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Abstract
Free-hand sketch, as a versatile medium of commu-
nication, can be viewed as a collection of strokes
arranged in a spatial layout to convey a concept.
Due to the abstract nature of the sketches, changes
in stroke position may make them difficult to rec-
ognize. Recently, Graphic sketch representations
are effective in representing sketches. However,
existing methods overlook the significance of the
spatial layout of strokes and the phenomenon of
strokes being drawn in the wrong positions is com-
mon. Therefore, we developed a self-supervised
task to correct stroke placement and investigate the
impact of spatial layout on learning sketch repre-
sentations. For this task, we propose a spatially
aware method, named SketchGloc, utilizing multi-
ple graphs for graphic sketch representations. This
method utilizes grids for each stroke to describe
the spatial layout with other strokes, allowing for
the construction of multiple graphs. Unlike other
methods that rely on a single graph, this design con-
veys more detailed spatial layout information and
alleviates the impact of misplaced strokes. The ex-
perimental results demonstrate that our model out-
performs existing methods in both our proposed
task and the traditional controllable sketch synthe-
sis task. Additionally, we found that SketchGloc
can learn more robust representations under our
proposed task setting. The source code is available
at https://github.com/CMACH508/SketchGloc.

1 Introduction
Free-hand sketch is a versatile medium of communication,
conveying subjective impressions of the objective world and
serving as a vehicle for emotional expression [Xu et al.,
2022]. It is a unique visual form which can be viewed as a
collection of strokes arranged in a particular spatial layout, in-
cluding relative positions, orientations, inclusions, and more.
The spatial layout of strokes is an important factor, because
even minor changes in stroke position may make them dif-
ficult to recognize. Due to time constraints and the manual
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Figure 1: (a) Compared to the original sketch (Above), the sketch
disturbed by placement errors (Below) exhibits significant semantic
changes within the same local region (area A). (b) With the same
placement errors, the spatial layout between strokes maintains the
majority of information, including the relative positions, orienta-
tions, and inclusion relationships of boxes A, B, C. (c) Each stroke
has distinct grids, distinguished by colors (red, blue). In the above
image, one stroke (C) is in a cell of another stroke (B), altering the
state (color) of the occupied cell (top-right). This is an intuitive grids
representation of the (B, C) spatial layout. Subsequently, strokes
will be linked based on specific occupied cell in specific graph(top-
right). The middle image (B, D) and the bottom image (C, D) follow
a similar pattern.

nature of hand drawing [Ha and Eck, 2018], sketches can be
variable, abstract, and iconic, making it a challenge to learn
robust and accurate sketch representations.

Recently, graphic sketch representations [Qi et al., 2021;
Su et al., 2020; Zang et al., 2023] have been proven in repre-
senting sketches effectively. These methods use local visual
cues of a sketch as nodes and connect the nodes based on tem-
poral proximity [Su et al., 2020], spatial proximity [Qi et al.,
2021], or semantic proximity [Zang et al., 2023] to construct
the corresponding graph. Finally, a Graph Convolutional Net-
work (GCN) [Kipf and Welling, 2016] is used to aggregate
information from graph nodes. But even minor changes in
the spatial layout of strokes can significantly affect these lo-
cal visual cues.

However, existing methods overlook the significance of the
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spatial layout of strokes. On one hand, strokes being drawn in
the wrong positions is a common phenomenon. Factors such
as casual sketching, time constraints, and physical conditions
like micrographia [Armstrong and Okun, 2020] in patients
with Parkinson’s disease can contribute to these unavoidable
placement errors, hindering the comprehension of the sketch
by humans or models. On the other hand, in contrast to the
spatial layout, visual cues in local regions are susceptible to
being disrupted by these placement errors. As shown by the
variations in region A in Figure 1(a) and the small changes in
the spatial layout of regions B, C, and D in Figure 1(b). Ex-
isting methods have difficulties in handling these placement
errors of strokes because they construct graph with a specific
type of proximity, rather than the overall spatial layout. These
issues impede the extraction of spatial layout information and
the acquisition of robust sketch representations.

