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Abstract

In the community of artificial intelligence, signifi-
cant progress has been made in encoding sequen-
tial data using deep learning techniques. Never-
theless, how to effectively mine useful information
from channel dimensions remains a major chal-
lenge, as these features have a submanifold struc-
ture. Linear subspace, the basic element of the
Grassmannian manifold, has proven to be an ef-
fective manifold-valued feature descriptor in statis-
tical representation. Besides, the Euclidean self-
attention mechanism has shown great success in
capturing long-range relationships of data. Inspired
by these facts, we extend the self-attention mecha-
nism to the Grassmannian manifold. Our frame-
work can effectively characterize the spatiotempo-
ral fluctuations of sequential data encoded in the
Grassmannian manifold. Extensive experimental
results on three benchmarking datasets (a drone
recognition dataset and two EEG signal classifi-
cation datasets) demonstrate the superiority of our
method over the state-of-the-art. The code and sup-
plementary material for this work can be found at
https://github.com/ChenHu-ML/GDLNet.

1 Introduction
In recent years, the emerging field of computer vision and
pattern recognition (CV&PR) has witnessed remarkable ad-
vancements, especially in the realm of sequential data (video
clip, Electroencephalograph (EEG) signal, image set, etc)
analysis [Nguyen, 2021; Chen et al., 2021; Ingolfsson et
al., 2020]. Compared with the existing Euclidean feature
learning methods, geometry-aware approaches that lever-
age manifold structures have gained prominence, mainly
because they can capture appropriate statistical represen-
tations [Huang and Van Gool, 2017; Huang et al., 2018;
Nguyen et al., 2019; Chakraborty et al., 2020; Nguyen, 2021;
Chen et al., 2023]. One such fundamental latent space is
the Grassmannian manifold [Edelman et al., 1998a], the
space of linear subspaces. The Riemannian geometry of
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linear subspaces provides a solid foundation for the charac-
terization and analysis of sequential data, offering a pow-
erful paradigm for capturing spatiotemporal relationships.
In the field of medical imaging, linear subspace finds ap-
plication in the classification of time-series data for Brain-
Computer Interfaces (BCI) [Gao et al., 2022] and in the
analysis of magnetic resonance imaging [Chakraborty et al.,
2020]. For visual classification, its effectiveness has been
well-substantiated across a spectrum of practical scenarios,
such as dynamic scene classification [Wang et al., 2021; Wei
et al., 2022b], facial emotion recognition [Huang et al., 2018;
Wang et al., 2022b], face recognition [Wang and Wu, 2020;
Wei et al., 2022a], and action recognition [Nguyen and Yang,
2023; Chen et al., 2024b].

While linear subspaces can accommodate the influence of
data variations and demonstrate comparatively higher compu-
tational efficiency, their intrinsic Riemannian geometry hin-
ders the direct generalization of Euclidean methods to the
Grassmannian manifolds. Fortunately, the exploitation of
projection operator [Huang et al., 2015; Harandi et al., 2013]
to represent each Grassmannian element can bridge the gap
mentioned above. In this scenario, the associated measure-
ment on the Grassmannian manifold is known as the Pro-
jection Metric (PM) [Edelman et al., 1998b]. Based on the
PM, some methods utilize the kernel functions [Hamm and
Lee, 2008; Harandi et al., 2013] to achieve discriminative
transformation of manifold data points to Euclidean repre-
sentations, while others directly learn an embedding mapping
between two Grassmasnnian manifolds [Huang et al., 2015;
Wang et al., 2022b]. Although the latter could yield more
discriminative features, there exists an inherent shortcoming
that weakens its representational capacity, i.e., feature learn-
ing on the nonlinear manifolds utilizing a linear embedding
function.

Convolutional neural networks (ConvNets) [He et al.,
2016; Simonyan and Zisserman, 2014] are widely acknowl-
edged for their superior performance compared to traditional
shallow learning architectures in acquiring potent features.
This stems not only from their ability to conduct multi-stage
nonlinear computations but also from the effectiveness and
scalability of the gradient-descent training procedure. Build-
ing upon this insight, certain researchers have undertaken ef-
forts to generalize the ConvNets paradigm to the scenario of
Riemannian manifolds [Huang and Van Gool, 2017; Huang
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et al., 2018; Wang et al., 2022a; Chakraborty et al., 2020;
Chen et al., 2024b; Chen et al., 2024a], injecting new dy-
namism into the realms of data modeling, learning, and clas-
sification. GrNet [Huang et al., 2018] is a Riemannian neu-
ral network designed with an end-to-end architecture, intro-
ducing a deep and nonlinear learning mechanism tailored for
linear subspaces. It consists of two fundamental trainable
blocks, a Projection block and a Pooling block, for the im-
plementation of data compression, nonlinear activation, and
Grassmannian feature pooling.

