. To this end,
we copy the features that three auxiliary tasks rely on. Then,
the main task utilizes the original features, and the auxiliary
tasks utilize the copied features. We constrain the consistency
between the original and copied features to maintain the pro-
motion effect of auxiliary tasks on the main task. The consis-
tency loss of low-level, mid-level, and high-level features at
the encoder is Ce

l , Ce
m, and Ce

h. Similarly, The consistency
loss of low-level, mid-level, and high-level features at the de-
coder is Cd

l , Cd
m, and Cd

h. The direction guidance loss Ldir

is shown in equation 3.

Ldir =
Le
l

Ce
l + 1

+
Le
m

Ce
m + 1

+
Le
h

Ce
h + 1

+
Ld
l

Cd
l + 1

+
Ld
m

Cd
m + 1

+
Ld
h

Cd
h + 1

.

(3)

In the early stage of training, the main generation task and
the auxiliary tasks have strong consistency, and the features
they rely on are also highly consistent. Therefore, the fea-
ture consistency losses Ce

l , Ce
m, Ce

h, Cd
l , Cd

m, and Cd
h are

small. At this time, the auxiliary tasks enjoy large weights
since they have a strong promotion effect on the main task. In
the middle or later stage of training, the learning direction
of the main generation task and the auxiliary tasks diverge,
and the features they rely on gradually become inconsistent.
The feature consistency losses Ce

l , Ce
m, Ce

h, Cd
l , Cd

m, and
Cd

h are large, making the weights of auxiliary tasks small. In
summary, this method can evaluate the learning direction of
auxiliary and main tasks in real time. When they are consis-
tent (feature consistency is high, feature consistency loss is
low), the auxiliary task loss is amplified to enhance the effect
of auxiliary tasks. When they are inconsistent (feature con-
sistency is low, feature consistency loss is high), the auxiliary

task loss is reduced to suppress the effect of auxiliary tasks.

3 Experiments and Results
3.1 Experiment Dataset
The built-in IMUs are the most widely used and representa-
tive low-cost inertial sensors [Jimenez et al., 2009]. We take
15 smartphones with the built-in IMUS to collect the inertial
dataset, of which one type of smartphone is employed for col-
lecting the training set, while the data of all the other phones
are used for testing. The types of smartphones and their inter-
nal IMU specifications are shown in Table 1. It can be found
that the price of inertial sensors used in our experiments does
not exceed $0.5. Meanwhile, the phone is fixed at the flange
of the mechanical arm (ROKAE xMate ER3 Pro), which is
employed to accurately record the changes of attitude and
position as the labels of the three auxiliary tasks. In addi-
tion, an eight-camera optical equipment (Nokov Mars2H) is
employed to assist in motion capture. All experiments are
implemented by Pytorch 1.10.1 with an Nvidia RTX 2080TI
GPU and Intel(R) Xeon(R) W-2133 CPU.

3.2 Comparative Results
Static Evaluation
Allan variance is a classical time-domain technique that pro-
vides the quantitative indicators of IMU signal quality, in-
cluding quantization noise (QN), angle random walk (ARW),
velocity random walk (VRW), and bias instability (BI). Based
on these indicators, we compare SDG-GAN with the popular
IMU signal enhancement methods in recent years, and the re-
sults are reported in Table 2. All the comparative methods are
implemented strictly following the conditions in their papers
or using their open-source codes. Since model-driven meth-
ods cannot make flexible adjustments according to the charac-
teristics of the input signal, the data-driven method performs
better overall. As the only generative deep learning method
in data-driven models, our SDG-GAN achieves unparalleled
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Dataset Smartphone Release IMU Unit price