To investigate the relation between the spatial layout of
strokes and the acquisition of sketch representations, this
paper designs a self-supervised task, called Sketch Reorga-
nization, aimed at rectifying the misplacement of strokes
which is common in everyday life. Proposing and address-
ing this task can aid in humans sketching and understanding
sketches. Similarly, it can help acquire more robust sketch
representations. Unlike conventional sketch restoration tasks
[Zhao et al., 2019; Bhunia et al., 2021; Su et al., 2020;
Qi et al., 2022], our task, for the first time, takes into account
human-introduced errors at the vector level, which aligns with
the sequential nature of sketches. Unfortunately, existing
methods face challenges in accomplishing this task due to a
lack of overall spatial layout awareness capability, which can
alleviate the impact of placement errors.

In this paper, we propose SketchGloc: a spatially aware
method with a multi-graphs for graphic sketch representa-
tions. To measure the spatial layout between strokes of vary-
ing sizes and shapes, we took inspiration from the object de-
tection field’s practice [Zou et al., 2023; Redmon et al., 2016;
Liu et al., 2016; Girshick, 2015] of using grids and bound-
ing boxes. The geometric localization module of SketchGloc
constructs the spatial layout between strokes as multi-graphs
using the grids. Specifically, the strokes are encoded as the
nodes and the process of constructing the multiple graphs is
as follows. We began by drawing different grids for each
stroke. (e.g. red and blue gridlines in Figure 1(c) repre-
senting two different grids and strokes). Then, one stroke
is placed on the grids of another stroke, which changes the
state of occupied grid. (e.g. the colors of the cells occupied
by the strokes in Figure 1(c) differ). Finally, two strokes will
be linked on a specific graph based on whether a particular
cell is occupied. (e.g. in Figure 1(c),two strokes(Above) are
linked on the ‘top-right’ graph). Our method is particularly
well-suited for sketches, as using grids to represent spatial
layout helps alleviate the impact of placement errors on the
spatial layout. Additionally, the final sketch representation is
synthesized from multiple graphs, which facilitates learning
of the overall spatial information of the sketch and produces
an accurate representation.

The contributions of the paper can be summarized as fol-
lows:

• We design a self-supervised learning task ‘Sketch Reor-

ganization’ that takes the errors of stroke placement into
account. This task helps to improve the robustness of the
sketch representation.

• We propose SketchGloc, which constructs multi-graphs
based on the spatial layout between strokes. By using
grids to represent spatial layout, the impact of stroke
placement errors is alleviated. This method helps to
learn the overall spatial layout information and produces
more accurate sketch representations.

• The experimental results show that SketchGloc signifi-
cantly improves the robustness of represenations in con-
trollable sketch synthesis task and outperformes other
methods in the Sketch Reorganization task. Addition-
ally, the experiments show the practical potential of
SketchGloc in aiding humans to draw and comprehend
sketches.

2 Related Work
2.1 Sketch Representation Learning
The field of sketch generation [Ha and Eck, 2017; Zang et
al., 2021; Vinker et al., 2022; Vinker et al., 2023; Voynov
et al., 2023; Li et al., 2024] has been a subject of extensive
research, as sketches can be represented in various ways. No-
tably, the groundbreaking research conducted by sketch-rnn
[Ha and Eck, 2017] has been highly recognized. Its sig-
nificant contributions have captured the attention of schol-
ars and researchers. This method falls into the encoder de-
coder paradigm and consists of two Long Short-Term Mem-
ory (LSTM). Additionally, the pixel-based sketch encoders
[Chen et al., 2017; Zang et al., 2021; Xu et al., 2020a]
have received significant performance improvement due to
their remarkable spatial feature extraction ability. It is note-
worthy that generative GAN-based [Ge et al., 2020] and
Diffusion-based models [Xing et al., 2024; Qu et al., 2023;
Wang et al., 2022] are effective for capturing the semantic
properties of sketch representations due to their excellent gen-
erative performance.