This innovative architecture guarantees the preservation of
Grassmannian properties for the input data at each layer. Sub-
sequently, an Output block is designed to project the learned
manifold representations into an Euclidean space for classifi-
cation. This design has laid the groundwork for further devel-
opments in refining and tailoring the existing building blocks
[Wang and Wu, 2020] to suit a variety of CV&PR tasks better.

The utilization of deep learning techniques in the field of
Grassmannian manifolds is promising, but it remains in its
infancy. The existing Grassmannian neural networks (Gras-
Nets) encounter two major limitations: 1) the network in-
puts, i.e., orthonormal basis matrices, are the global spa-
tiotemporal representation of the raw sequential data, which
may be underinformed; 2) there is no explicit statistical cor-
relation established between channel dimensions. Both of
these problems will have a potential negative impact on the
learning ability of GrasNets. Given the great success of the
self-attention mechanism defined in the Euclidean space in
characterizing the long-range relationships between features
[Dosovitskiy et al., 2020; Huang et al., 2022; Li et al., 2022],
we propose a self-attention mechanism on the Grassmannian
manifold (GMSA) by referring to some geometric operators,
including Riemannian metric, Riemannian mean, and Rie-
mannian optimization. Based on GMSA, a geometric deep
learning network, referred to as GDLNet, is proposed to ad-
dress the aforementioned issues. Specifically, GDLNet first
stacks several convolutional layers as an extractor of spa-
tiotemporal representations w.r.t the raw data. Then, a man-
ifold modeling module is attached, which maps the result-
ing features onto the Grassmannian manifold in two steps.
Firstly, each input tensor data is grouped into m sections in
the channel dimension, where m stands for the number of di-
visions. Secondly, we model each section as a Grassmannian
element using eigenvalue decomposition. This is followed by
a Riemannian self-attention module with the purpose of min-
ing statistical complementarity between different channels.

In contrast to regular self-attention that operates on vectors,
our approach proposes query, key, and value for the Grass-
mannian manifold. In such a case, to effectively mine and ag-
gregate the geometrical dependencies between different chan-
nels, the Riemannian metric (PM in this paper) instead of the
commonly used dot-product is exploited to measure the sim-
ilarity between query and key. Based on the attention ma-
trix computed, the PM-based weighted Fréchet mean (wFM)
is naturally utilized to obtain the final outputs. The main
reasons for using the PM-based wFM are threefold: 1) it is
faithful to the Riemannian geometry of Grassmannian mani-
folds; 2) the Fréchet mean has shown theoretical and practical
advantages in Riemannian data analysis [Chakraborty et al.,

2020]; 3) the PM has exhibited success in many applications
[Huang et al., 2018; Wang et al., 2021]. Our main contribu-
tions can be summarized into the following three aspects:
• A self-attention mechanism is proposed on the Grass-

mannian manifold.
• A lightweight geometric deep learning network is de-

signed for learning vibrant spatiotemporal representa-
tions of sequential data across Euclidean and Rieman-
nian spaces.
• Extensive empirical validations of our model on three

benchmarking datasets certify its effectiveness.

2 Preliminary
This section provides a brief review of the Grassmannian ge-
ometry. The Grassmannian manifold G(q, d) is comprised of
a set of q-dimensional linear subspaces of the Rd. Each lin-
ear subspace can be naturally represented by its orthonormal
basis Y of size d × q (YTY = Iq and Iq is an identity ma-
trix of size q × q). Therefore, the matrix representation of
Grassmannian is constituted by the equivalence class of or-
thonormal basis

[Y] = {Ỹ | Ỹ = YO,O ∈ O(q)}, (1)
This definition is known as the Orthonormal Basis (ONB)
perspective [Bendokat et al., 2024]. By abuse of notation,
we use [Y] or Y interchangeably.

As shown in [Bendokat et al., 2024], each Grassmannian
point can also be represented as an idempotent symmetric
matrix of rank q by Φ(Y) = YYT, which is known as
the projector perspective. This representation indicates that
the Grassmannian is a submanifold of the Euclidean space of
symmetric matrices. Therefore, an extrinsic distance can be
induced by the ambient Euclidean space, which is also known
as the Projection Metric (PM) [Hamm and Lee, 2008]:

dPM(Y1,Y2) = 2−1/2∥Y1Y
T
1 −Y2Y

T
2 ∥F, (2)

where ∥·∥F is the Frobenius norm. As demonstrated in [Ha-
randi et al., 2013], the distance computed by the PM deviates
from the true geodesic distance on the Grassmannian mani-
fold up to a scale of

√
2, thus making it a widely used Grass-

mannian metric.