Training HUAWEI Mate30 Pro Sep 2019 ICM20690 $0.28

Testing

HUAWEI P40 Mar 2020 LSM6DSM $0.30

HUAWEI P40 Pro Apr 2020 LSM6DSO $0.33

iPhone 7 Plus Sep 2016 ICM20600 $0.20

SAMSUNG Galaxy S7 Feb 2016 LSM6DS3 $0.20

SAMSUNG Galaxy S8 Mar 2017 LSM6DSL $0.26

Realme GT Mar 2021 BMI160 $0.21

Xiaomi 11 Dec 2020 BHI260AB $0.30

OPPO Reno 6 May 2021 ICM-40607 $0.28

Lenovo Legion Phone Aug 2020 ICM-42605 $0.20

VIVO X30 Dec 2019 LSM6DSM $0.30

VIVO T2x May 2022 LSM6DSO $0.33

iPhone 13 Sep 2021 Undisclosed /

iPhone 12 Oct 2020 Undisclosed /

iPhone 11 Pro Sep 2019 Undisclosed /

Table 1: The built-in IMU specifications of some smartphones. Note
that since the IMUs in some types of iPhones are customized by the
manufacturer, the model and price are not disclosed.

superior performance since generative approaches not only
eliminate noise but also accurately reconstruct and repair the
intrinsic features of the signal. This capability grants gen-
erative models remarkable adaptability and efficiency in han-
dling diverse and unknown noise types. Thus, our SDG-GAN
trained on one smartphone performs excellently on the test
set composed of the remaining 14 smartphones. Hence, the
signals of various IMUs with varying usage times can be en-
hanced by our model without retraining, which brings great
convenience to manufacturers considering the rapid iteration
of smartphones.

Dynamic Evaluation
Allan variance analysis is usually used to evaluate the noise
of IMU signals under static conditions, and it is unavailable
to evaluate the signal quality in motion. Therefore, we de-
sign four downstream tasks to examine the effectiveness of
different methods, which are attitude estimation (AE), po-
sition estimation (PE, i.e., displacement prediction), seman-
tic recognition (SR), and trajectory reconstruction (TR). The
classic navigation algorithm [Titterton and Weston, 2004] is
employed to perform motion trajectory reconstruction, and a
ResNet containing 8 bottleneck blocks is constructed for mo-
tion semantic recognition.

Considering the issue of inconsistent coordinate systems
between the reconstructed trajectory and the real trajectory
recorded by the robotic arm, we use the Fréchet spline slid-
ing error (FSSE) [Wang and Zhao, 2023] to calculate the error
in the trajectory reconstruction task, which can measure the
morphological similarity of two spatial curves even if they
are in different coordinate systems. The performance com-
parison for the four downstream tasks is presented in Table 3.
It can be observed that the proposed SDG-GAN still achieves
the best performance. Furthermore, we present the visualiza-
tion results of trajectory reconstruction using different signal
enhancement methods, as shown in Fig. 3. Our method is
the only one that achieves precise trajectory reconstruction

previously deemed impossible with a single inertial sensor.

3.3 Ablation Study

We design ablation experiments for two guidance mecha-
nisms and three auxiliary tasks. From the first row of Table 4,
it can be observed that just SG-GAN, without any auxiliary
task and direction guidance, surpasses all comparison meth-
ods, which demonstrates the effectiveness of the designed
scale guidance. We further add auxiliary tasks to SG-GAN
(rows 2-4), but the performance fails to improve since the
lack of learning direction guidance leads to the interference
of auxiliary tasks on the main generation task. When all aux-
iliary tasks are added to the SG-GAN without the direction
guidance (row 5), performance significantly decreases, which
proves that additional supervision information may even be a
burden if the learning direction cannot be guided. On the
other hand, when we adopt direction guidance and remove
scale guidance (rows 6-9), introducing any auxiliary tasks can
effectively improve the signal, and the more auxiliary tasks
we add, the better the performance we obtain. However, there
is still a certain gap between the architecture lacking scale
guidance and a complete SDG-GAN (row 10), indicating that
scale guidance is also indispensable.