In recent times, Graph Convolutional Network (GCN)
based sketch encoders [Qi et al., 2021; Qi et al., 2022;
Zang et al., 2023] have emerged as a promising research
method, capitalizing on the advantages of integrating tempo-
ral and spatial features. SketchLattice [Qi et al., 2021] pro-
posed a method for vector sketch representation, with latticed
coordinates [Pan et al., 2020] sampling as nodes, and edges
connecting nodes based on similarity in the hidden space. In
an effort to exploit the temporal characteristics of sketches,
another approach was introduced by [Qi et al., 2022], which
incorporates both vector and pixel formats. This method se-
quentially samples sketches and employs features extracted
by a Convolutional Neural Network (CNN) as graph nodes in
the order of sampling. Furthermore, the semantic properties
of node connectivity were explored by [Zang et al., 2023],
building upon the node construction method, resulting in im-
proved experimental performance.

2.2 Self-Supervised Pretext Tasks
Self-supervised learning [Gidaris et al., 2018] has achieved
remarkable success in the field of images, excelling in var-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5118



R
N

N
Encoder

q
ϕ ……

Ssketch 

  embeddings mv

M M9

graphs

G
eom

etric 
localization m

odule 
F

RNN
Decoder

pθ

y codelatent 

~
Ssketch  generated

GCN
Encoder

qξ



…

 M

 M
3

3

3
3

3

M M33

D matrics MM

graphs
D Encodingon Localizati

m strokes s

(a)       (b)

Figure 2: (a) The overview of the SketchGloc approach. Strokes are fed into the LSTM encoder to obtain representations as graph nodes.
The spatial geometric localization module computes the spatial layout encoding between strokes and subsequently maps it to graphs. Finally,
the GCN encoder calculates the final code, which is utilized by the LSTM decoder to regenerate the sketch. (b) The operation of the spatial
geometric localization module. The module constructs a three-by-three grids centered on the current stroke, where each cell represents a
piece of spatial layout information. The spatial layout encoding between the current stroke and the target stroke is determined by the latter’s
position on this grid.

ious tasks such as classification and semantic segmenta-
tion. Defining an appropriate pre-text task is crucial in self-
supervised learning. In the field of image analysis, preva-
lent pretext tasks include predicting relative positions [Doer-
sch et al., 2015], image completion [Doersch et al., 2015],
image coloring [Pathak et al., 2016], and deformation pre-
diction [Doersch et al., 2015], among others. In the field of
sketch, there are also research efforts on pre-text tasks for
self-supervised learning. These tasks differ from those in the
image domain, as they must consider the unique data charac-
teristics [Xu et al., 2020b] of sketch.

Existing tasks for self-supervised learning of sketches are
akin to those in the image field, primarily focusing on vi-
sual feature prediction or complementation [Xu et al., 2020b;
Su et al., 2020]. While these methods are tailored for sketch
data format, their primary focus remains on leveraging vec-
tor features to aid model learning, specifically targeting the
prediction of missing visual features.

3 Methodology
Figure 2 provides an overview of the SketchGloc method,
which is utilized to achieve robust learning of representa-
tions for vector sketches and to address our proposed self-
supervised task (Sketch Reorganization) specific to sketch
vector features. Initially, we consider the stroke s in a sketch
S as the fundamental unit for model input. A sketch S is rep-
resented as a sequence of points (∆x,∆y, p1, p2, p3), where
(p1, p2, p3) denotes the state information at the time the
sketch is drawn. The values (1, 0, 0), (0, 1, 0), and (0, 0, 1)
correspond to touch, lift, and end of pen, respectively. We use
the lifted state (0, 1, 0) during a single drawing as a marker
for transition from the end of the previous stroke sm−1 to
the beginning of the new stroke sm. The processed sketch
with M strokes is represented as S = {sm|1 ≤ m ≤ M},
where each stroke has at most N points. For each stroke

sm, we feed it into the LSTM, as it has been widely used
in previous works , encoder qϕ to obtain representations
vm(1 ≤ m ≤ M) as graph nodes. To establish edges be-
tween graph nodes vm, we utilize the Geometric Positioning
Module F to compute the spatial layout coding D between
strokes and subsequently transform it into nine adjacency ma-
trices A, which depends on the grids settings in this paper.
This process enables GCN to effectively capture the spatial
layout information between strokes. Finally, the GCN en-
coder qξ calculates the final code y, which is utilized by the
LSTM decoder pθ to generate the sketch S̃.