3 Proposed Method
As shown in Fig. 1, our GDLNet is composed of three com-
ponents: a feature extraction module, a manifold modeling
module, and a Grassmannian self-attention module. This sec-
tion will give a detailed introduction to each of them.

3.1 Feature Extraction Module (FEM)
In this module, a stack of convolutional layers is tailored to
different classification tasks to extract task-specific informa-
tion from raw sequential data. For the RADAR dataset, the
FEM is composed of a convolutional layer meant for extract-
ing spatiotemporal information. For the EEG datasets, we
follow [Wei et al., 2019] to make the FEM contain two con-
volutional layers, one of which is used to impose spatial filter-
ing to the multi-channel EEG signals, while the other extracts
spatiotemporal features.
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Figure 1: The architecture of the proposed GDLNet and GMSA,
where Q′

r,K
′
r,V

′
r correspond to the query, key, and value for the

r-th (r ∈ {1, 2, · · · ,m}) input matrix Yr , and Y′
r is the r-th output

of GMSA. For classification, we follow GrNet to first exploit the
projection map (Φ) to transform each Y′

r into a symmetric matrix
(denoted by Y′′

r ). Then, we vectorize each Y′′
r and concatenate the

resulting vectors. Finally, a FC layer followed by a Softmax function
is applied for decision making.

3.2 Manifold Modeling Module (MMM)
Let Ei ∈ Rc×l be the i-th feature matrix generated by
FEM w.r.t the i-th input data sequence. Here, c represents
the number of channels, while l indicates the dimensional-
ity of a channel. Since each point of G(q, d) represents a q-
dimentional linear subspace of the d-dimentional vector space
Rd (see Section 2), the Grassmannian manifold G(q, d) thus
becomes a reasonable and efficient tool for parametrizing the
q-dimentional real vector subspace embedded in Ei [Turaga
et al., 2011; Harandi et al., 2011]. To capture comple-
mentary statistical information embodied in different chan-
nel features, as illustrated in Fig. 2, we first partition each
Ei into m sections along the channel dimension, denoted as
Ẽi1, Ẽi2, · · · , Ẽim. Then, a similarity matrix is computed
for each Ẽir, followed by the SVD operation to obtain a q-
dimentional linear subspace spanned by an orthonormal ma-
trix Yir ∈ Rd×q , s.t. ẼirẼ

T

ir ≃ YirΣirY
T
ir. Wherein,

Yir and Σir are two matrices consisting of q leading eigen-
values and the corresponding eigenvectors, respectively. For
simplicity, we abbreviate Yir as Yr in the following. Now,
the resulting Grassmannian representation of Ei is denoted as
Υ = [Y1,Y2, · · · ,Ym].

...
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T

𝐘𝑟
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𝑐×𝑙

SiCD
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Figure 2: An overview of Grassmannian modeling, where ’SiCD’
means split in the channel dimension, d = c/m, c denotes the num-
ber of channels, and m signifies the number of segments. Here, the
MMM takes the r-th (r ∈ {1, 2, · · · ,m}) segment as an example.

3.3 Grassmannian Manifold Self-Attention
Module (GMSA)

An overview of the designed GMSA is illustrated in Fig. 1.
It can be seen that the input to this module is a series of or-
thonormal matrices, i.e., Υ = [Y1,Y2, · · · ,Ym]. To cap-
ture the geometric relationship within Υ, we extend the Eu-
clidean multihead attention mechanism [Vaswani et al., 2017;
Dosovitskiy et al., 2020] to the Grassmannian manifolds, es-
tablishing query, key, and value based on the Grassmannian
geometry. To intuitively articulate the forward propagation of
each orthonormal matrix involved in GMSA, we design seven
auxiliary layers as follows.
GMT layer. In contrast to the traditional linear transforma-
tion of vectors in Euclidean space, the generation of query,
key, and value in our approach relies on the orthonormal ma-
trices. Inspired by [Huang et al., 2018], we design a Grass-
mannian transformation (GMT) layer to produce Qr, Kr, and
Vr from Yr via the mapping function fgmt:

Qr = fgmt(Wq,Yr) = WqYr, (3)
Kr = fgmt(Wk,Yr) = WkYr, (4)
Vr = fgmt(Wv,Yr) = WvYr, (5)

where Wq,Wk,Wv ∈ Rdt×d (dt < d) are three projection
matrices of row full rank. Since the underlying space of these
weight matrices is a non-compact Stiefel manifold and the
geodesic distance has no upper bound [Huang et al., 2018;
Edelman et al., 1998b], it is infeasible to directly optimize
them on such manifold. To tackle this issue, we follow
[Huang et al., 2018] to impose orthogonality constraint on
each weight matrix Wb (b ∈ {q, k, v}), such that the weight
space Rdt×d