3.4 Feature Consistency Analysis

The proposed direction guidance mechanism controls the im-
pact of auxiliary tasks on the main task in real-time during
training through the feature consistency between auxiliary
and main generation tasks. To intuitively demonstrate the
guiding effect, we visualize the feature consistency at each
training epoch and apply an exponential weighted moving av-
erage to smooth the consistency loss curve to better illustrate
the training trend and mode, as shown in Fig. 4. It is observed
that the features relied on by the auxiliary tasks gradually di-
verge from those of the main task, aligning with our motiva-
tion. If auxiliary tasks are indiscriminately imposed on the
main task, they will cause significant interference during the
mid and late stages of training. Furthermore, the impact of
different auxiliary tasks on the main task is reflected at vari-
ous stages. In the early training stage, the attitude estimation
task acting on low-level features exhibits strong consistency
with the main task, sharing the common goal of improving
the signal’s apparent quality by eliminating noise, bias, etc.
During the mid-stage of training, the displacement prediction
task acting on intermediate-layer features aligns closely with
the main task, aiming to improve the signal’s structural in-
tegrity and internal consistency, as well as repairing some ba-
sic abstract information. In the later stages of training, seman-
tic recognition task relying on high-level features has strong
consistency with the main task, where both strive to mend
complex abstract semantic information hidden within the sig-
nal, such as deciphering intricate motion patterns or even the
identity of the action performer, typically involving a higher-
level understanding of the signal. Therefore, adjusting the
learning direction of the generator based on the consistency
between auxiliary and main generation tasks at different train-
ing stages is of utmost importance.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5130



Architecture
Acceleration Angular Velocity

QN VRW BI QN ARW BI

Raw signal (No processing) 1.2053 1.9174 3.1186 3.5496 5.9785 9.0625

Model
Driven

Savitzky Golay filter [He et al., 2019] 0.5423 (-55.01%) 0.7062 (-63.17%) 0.7595 (-75.65%) 0.9849 (-72.25%) 1.0972 (-81.65%) 1.7411 (-80.79%)

EMD-Kalman filter [Liu et al., 2020c] 0.4905 (-59.30%) 0.5764 (-69.94%) 0.6429 (-79.38%) 0.7741 (-78.19%) 0.8509 (-85.77%) 1.4032 (-84.52%)

Data
Driven

Open-VINS [Geneva et al., 2020] 0.2784 (-76.90%) 0.4805 (-74.94%) 0.5346 (-82.86%) 0.5798 (-83.67%) 0.6635 (-88.90%) 0.8329 (-90.81%)

GRU-LSTM [Han et al., 2021] 0.5224 (-56.66%) 0.5953 (-68.95%) 0.7097 (-77.24%) 0.7711 (-78.28%) 0.9629 (-83.89%) 1.5301 (-83.12%)

Optimized GRU-LSTM [Boronakhin et al., 2022] 0.3973 (-67.04%) 0.5296 (-72.38%) 0.6061 (-80.56%) 0.6455 (-81.81%) 0.7197 (-87.96%) 0.9843 (-89.14%)

Optimized CNN [Chen et al., 2022] 0.5617 (-53.40%) 0.6974 (-63.63%) 0.7726 (-75.23%) 1.0634 (-70.04%) 1.0753 (-82.01%) 1.6425 (-81.88%)

kNN [Engelsman and Klein, 2023] 0.2034 (-83.12%) 0.313 (-83.68%) 0.4742 (-84.79%) 0.4842 (-86.36%) 0.5533 (-90.75%) 0.6501 (-92.83%)

IMUDB [Yuan and Wang, 2023] 0.1891 (-84.31%) 0.2743 (-85.69%) 0.4439 (-85.77%) 0.4513 (-87.29%) 0.4957 (-91.71%) 0.5812 (-93.59%)

SDG-GAN (Ours) 0.0529 (-95.61%) 0.0638 (-96.67%) 0.0699 (-97.76%) 0.0722 (-97.97%) 0.0801 (-98.66%) 0.1007 (-98.89%)

Table 2: Performance comparison of mainstream methods in terms of Allan variance analysis. Considering the units and value ranges of four
downstream tasks, we give the enhancement compared with the raw signal in parentheses for convenient comparison. We bold the best and
underline the 2nd best results.