3.1 Linking Strokes by Geometric Localization
Module

As is well known, the spatial layout between two strokes
(sm1 , sm2) can be straightforwardly described by the grids.
To address more intricate stroke spatial layout relationships,
we leverage multiple spatial layout information. In this paper,
a nine-bit spatial layout encoding D = {di|1 ≤ i ≤ 9} is in-
troduced to represent nine distinct spatial layout information.
We formalize it:

D(m1,m2) = F(sm1 , sm2), (1 ≤ m1,m2 ≤M), (1)

D(m1,m2) =

[
d1 d2 d3
d4 d5 d6
d7 d8 d9

]
, (2)

where F : RN×5 × RN×5 → FM×M×9
2 . Each element

di ∈ D(m1,m2) indicates whether sm2 is in the ith cell of
the grids of sm1 .

To effectively integrate information in the graph network
qξ based on the spatial layout between strokes, we split the
spatial layout encoding matrix D into nine different graph
adjacency matrices {A(i)|1 ≤ i ≤ 9}. Each adjacency ma-
trix A(i) represents one bit of spatial information for each
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pair of strokes. At the output layer of the graph network qξ, a
post-fusion strategy will be implemented to combine the re-
sults of message passing in each spatial layout. Formally, we
describe this process as follows:

a(i)m1,m2
= di ∈D(m1,m2), (1 ≤ m1,m2 ≤M), (3)

A(i) =


a
(i)
1,1 a

(i)
1,2 . . . a

(i)
1,M

a
(i)
2,1 a

(i)
2,2 . . . a

(i)
2,M

...
...

. . .
...

a
(i)
M,1 a

(i)
M,2 . . . a

(i)
M,M

 . (4)

For a specific graph adjacency matrix A(i), we impose a
constraint that restricts the propagation of message among
graph nodes to occur exclusively in the same spatial lay-
out, thereby appropriately adjusting its significance. Further-
more, each adjacency matrix is self-connected, as indicated
by a

(i)
k,k = 1.

The spatial layout of strokes obtained through grids is in
a discrete form, which aligns well with the construction re-
quirements of graphs. Grids precision can be controlled by
adjusting the number of grid cells, such as setting it to 5× 5.
However, free-hand sketches are inherently sparse. There-
fore, we choose for a 3× 3 grid, which is deemed suitable for
the current task.

3.2 Graph Networks Based on Stroke-Level
Sketches

We utilized spatial layout encoding to construct the sketch
GCN Encoder q(i)ξ (y|V ,A(i)). To comprehensively utilize
all spatial layout information in the spatial layout encod-
ing D, we employ nine distinct GCN layers q

(i)
ξ ∈ qξ to

integrate the information from graph nodes in each graph.
Each GCN layer q

(i)
ξ is constructed for graph nodes V =

{v1,v2, ..., vM} with adjacency matrices A(i) to compute
the propagation results h(i) of sketch strokes in the ith grid.
The weight of each GCN layer q(i)ξ is denoted by W (i):

h =
9∑

i=1

h(i) =
9∑

i=1

ReLU(A(i)V W (i)). (5)

This final feature h is then passed through our fully con-
nected layer to yield two vectors µ and σ. These vectors are
computed using the formula y = µ + σ × ε, where ε rep-
resents noise sampled from the Gaussian distribution G(0, 1).
The resulting vectors µ and σ constitute the final code y for
the sketch S̃.