∗ becomes a compact Stiefel manifold St(dt, d)
[Absil et al., 2009].
ORM layer. Inspired by [Huang et al., 2018], we de-
sign the orthonormal maintaining (ORM) layer to impose or-
thonormality, preventing the matrices from degeneracy. Tak-
ing Kr as an example, since it is not an orthonormal basis
matrix, a typical solution, i.e., QR decomposition, is adopted
to make the space spanned by the output feature matrices of
the previous GMT layer be a valid Grassmannian manifold.
Specifically, the QR decomposition w.r.t Kr is given below:

Kr = ΩrRr (6)

where Ωr ∈ Rdt×q and Rr ∈ Rq×q are the orthonormal and
invertible upper-triangular matrices, respectively. Therefore,
Kr can be normalized into an orthonormal basis matrix via
the mapping form:

K′
r = form(Kr) = KrR

−1
r = Ωr. (7)

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5101



Similarly, we can obtain Q′
r and V′

r.

PM layer. In Euclidean space, the inner product is com-
monly used to measure the similarity between the query and
key vectors. In contrast, the query, key, and value in our
method are orthonormal matrices residing on the Grassman-
nian manifold. Therefore, in the designed Projection Metric
(PM) layer (denoted as fpm), we utilize Eq. (2) to compute
the distance between Qr and Kj , given below:

Drj = fpm(Q′
r,K

′
j) = ||Q

′
rQ

′
r
T −K′

jK
′
j
T ||2F, (8)

where r, j ∈ {1, 2, · · · ,m}.
SIM layer. However, the distances computed in the previ-
ous PM layer cannot be directly used as attention weights, be-
cause an increased similarity between any two samples invari-
ably results in a decrease in their corresponding distance. To
this end, we design the similarity measurement (SIM) layer
to convert Drj to be a valid form using the transformation
function fsim:

D′
rj = fsim(Drj) =

1

1 + log(1 +Drj)
. (9)

It can be seen that fsim is a decreasing function w.r.t dPM(, ).
Now, we denote the attention matrix as A = [D′

rj ]m×m.

SMX layer. Considering that the values in each row of A
do not necessarily satisfy convexity constraint, we use the
Softmax (SMX) function, denoted as fsmx, to compress its
value range along the row direction in the designed SMX
layer:

D′′
rj = fsmx(A) =

exp(D′
rj)∑m

e=1 exp(D′
re)

. (10)

Now, we use Â = [D′′
rj ]m×m to represent the final attention

probability matrix.

WAE layer. As stated in Section 1, this article employs the
weighted Fréchet mean (wFM) to realize the weighted aver-
age (WAE) operation involved in GMSA. Before introducing
the designed WAE layer, we first give the definition of wFM
on the Grassmannian manifolds.

Given a batch of Grassmannian activations {Yr}mr=1, their
weighted Fréchet mean (P∗) can be defined as:

P∗ = arg min
P∈G(q,d)

m∑
r=1

wrd
2
G(Yr,P), (11)

where dG is a distance on the Grassmannian manifold, and
wr is the weight assigned to each Yr, satisfying wr > 0 for
all r ∈ {1, 2, · · · ,m} and

∑
r wr = 1.

As noted in [Helmke et al., 2007], G(q, d) is isometric to
the d×d idempotent symmetric matrices of rank q, denoted as
IS(q, d), which is a submanifold of the Euclidean space Sd
of d× d symmetric matrices [Bendokat et al., 2024]. The fa-
mous PM is the distance from the ambient space Sd. Inspired
by this, the PM is utilized to compute the wFM on IS(q, d):

min
P̆∈IS(q,d)

m∑
r=1

wr||Y̆r − P̆ ||2F, (12)

where Y̆r = YrY
T
r and P̆ = PPT. However, Eq. (12) is a

non-convex problem, as P̆ ∈ IS(q, d) implies a non-convex
constraint, i.e., P̆

2
= P̆ . Considering that the essential pur-

pose of designing the WAE layer is to achieve feature fusion
on the Grassmannian manifold, we remove the idempotent
constraint from Eq. (12). In this way, the above formula is
reduced to the following form:

min
P̆∈Sd

m∑
r=1

wr||Y̆r − P̆ ||2F, (13)

where Sd denotes a set of real symmetric matrices. Then,
the solution to Eq. (13) can be derived directly through the
Euclidean weighted average:

P∗ =
m∑
r=1

wrYrY
T
r . (14)

Replacing wr and Yr with D′′
rj and V′

j respectively, the
WAE layer can be expressed as:

V′′
r = fwae(Â,V) =

m∑
j=1

D′′
rj · (V

′
jV

′
j
T
), (15)

where V = {V′
1, · · · ,V

′
m} is produced by the ORM layer.