(a) Raw signal

(f) Optimized GRU-LSTM (g) CNN (h) kNN (i) IMUDB (j) SDG-GAN (ours)

(b) Savitzky Golay filter (c) EMD-Kalman filter (d) Open-VINS (e) GRU-LSTM

Figure 3: Visualization of trajectory reconstruction comparison. The writing motion signal of character ’W’ is employed to test 9 signal
enhancement methods. The dashed lines in each panel indicate the projection of a reconstructed trajectory in the XY, XZ, and YZ planes.

Architecture Error of attitude
estimation (deg) ↓

Error of position
estimation (m) ↓

Accuracy of semantic
recognition ↑

FSSE of trajectory
reconstruction ↓

Raw signal (No processing) 10.69 1.09 78.42% 0.78

Model Driven
Savitzky Golay filter [He et al., 2019] 6.27 (-41.35%) 0.4279 (-60.74%) 84.99% (+8.38%) 0.2145 (-72.42%)

EMD-Kalman filter [Liu et al., 2020c] 5.36 (-49.86%) 0.3786 (-65.27%) 85.28% (+8.75%) 0.1826 (-76.53%)

Data Driven

Open-VINS [Geneva et al., 2020] 4.06 (-62.02%) 0.3451(-68.34%) 86.83% (+10.72%) 0.1625 (-79.11%)

GRU-LSTM [Han et al., 2021] 4.94 (-53.79%) 0.4078 (-62.59%) 86.13% (+9.83%) 0.27095 (-65.17%)

Optimized GRU-LSTM [Boronakhin et al., 2022] 4.43 (-58.56%) 0.3835 (-64.82%) 86.22% (+9.95%) 0.24595 (-68.39%)

Optimized CNN [Chen et al., 2022] 5.85 (-45.28%) 0.4782 (-56.13%) 85.52% (+9.05%) 0.2938 (-62.24%)

kNN [Engelsman and Klein, 2023] 6.47 (-39.48%) 0.4585 (-57.94%) 85.62% (+9.18%) 0.28225 (-63.72%)

IMUDB [Yuan and Wang, 2023] 3.87 (-63.80%) 0.3179 (-70.83%) 87.69% (+11.82%) 0.1457 (-81.27%)

SDG-GAN (Ours) 1.85 (-82.69%) 0.1403 (-87.13%) 94.74% (+20.81%) 0.0512 (-93.42%)

Table 3: Performance comparison of the proposed method and typical methods for four downstream tasks. Considering the units and value
ranges of four downstream tasks, we give the enhancement compared with the raw signal in parentheses for convenient comparison. Note
that we bold the best and underline the 2nd best results.

4 Discussion

In this paper, two guidance mechanisms for generative artifi-
cial intelligence (AI) models are proposed, which enable the

generative model to achieve ideal generation effects without
paired training data. This universal guidance of generative
AI is not only applicable to the inertial sensor field but is also
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Architecture Acceleration Angular Velocity Error of
AE (deg) ↓