3.3 Disrupt Vector Sketch
To achieve Sketch Reorganization task, we require a method
for creating a sketch with placement errors based on a com-
plete sketch. The random noise ϵ follows a Gaussian distri-
bution G(ϵ|0, 1). To control the impact of the noise ϵ and
maintain the disruption of the sketch at a reasonable level, we
introduce an additional parameter (scale = 10%, 30% ). The
scale represents a proportion of the sketch size of S, and its

Algorithm 1: Disturbing sketch strokes
Data: S = s1, s2, ..., sM , scale
Result: S

1 Initialization:i← 0
2 Calculate the size of the sketch S
// add noise

3 while i ̸= n do
4 S[i,0], S[i,1] ← xabs + S[i,0], yabs + S[i,1]

// Adding noise to each of the
strokes

5 if i ̸= 0 then
6 ϵx, ϵy ∼ G(0, 1),G(0, 1)
7 Add noise ϵx × size× scale, ϵy × size×

scale to si
8 end
9 i← i+ 1

10 end

product with the size of the sketch is used as a multiplier for
Gaussian noise ϵ. We accomplish this step by introducing
random noise ϵ ∼ G(ϵ|0, 1) to strokes positions.

3.4 Training a SketchGloc via Sketch
Reconstruction

We pass the final code y of the sketch S to a Recurrent Neu-
ral Network(RNN) decoder pθ(S|y), which sequentially re-
constructs the sketch S̃. Our training objective is defined as
follows:

L(θ,ϕ, ξ|S) = Eqϕ,ξ(y|S)[logpθ(S|y)]. (6)

The first likelihood function in the objective necessitates
reconstructing the correct input in sequence format. Simi-
larly, for sketch S which is disrupted, we input the decoder
with its final code y, and the RNN decoder pθ will generate
the complete sketch in sequence format.

4 Experiments
We selected controllable sketch synthesis [Zang et al., 2021]
and the Sketch Reorganization task proposed by us to validate
whether SketchGloc has learned accurate and robust graphic
sketch representations.

4.1 Preparation
Datasets. We evaluated SketchGloc on QuickDraw [Ha and
Eck, 2018], a large vector sketch dataset containing tens of
millions of human free-hand sketches across 345 classes. To
account for variability between different sketch classes, we
utilized three datasets proposed by [Zang et al., 2021] in our
experiments. DS1 and DS2 were taken from [Zang et al.,
2021], with DS1 including sketches of bee, word, giraffe,
bus, and pig, allowing us to assess sketch generation with
large gaps between classes. DS2 encompassed sketches of
airplane, angel, apple, butterfly, bus, cake, fish, spider, the
Great Wall, and umbrella, presenting more diverse categorical
patterns to evaluate the model’s ability to distinguish across
multiple categories. DS3 [Qi et al., 2021] includes car, cat

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5120



Models
DS1 DS2 DS3

Rec(↑) Ret(top-)(↑) Rec(↑) Ret(top-)(↑) Rec(↑) Ret(top-)(↑)
1 10 50 1 10 50 1 10 50

sketch-rnn 50.33 0.38 2.84 9.33 46.28 10.93 23.73 48.38 57.64 3.72 13.42 26.14
sketch-pix2seq 83.99 13.45 30.12 49.99 85.46 50.94 71.38 80.15 79.13 22.92 47.55 58.19
Song et al. 91.77 16.41 36.43 52.22 86.98 58.84 76.84 80.06 83.28 25.47 43.39 56.16
RPCL-pix2seq 93.18 17.86 38.87 55.30 88.73 53.19 71.60 87.91 81.80 28.80 59.05 77.52
SketchHealer 91.04 58.80 82.15 91.33 94.04 87.54 96.19 98.26 87.03 68.52 82.37 86.57
SketchLattice 75.91 6.55 14.01 26.72 71.80 6.91 14.76 28.82 62.21 5.90 10.36 19.39
SP-gra2seq 95.91 94.88 99.11 99.72 94.85 90.83 98.29 99.08 89.83 94.05 98.72 99.57
ours 96.03 98.75 99.72 99.93 94.34 97.07 98.54 99.18 88.91 98.69 99.51 99.75

Table 1: Controllable sketch synthesis performance (%) on three datasets.