REO layer. Finally, we design the reorthonormalization
(REO) layer, denoted as freo, to map each V′′

r ∈ Rdt×dt

(symmetric matrix) output by the WAE layer back onto the
Grassmannian manifold:

V′′
r = ZSZT, (16)

Y′
r = freo(V

′′
r ) = Z1:q, (17)

where Eq. (16) represents the SVD operation, and Z1:q is
a matrix composed by the eigenvectors corresponding to the
first q largest eigenvalues.

Now, the embedding mapping of GMSA can be expressed
as: Υ′ = ϕGMSA(Υ), where Υ′ = {Y′

1,Y
′
2, · · · ,Y

′
m}.

The forward pass of the proposed GMSA is summarized in
Algorithm 1.

Remark 1. Generally speaking, the computed Riemannian
mean should be a valid point on the Grassmannian manifold,
that is, it meets the following condition:

wFM({Yr}) = f−1(wFM({f(Yr)})), (18)

where f(Yr) = YrY
T
r , and f is a bijection from G(q, d)

to IS(q, d). Easy computation shows that f−1 is defined by
Eqs. (16-17). However, the learned P∗ ∈ Sd in the WAE
layer (Eq. (14)) is not idempotent. Nevertheless, we treat the
designed REO function (freo) as an approximation to f−1.
Although this approach may not be able to render the optimal
Riemannian mean, the composition of the functions of WAE
and REO provides a feasible pathway for the realization of
the weighted average on the Grassmannian manifolds. Be-
sides, when wr = 1

m for all r in Eq. (13), f−1(P∗) is the
extrinsic mean [Srivastava and Klassen, 2004].
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Algorithm 1 Grassmannian Manifold Self-Attention Module
Input: A sequence of Grassmannian data {Yr}mr=1
Parameter: The projection matrices: Wq,Wk,Wv

Output: A sequence of Grassmannian data
{
Y′

r

}m

r=1

1: for r ← 1 to m do
2: Q′

r = form(Qr) = form(WqYr)
3: K′

r = form(Kr) = form(WkYr)
4: V′

r = form(Vr) = form(WvYr)
5: end for
6: ∀r, j ∈ {1, 2, · · · ,m}:

A :=
[
D′

rj

]
m×m

= 1

1+log(1+d2
PM(Q′

r,K
′
j))

7: Â := Softmax(A) =
[
D′′

rj

]
m×m

8: for r ← 1 to m do
9: V′′

r =
∑m

j=1D′′
rj · (V

′
jV

′
j
T
)

10: Y′
r = freo(V

′′
r ) = Z1:q

11: end for

3.4 Backward Propagation
Due to space limitation, this section just provides the com-
puted gradients in the layers of PM, WAE, and REO. For de-
tails on other layers, please refer to our supp.. To facilitate
expression, we use the symbol k to represent any layer in the
designed attention module.

REO layer. As Eq. (16) involves SVD operation, we refer
to [Ionescu et al., 2015] to first compute the partial derivative
of L(k) w.r.t V′′

r in this layer, given below:

∂L(k)

∂V′′
r

= Z(2(GT ◦ (ZTΛz)sym ))ZT+Z(Λs)diagZ
T, (19)

where Λz = ∂L(k′)

∂Z , Λs =
∂L(k′)

∂S , L(k) = ℓ◦f (K) ◦ ...◦f (k)

(ℓ is the cross-entropy loss) represents the loss function of the
k-th layer, k′ denotes a virtual transition layer, regarding V′′

r
as its input and outputs Z and S, and G is defined by:

Grj =

{
1

σr−σj
, if σr ̸= σj ,

0, otherwise ,
(20)

where σr signifies the r-th eigenvalue in S. According to the
invariance of the first-order differential, which is also the ba-
sic criterion for deducing Eq. (19), the following two partial
derivatives can be obtained:

∂L(k
′)

∂Z
=

[
∂L(k+1)

∂Y′
r

0

]
,

∂L(k
′)

∂S
= 0. (21)

WAE layer. According to Eq. (15), the partial derivatives
of L(k) w.r.t D′′

rj and Vj can be computed by:

∂L(k)

∂V′
j

= 2D′′
rj ·

∂L(k+1)

∂V′′
r

V′
j , (22)

∂L(k)

∂D′′
rj

= trace

[(
V′

jV
′
j
T
) ∂L(k+1)

∂V′′
r

]
. (23)

PM layer. On the basis of Eq. (8), the partial derivatives of
L(k) w.r.t Q′

r and K′
j are shown below:

∂L(k)

∂Q′
r

= 4[Q′
rQ

′
r
T −K′

jK
′
j
T
]Q′

r ·
∂L(k+1)

∂Drj
, (24)

∂L(k)

∂K′
j

= −4[Q′
rQ

′
r
T −K′

jK
′
j
T
]K′

j ·
∂L(k+1)

∂Drj
. (25)

Based on the aforementioned components, the training and
inference of the designed network can be unclogged.