Error of
PE (m) ↓

Acc of
SR ↑

FSSE of
TR ↓Guidance Auxiliary Task QN VRW BI QN ARW BI

w/ scale
w/o direction

Guidance

w/o all 0.1657 0.1801 0.1924 0.2065 0.2235 0.2317 3.34 0.2513 87.34% 0.193

w/ SR 0.1749 0.1915 0.1835 0.1951 0.2159 0.2212 4.12 0.3201 89.24% 0.199

w/ AE 0.1581 0.1727 0.2081 0.1904 0.2041 0.2383 2.06 0.3159 86.32% 0.189

w/ DP 0.1626 0.1658 0.1775 0.2138 0.2108 0.2458 3.11 0.1897 85.97% 0.176

w/ all 0.193 0.2259 0.2306 0.2597 0.2648 0.2794 4.85 0.4033 85.11% 0.203

w/ direction
w/o scale
Guidance

w/ SR 0.1286 0.1432 0.1733 0.192 0.2064 0.2369 3.76 0.3208 89.03% 0.166

w/ AE 0.1473 0.1549 0.1629 0.1887 0.1916 0.2292 1.99 0.2742 87.56% 0.152

w/ DP 0.1419 0.1583 0.1588 0.2031 0.1997 0.2204 2.83 0.1787 88.19% 0.073

w/ all 0.1093 0.1264 0.1337 0.1547 0.1669 0.1864 1.92 0.1591 91.85% 0.059

SDG-GAN 0.0529 0.0638 0.0699 0.0722 0.0801 0.1007 1.85 0.1403 94.74% 0.051

Table 4: Ablation experiments on two guidance mechanisms and four auxiliary tasks. We bold the best and underline the 2nd best results.
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Figure 4: The feature consistency loss (FCL) curves during training.
The left and right respectively represent the feature consistency loss
curves of the encoder and decoder, where the depth of task depen-
dent features can be reflected by the color depth of the curves.

applicable to areas like audio signal enhancement for com-
munication technologies, equipment signal enhancement for
industrial monitoring, biomedical data (such as ECG, EEG,
CT, and pathological images) enhancement for accurate di-
agnosis, and multimodal sensor signal enhancement for au-
tonomous vehicles and intelligent robots.

Deep learning models are often criticized as black-box sys-
tems due to their opaque learning processes, which are diffi-
cult to explain and control, resulting in low training efficiency
and poor learning outcomes. This paper introduces a strat-
egy for guiding the learning direction of deep learning, which
may offer insights into the development of interpretable and
generalizable artificial intelligence methods.

The experimental results presented in this study reflect the
initial performance of the method without extensive hyperpa-
rameter tuning. Several reviewers believe that there is sub-
stantial room for performance improvement through further
hyperparameter optimization and careful training, suggesting
that the proposed method can achieve more significant en-
hancements.

5 Conclusion
In this paper, we propose an SDG-GAN for low-cost inertial
sensor signal enhancement based on unpaired data. Consid-
ering the lack of paired data as guidance, it is challenging for
the generator to achieve signal quality enhancement at dif-
ferent scales simultaneously. Therefore, we propose a scale
guidance mechanism that constrains the consistency of sig-
nals at different scales through the devised zoom supervision,

forcing the generator to realize the transfer of low-cost sig-
nals to high-cost signals at all scales, which is a plug-and-play
module for GANs with universality.

As the experimental conditions upgrade, researchers may
be able to record motion information such as displacement,
attitude, and motion pattern while collecting sensor signals,
and use them as labels to introduce auxiliary tasks to super-
vise the signal generation. However, extra supervision infor-
mation may be harmful to the generation task due to the dis-
crepancy between auxiliary and generation tasks. To this end,
we propose a learning direction guidance mechanism that dy-
namically adjusts the influence of auxiliary tasks on the main
task by real-time evaluating the consistency between auxil-
iary and main generation tasks during the training process,
thereby adjusting the learning direction of the generator.

We conduct extensive experiments and compare our
method with the latest IMU enhancement methods. The Allan
variance analysis is employed for static evaluation, and four
downstream tasks are constructed to evaluate the practical ef-
fects of improved signals. The comparative and ablation ex-
periments show that either SG-GAN or DG-GAN can surpass
all comparison methods on all static indicators and down-
stream tasks. The signals improved by the completed SDG-
GAN achieve unprecedented effects, with an average noise
elimination rate of more than 97% and an error elimination
rate of more than 85% for downstream tasks. Importantly,
signals improved by our SDG-GAN perform satisfactory re-
construction of arbitrary spatial trajectories, which is usually
considered an impossible function for a low-cost inertial sen-
sor. Moreover, we prove that the features relied on by the aux-
iliary tasks indeed gradually diverge from those of the main
task. Furthermore, we find the assistance of auxiliary tasks to
the main task is reflected in different training stages. Specifi-
cally, auxiliary tasks acting on low-level, mid-level, and high-
level features optimize generator features in the early, middle,
and late training stages, respectively. This finding may bring
new insights to generative models and multi-task learning and
prove the rationality and necessity of intelligently adjusting
the influence of auxiliary tasks on the main task during train-
ing.
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