Disrupting Scale

Disrupted Sketch

sketch-pix2seq

sketchLattice

SP-gra2seq

ours

10%       30%      10%      30%      10%       30%      10%      30%      10%      30%      10%         30%

Figure 3: Examples of diverse models designed for Sketch Reorganization task. We provide a qualitative comparison of results between
RNN-based, CNN-based, and GCN-based models, along with the outcomes of SketchGloc.

and horse additionally to DS1, constituting a more challeng-
ing data set. For each category, we used 70,000 sketches for
training, 2,500 for validation, and 2,500 for testing.

Baselines. Considering the encoder classification [Xu et al.,
2022; Li et al., 2020; Lin et al., 2020; Ribeiro et al., 2020]
of sketch generation models, we selected six models as base-
lines for our experiments. The sketch-rnn [Ha and Eck, 2017]
model, widely used as a benchmark for tasks involving vector
sketch generation, is the most representative model for pro-
cessing sketches in sequence format. Additionally, sketch-
pix2seq [Chen et al., 2017] and RPCL-pix2seq [Zang et al.,
2021] take images as input and leverage local structure con-
cept to enhance performance. Moreover, RPCL-pix2seq fur-
ther imposes constraints on the latent space. Song et al. [Song
et al., 2018] model processes both sequences and images,
treating each sequence-image pair as a joint input. Sketch-
Healer [Su et al., 2020] extracts information from CNN and
utilizes a graph network to derive a sketch representation.
SketchLattice [Qi et al., 2021] constructs a node represen-
tation from point-only Euclidean distance within a latticed

coordinates network to establish node edges. The semantic
properties of node connectivity were explored by [Zang et
al., 2023], building upon the node construction method, re-
sulting in improved experimental performance. The models
were trained using the officially published source code.

We set the number of strokes M , and the batch size N , to
50 and 128, respectively. The Adam optimizer was employed
for learning with parameters β1 = 0.9 and β2 = 0.999. Addi-
tional experimental details are provided in the appendix.

4.2 Controllable Sketch Synthesis
Controllable sketch synthesis involves generating accurate
input sketches, Model’s performance is evaluated using the
metrics Rec and Ret, as proposed in [Zang et al., 2021].
Rec indicates whether the generated sketch S̃ belongs to the
same class as its input sketch S. For performance testing,
we trained three sketch-a-net [Yu et al., 2017] models on
three datasets (DS1,DS2,DS3). Additionally, Ret measures
whether the input sketch S and the generated sketch S̃ are
encoded as close as possible in the latent space. To achieve
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Scale Models
DS1 DS2 DS3

Rec(↑) Ret(top-)(↑) Rec(↑) Ret(top-)(↑) Rec(↑) Ret(top-)(↑)
1 10 50 1 10 50 1 10 50

10%

sketch-rnn 46.12 0.12 1.06 4.97 51.23 0.19 0.94 3.61 48.98 0.09 0.57 2.78
sketch-pix2seq 64.34 1.54 7.82 20.15 50.05 0.92 4.49 13.75 48.95 1.02 5.73 14.50
SktchLattice 64.79 5.04 16.92 28.58 81.37 3.15 12.94 19.92 78.62 3.01 16.32 23.53
SP-gra2seq 89.45 70.41 93.38 98.63 88.44 82.97 96.13 99.52 85.41 71.67 89.62 95.74
ours 93.74 98.20 99.16 99.63 91.71 96.79 98.15 98.34 86.64 97.10 98.76 99.18