4 Experiments
In this section, we assess the performance of the proposed
GDLNet in two distinct classification tasks: drone recog-
nition using the RADAR dataset [Brooks et al., 2019] and
EEG signal classification employing the MAMEM-SSVEP-
II dataset [Pan et al., 2022] and the BCI-ERN dataset [Mar-
gaux et al., 2012], respectively. In this article, we execute
the publicly accessible source codes of all the involved com-
parative methods and report their best results across all the
used datasets. The number of GMSAs is configured as one
in the designed GDLNet, which determines that the follow-
ing six layers are required for the construction of GMSA:
fgmt → form → fpm → fsim → fsmx → fwae. Besides,
our model is trained on a PC equipped with an i7-13700H
CPU and 32GB of RAM.

4.1 Drone Recognition
The RADAR dataset encompasses 3,000 synthetic radar sig-
nals, distributed among three distinct categories. Each radar
signal is segmented into windows of length 20, resulting in an
orthonormal matrix of size 23 × 10 for the representation of
one sequential data. For a fair comparison, we follow [Brooks
et al., 2019] to designate 50%, 25%, and 25% of the obtained
3,000 orthonormal matrices to the training set, validation set,
and test set, respectively. On this dataset, the dimensionality
q of the generated linear subspaces and the size of the pro-
jection matrices of the GMT layer are set to 10 and 18 × 23,
respectively. Besides, the learning rate of GDLNet is config-
ured as 5e−3, and the batch size is fixed to 50.

The 10-fold experimental results obtained by different Rie-
mannian neural networks (RiemNets) on this dataset are
listed in Table 1. It can be seen that the classification score of
GDLNet surpasses those of GrNet, SPDNet, and SPDNetBN
by 4.57%, 4.79%, and 0.30% respectively, while the low-
est standard deviation (SD) additionally provides the initial
evidence for the robustness of the designed model. Follow-
ing this, we reduced the volume of training data by 95% for
a more comprehensive evaluation of the robustness of these
four networks. As presented in the last column of Table 1, all
the competitors lag behind GDLNet in terms of SD. More-
over, our method still stands out in terms of classification
ability compared with GrNet and SPDNet. At the same time,
Fig. 3 illustrates that compared with the baseline model (Gr-
Net), the convergence performance of the proposed GDLNet
is also quite good. All in all, these experimental results not
only attest to the efficacy of GDLNet in capturing useful spa-
tiotemporal statistics of sequential data, but also demonstrate
its robustness in the scenario of data scarcity.
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Models Acc. (all data) Acc. (5% data)
GrNet [Huang et al., 2018] 90.11 ± 1.45 77.29 ± 2.23
SPDNet [Huang and Van Gool, 2017] 89.89 ± 1.21 78.84 ± 4.51
SPDNetBN [Brooks et al., 2019] 94.38 ± 3.10 80.49 ± 4.70
GDLNet 94.68 ± 0.90 79.52 ± 1.99

Table 1: Accuracy (%) comparison on the RADAR dataset.
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Figure 3: Performance comparison on the RADAR dataset.

4.2 EEG Signal Classification
EEG is a sophisticated neuromonitoring technique that can
precisely measure the electric fields generated by cortical
neurons, enabling the non-invasive capture of various rhyth-
mic activities occurring within the brain. Several modalities
of BCI are based on EEG signals, such as the steady-state vi-
sual evoked potential (SSVEP) paradigm and the error-related
negativity (ERN) paradigm. The SSVEP paradigm entails ex-
ternal stimuli leading to changes in brain potentials, and the
ERN paradigm captures event-related potential (ERP) in the
brain’s electrical activity when individuals make errors.

However, several special characteristics of EEG data, such
as non-linearity, non-stationarity, and a high susceptibility to
external interference, make meaningful feature extraction a
substantial challenge within this domain. In this part, we
apply the designed GDLNet to the task of EEG decoding
to further validate its effectiveness, selecting the MAMEM-
SSVEP-II and BCI-ERN datasets as two typical examples.