30%

sketch-rnn 45.21 0.10 1.12 4.53 46.97 0.08 0.51 2.04 48.01 0.02 0.32 1.98
sketch-pix2seq 54.19 0.96 3.12 12.94 42.04 0.65 3.57 9.19 40.85 0.89 4.01 14.94
SktchLattice 38.23 0.57 1.78 6.86 34.63 0.96 1.71 4.54 35.19 0.58 1.28 4.68
SP-gra2seq 73.40 44.27 71.46 89.24 63.89 46.52 71.36 87.60 70.45 48.82 69.54 87.91
ours 91.70 96.96 98.39 99.52 89.36 96.40 97.74 98.24 85.91 95.08 97.36 99.15

Table 2: Sketch Reorganization performance (%) for the three datasets. Scale denotes the ratio of the variance of the placement errors
affecting the storkes in the sketch to the size of the sketch boundary.

Inputs Outputs

Figure 4: The left column shows low-quality input sketches, while
the multiple columns on the right showcase several output sketches
generated by SketchGloc. These outputs demonstrate a significant
and consistent improvement in sketch quality.

this, we fed the output S̃ of the network, along with the orig-
inal input S, into the encoder to obtain the latent variables ỹ
vs. y. The original y values obtained using the entire test set
were used to retrieve ỹ. Ret represents the success rate of the
retrieval process, as shown in Figure 5.

Table 1 reports the controllable sketch synthesis perfor-
mance. SketchGloc considers the use of successive strokes
of a sketch as graph nodes and incorporates multiple graphs
based on the spatial layout relationships of the strokes, mak-
ing it better suited for generating vector sketches. By directly
encoding the stroke information and passing the sketch over
the graph space using a geometric localization adjacency ma-
trix, the method can accurately generate sketches into the la-
tent code. Our approach enables the simultaneous existence
of nine graph structures based on different geometric infor-
mation,leading to accurate sketch representation. As a result,
our method is comparable to current state-of-the-art methods.

Figure 5: Calculating Rec and Ret for controllable sketch synthesis
and Sketch Reorganization.

4.3 Sketch Reorganization
Sketch Reorganization is a task aimed at reorganizing a com-
plete original sketch S using a disturbed sketch S′. The suc-
cess of Sketch Reorganization is determined by how similar
the generated sketch S̃ is to the original sketch S. To evalu-
ate the performance of the models in this task, we use metrics
Rec and Ret [Zang et al., 2021], similar to those used in con-
trollable sketch synthesis. These metrics help us answer two
key questions: (1) After Sketch Reorganization, how distin-
guishable are the outputs of different models? (2) Are the
latent variable codes stable across models?

As shown in the Table 2, our method outperforms the other
methods in Sketch Reorganization. SketchGloc successfully
alleviate the impact of placement errors on the spatial lay-
out, carefully considering the possibility of errors in graph
node connections. We employ geometric localization mod-
ule, a suitable module for obtaining spatial information for
sketches, enabling accurate learning of sketch graph repre-
sentations. Table 2 also reports the metrics of other meth-
ods. sketch-rnn [Ha and Eck, 2017] requires high accuracy
in sequence data, leading to poor performance in the sketch
representation when errors occur in the strokes, hindering
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SR task
DS1 DS2 DS3

Rec(↑) Ret(top-)(↑) Rec(↑) Ret(top-)(↑) Rec(↑) Ret(top-)(↑)
1 10 50 1 10 50 1 10 50

no 96.03 98.75 99.72 99.93 94.34 97.07 98.54 99.18 88.91 98.69 99.51 99.75
yes 94.69 99.34 99.86 99.94 92.05 97.15 98.28 99.27 87.57 98.57 99.65 99.87

Table 3: Improved robustness in sketch representation through Sketch Reorganization(SR) task. Evaluation of model performance trained
under the Sketch Reorganization task setting to determine if the model was trained with the ‘Disrupt’ option set to ‘yes’ in this task configu-
ration.