SSVEP. This Dataset (MAMEM-SSVEP-II) was collected
using the EGI 300 Geodesic EEG System, which features 256
channels and a data sampling rate of 250 Hz. It comprises the
data garnered from 11 participants, who partook in five identi-
cal yet independent sessions. In each session, the participants
were instructed to concentrate on a visual stimulus enduring
for 5 seconds, each oscillating at different frequencies: 6.66,
7.50, 8.57, 10.00, and 12.00 Hz. Each subject performed five
trials, corresponding to each of the five stimulus frequencies,
as prompted. Moreover, each session involved 100 trials, with
each trial segment crafted within 1-5 seconds post-prompt,
and further split evenly into four one-second segments.

ERN. This dataset (BCI-ERN) utilizes a P300-based BCI,
with a total of 26 participants partaking in a spell-check task.
The incorrect inputs from the participants are monitored and
exploited for measuring the ERP. The primary objective of
this challenge is to determine and detect the types of signal
disturbances elicited by BCI spelling error feedback to form
a judgment regarding its robustness. Since the quantity of cor-
rect inputs detected by the BCI speller greatly surpasses that
of incorrect inputs, this task is established as an unbalanced
binary classification task.

Models SSVEP ERN
EEGNet [Lawhern et al., 2018] 53.72 ± 7.23 74.28 ± 2.47
ShallowCNet [Schirrmeister et al., 2017] 56.93 ± 6.97 71.86 ± 2.64
SCCNet [Wei et al., 2019] 62.11 ± 7.70 70.93 ± 2.31
EEG-TCNet [Ingolfsson et al., 2020] 55.45 ± 7.66 77.05 ± 2.46
FBCNet [Mane et al., 2021] 53.09 ± 5.67 60.47 ± 3.06
TCNet-Fusion [Musallam et al., 2021] 45.00 ± 6.45 70.46 ± 2.94
MBEEGSE [Altuwaijri et al., 2022] 56.45 ± 7.27 75.46 ± 2.34
GrNet [Huang and Van Gool, 2017] 61.23 ± 3.56 72.23 ± 4.56
SPDNet [Huang and Van Gool, 2017] 62.30 ± 3.12 72.05 ± 4.43
SPDNetBN [Brooks et al., 2019] 62.76 ± 3.01 72.34 ± 3.46
MAtt [Pan et al., 2022] 65.19 ± 3.14 75.68 ± 2.23
GDLNet 65.52 ± 2.86 78.23 ± 2.52

Table 2: Accuracy comparison (%) on the SSVEP and ERN datasets.

We comply with the established standards in [Mane et al.,
2021] for data preprocessing and performance evaluation. To
be specific, the initial four sessions of each subject serve as
the training set, in which one out of four (i.e., session 4) is
used for validation, and the remaining session 5 is allotted
for testing. The maximum number of training epochs of the
proposed GDLNet is set to 150 and 130 on the SSVEP and
ERN datasets, respectively. Besides, the model obtaining the
lowest validation loss during training is selected for testing
on the 5-th session of the same participant. Here, we take
the mean accuracy of ten repetitions per subject as the per-
formance indicator of GDLNet on the SSVEP dataset. Due
to data imbalance, we follow the criterion of [Lawhern et al.,
2018] to utilize the area under the curve (AUC) to estimate
the performance of our model on the ERN dataset. Besides,
on the SSVEP dataset, the size of each transformation matrix
in the GMT layer, learning rate of GDLNet, and batch size
are respectively configured as 19 × 21, 5e−3, and 64, while
those on the ERN dataset are set to 12 × 15, 4e−2, and 30,
respectively. By grouping the feature maps output by FEM in
the channel dimension, a number of 3 orthonormal matrices
of size 21 × q can be generated in MMM for the characteri-
zation of each EEG sample on the SSVEP dataset. Here, the
value of q varies for each participant, due to the variability of
participants. Similarly, the number and size of the produced
orthonormal matrices in MMM are 3 and 15× q on the ERN
dataset, respectively.

It can be seen from Table. 2 that the classification abil-
ity (CA) of RiemNets is superior to most of the Euclidean
deep learning (EuDL)-based EEG models. This provides a
good demonstration of the effectiveness of Riemannian ge-
ometry in encoding the nonlinear structure of sequential sig-
nals. More importantly, the proposed GDLNet is the best per-
former on the SSVEP and ERN datasets, further certifying
its efficacy in learning useful spatiotemporal representations.
It is noteworthy that although MAtt yields similar results to
GDLNet on the SSVEP dataset, the training time of GDL-
Net averages at 1.23 seconds per epoch, which is 0.64 sec-
onds faster than MAtt. This discrepancy arises from the fact
that MAtt, a SPD manifold self-attention method, involves a
greater number of eigenvalue operations than our GDLNet.

4.3 Ablation Study
In this part, we take experiments to further study the signifi-
cance of each primary component involved in GDLNet.
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Methods RADAR SSVEP ERN
FEM 83.21 ± 0.89 24.08 ± 2.65 70.33 ± 3.97
GMSA 80.34 ± 0.82 31.71 ± 3.38 56.76 ± 7.88
FEM+EuSA 88.56 ± 4.72 32.39 ± 3.34 71.25 ± 4.25
FEM+GMSA (GDLNet) 94.68 ± 0.90 65.52 ± 2.86 78.23 ± 2.52

Table 3: Accuracy (%) comparison on the RADAR, SSVEP, and
ERN datasets.

6.66Hz

Time

7.50Hz 8.57Hz 10.00Hz

Time TimeTime

12.00Hz 6.66Hz 7.50Hz 8.57Hz

10.00Hz 12.00Hz Electrodes

Time

Figure 4: The presentation of the heatmaps and spatial topomaps
shows the absolute gradients of the S11 model across five different
frequencies on the SSVEP dataset. In the heatmap, the x-axis and
y-axis denote the time and various EEG channels, respectively.

Correct
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Figure 5: Utilizing the S7 model from the ERN dataset as an illus-
tration. The heatmaps provide a visual representation of the BCI
spellers in response to the ’correct’ and ’error’ feedback categories.

(1) From Table. 3, it is evident that excluding any module
from the proposed GDLNet results in a significant decrease
in classification accuracy, implying that there are no surplus
components included in our framework. Since MMM acted
as the input part of GMSA, it is omitted from Table 3.

(2) The fourth line in Table 3 gives the accuracy of
FEM+EuSA on the three used datasets, where EuSA repre-
sents the Euclidean self-attention module and is computed by:
Softmax

(
QKT/

√
dk

)
V [Dosovitskiy et al., 2020]. The

comparison between GDLNet and FEM+EuSA demonstrates
the necessity and effectiveness of Riemannian computations
in the design of a manifold attention module.

(3) Please refer to our supp. for other ablation studies.

4.4 EEG Model Interpretation
Through comprehensive analysis of GDLNet, fundamental
features captured from EEG data can be elucidated. On the
SSVEP dataset and as illustrated in Fig. 4, across five stim-
ulus frequencies, the predominant gradient responses are lo-
cated on the Oz, exhibiting a focused presence between 0.4

Correct ElectrodesError

Figure 6: Spatial topography of the time-averaged absolute gradi-
ents of the S7 model for two classes (error and correct) on the ERN
dataset. Brain regions showing strong gradient activation in FCz in
the visual cortex are marked in dark red.

and 0.7 seconds. An abundance of gradient responses un-
derscores the pivotal role of Oz in the visual cortex. These
findings are resolutely in line with existing research on the
correlation between SSVEP and Oz in EEG recordings [Her-
rmann, 2001; Han et al., 2018]. This is attributable to Oz
location at the heart of the primary visual cortex, possess-
ing more robust induced potential amplitudes and a superior
signal-to-noise ratio.

On the ERN dataset, the strong gradient responses in the
classification of ’correct’ and ’error’ predominantly center
around the FCz, as demonstrated in Fig. 5 and Fig. 6. This
is consistent with a large body of empirical evidence that the
ERN is generated in the anterior cingulate cortex. This area,
being a part of the medial prefrontal cortex, boasts of rich
connections to the limbic and frontal brain regions. Addition-
ally, the FCz at the frontal-central midline effectively captures
the ERP of ERN. Special attention must be given to the con-
sistent gradient responses exhibited by both feedback types at
the FCz location, particularly around the 0.1 and 0.4 seconds
timeframe. Notably, these findings strongly conforming to
the differences in ERP waveforms observed between correct
and incorrect stimuli as indicated by [Hajcak, 2012].

Please refer to our supp. for other experimental results.

5 Conclusion

In this article, we propose a novel geometric deep learn-
ing network for more effective signal representation. By
Riemannian computations, the proposed Grassmannian self-
attention module is qualified to encode and learn useful
manifold-valued spatiotemporal patterns of input sequential
features, within a lightweight, end-to-end architecture. The
experimental results achieved on three benchmarking datasets
demonstrate the superiority of GDLNet over some leading
comparative methods in both RDL- and EuDL-based signal
classification. In addition, the ablation studies confirm the ef-
fectiveness of each ingredient in GDLNet. In summary, the
proposed network, especially our GMSA block, is a compet-
itive candidate in the modeling, learning, and classification
of sequential data across Euclidean and Riemannian spaces.
Besides, GMSA provides a feasible and effective path for ex-
plicitly mining statistical correlations between Grassmannian
features, which brings a new ideology into Grassmannian ap-
proaches for signal classification.
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