Scale Random Links
DS1 DS2 DS3

Rec(↑) Ret(top-)(↑) Rec(↑) Ret(top-)(↑) Rec(↑) Ret(top-)(↑)
1 10 50 1 10 50 1 10 50

10% yes 90.36 95.23 97.12 98.67 87.83 94.73 96.21 98.07 82.97 93.12 96.28 98.26
no 93.74 98.20 99.16 99.63 91.71 96.79 98.15 98.34 86.64 97.10 98.76 99.18

30% yes 85.94 94.63 95.92 97.60 83.95 92.62 95.58 97.01 80.92 91.51 94.17 97.09
no 91.70 96.96 98.39 99.52 89.36 96.40 97.74 98.24 85.91 95.08 97.36 99.15

Table 4: Performance implications of the geometric localization module for the Sketch Reorganization task. The method is to connect the
graph nodes represented by sketch strokes on sketch graph either in a randomized way or in a spatial layout way. Random connection means
that the graph nodes are connected randomly when they are on the sketch graph.

proper reasoning about the semantics of the original sketch.
sketch-pix2seq [Chen et al., 2017] and SketchLattice [Qi et
al., 2021] methods, sensitive to the visual structure of the
sketch, produce inaccurate representations when even small
disruptions in the strokes cause significant changes in pixel
space. SP-gra2seq [Zang et al., 2023] exhibits performance
improvements at scale of 10%, leveraging local graph nodes,
but struggles to reason effectively about overall sketch seman-
tics at scale = 30%.

Additionally, we provide a qualitative comparison in the
Figure 3, showing that SketchGloc achieves nearly perfect
Sketch Reorganization at scale = 10%, resulting in plausi-
ble and comparable representations to the original sketch. In
contrast, other methods do not reason effectively for most ex-
amples, especially at scale = 30%, where all methods except
ours fail almost completely. SketchGloc still provides satis-
factory results for most examples.

Certainly, it is worth mentioning that our method not only
accomplishes the Sketch Reorganization task but also pos-
sesses the capability to optimize sketches. This is due to the
assumption of errors in sketch inputs for the reorganization
task. As shown in the Figure 4, quality of recreated sketches
are improved. The generated sketches show a consistent and
significant improvement in quality, contributing to an im-
proved ability for individuals to both create and understand
sketches. This advancement can also optimize the quality
of sketches from impaired drawers, such as individuals with
Parkinson’s disease [Armstrong and Okun, 2020], assisting
in communication or restoring cognitive abilities [Chancellor
et al., 2014]. Readers can also optimize their understanding
when faced with low-quality sketches.

4.4 Ablation Study
Performance Gained From Sketch Reorganization Task.
As shown in the Table 3, under the Sketch Reorganization

task settings(SR = yes), representations learned are more
robust, achieving higher Ret performance in most cases. This
is because, in the context of this task, sketch representations
learn more robust features, making it less prone to confusion
with similar sketches. This indicates the rationality of apply-
ing this task to sketch datasets.

Performance Gained From Geometric Localization Mod-
ule. In order to investigate whether the introduction of the
spatial geometric localization module in SketchGloc facili-
tates the establishment of relationships between stroke nodes,
we conduct a comparative analysis in this section. We con-
trast Sketch Reorganization outcomes when employing a ran-
domly linked sketch graph. Our experimentation involves
calculating results at scale = 10% and scale = 30%. As
presented in Table 4, we observed that the randomly con-
nected graph, achieved by altering the adjacency matrix A
in Eq.(4), yields inferior Sketch Reorganization performance
at scale = 10% compared to our proposed method. Further-
more, this adverse impact becomes particularly pronounced
when the sketch encounters a greater degree of disruption.

5 Conclusion
This paper introduces the Sketch Reorganization task, which
aims to guide machines in correcting placement errors of
strokes. To address this issue, we propose the SketchGloc
method. This method utilizes spatial layout information to
construct multiple graphs, enabling overall spatial layout in-
formation and enhancing the accuracy of sketch representa-
tions. By using grids to represent spatial layout can accom-
modate placement errors, the robustness of representation is
improved. The effectiveness of SketchGloc has been demon-
strated through extensive experiments involving controllable
sketch synthesis and Sketch Reorganization.
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