
Reconstruction Weighting Principal Component Analysis
with Fusion Contrastive Learning

Qianqian Wang12 , Meiling Liu1∗ , Wei Feng3 , Mengping Jiang1 , Haiming Xu1 and Quanxue
Gao1

1School of Telecommunications Engineering, Xidian University, Xi’an, China
2Key Laboratory of Measurement and Control of Complex Systems of Engineering, Ministry of

Education, Southeast University, Nanjing, China, 210096.
3School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China

qqwang@xidian.edu.cn, lml1710031211@163.com, weifeng.ft@xjtu.edu.cn, 2047788244@qq.com,
kiritobryant8@gmail.com, qxgao@xidian.edu.cn ∗

Abstract

Principal component analysis (PCA) is a popular
unsupervised dimensionality reduction method to
extract the principal components of data. However,
there are two problems with the existing PCA: (1)
Traditional PCA methods treat each sample equally
and ignore sample differences. (2) They fail to ex-
tract the discriminative features required by recog-
nition tasks. To overcome these problems, we in-
corporate contrastive learning to develop a novel
weighted PCA algorithm. Specifically, our method
weights the reconstruction error of individual sam-
ples to reduce the influence of outliers. Besides,
it integrates contrastive learning into PCA to in-
crease inter-class distances and reduce intra-class
distance, which helps to improve PCA’s discrim-
inative capability. We further develop an unsu-
pervised strategy to select positive and negative
samples, which eliminates pseudo-negative sam-
ples guided by clustering labels. Specifically, it
employs confidence level to distinguish positive
and negative samples. Consequently, our method
achieves higher recognition accuracy on bench-
mark datasets.

1 Introduction
Feature dimensionality reduction is a crucial tool in analyzing
complex high-dimensional data [Doersch et al., 2015]. Cur-
rent feature dimensionality reduction methods are roughly di-
vided into the following types: principal component analy-
sis (PCA) [Abdi and Williams, 2010] and linear discriminant
analysis (LDA) [Belhumeur et al., 1997], as well as struc-
ture preservation methods such as local preserving projection
(LPP) [He and Niyogi, 2003] and neighborhood preserving
embedding (NPE) [He et al., 2005]. Among these methods,
PCA has gained significant attention as a well-established
feature extraction approach and has been widely applied in
various scenarios.

∗Corresponding Author

Figure 1: This figure shows the problem of pseudo-negative sam-
ples. Samples having the same true label with the anchor are treated
as negative data. This may lead to the same class of samples being
pushed away from each other. It is suboptimal for learning good vi-
sual features.

To overcome the influence of outliers and improve the ro-
bustness of PCA, several robust metric PCA has been pro-
posed [Ke and Kanade, 2005; Nie et al., 2014; Ding et al.,
2006; Wang et al., 2017b; Wang et al., 2017a]. They replace
the squared L2-norm by new distance metric to weaken the
influence of noise. Therefore, several studies leverage L1-
norm, F-norm, and L21-norm to obtain robust projection vec-
tors [Ding et al., 2006]. For example, Ke and Kanade [2005]
proposed L1-PCA that uses L1-norm to measure reconstruc-
tion error in the objective function; Kwak [2008] proposed a
robust principal component analysis based on L1-norm max-
imization, which is robust to outliers. However, L1-norm
maximization problem is difficult to be solved directly and
thus has to be optimized with a greedy strategy. Specifi-
cally, the projection direction is sequentially optimized, and
the greedy algorithm is easy to fall into the local solution.
To mitigate this issue, Wang et al. [2014] developed an opti-
mization algorithm that solves the maximization problem of
L1-norm directly with the non-greedy strategy.

However, L1-norm does not satisfy rotational invariance
which is an important property in learning methods. To ad-
dress this problem, Ding et al. [2006] used R1-norm to extract
features and proposed a rotational invariant L1-norm PCA
(R1-PCA). He et al. [2011] introduced a Half-Quadratic PCA
(HQ-PCA), which uses the maximum correntropy criterion to

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5091



realize rotational invariant PCA. Zhang et al. [2019] proposed
an algorithm named Robust Principal Component Analysis
with Adaptive Neighbors (RPCA-AN). In this method, the
idea of adaptive weight learning is applied to robust principal
component analysis. Nie et al. [2014] proposed an algorithm
called Optimal Mean Robust Principal Component Analy-
sis (RPCA-OM). The robust PCA objective function of this
method can automatically remove the optimal mean value.

Although the above algorithms effectively suppress the in-
fluence of outliers and retain rotational invariance, they do
not consider the class structure relationships among samples
in the embedding space. However, extracting discriminative
features is undoubtedly beneficial to downstream classifica-
tion tasks [Zhang et al., 2022; Arora et al., 2019]. As a re-
sult, contrastive learning has been widely applied to various
models and has shown promising results [Ye et al., 2019].
By reducing the distance between positive pairs and increas-
ing the distance between negative pairs, contrastive learn-
ing effectively enhances the discriminative capacities of fea-
tures. Nevertheless, the issue of pseudo-negative samples has
consistently influenced its performance [Wang et al., 2020;
Wei et al., 2020; Sun et al., 2019], as shown in Figure 1.

Inspired by the capability of contrastive learning to cap-
ture sample differences, we apply contrastive learning to the
weighted PCA and propose a novel strategy to tackle the
“pseudo-negative samples” problem, which helps to enhance
the discriminability of the features extracted by PCA. Be-
sides, the connection between PCA and contrastive learning
can be established through the projection matrix. Specifically,
we first employ the original sample as the anchor point and
reconstruct it with the projection matrix generated by PCA,
which is treated as a positive sample. For negative sam-
ples, we utilize the labels acquired by clustering to remove
pseudo-negative samples. Finally, we calculate the confi-
dence level of each pseudo-negative sample and iteratively
eliminate those with a high confidence level. Our contribu-
tions can be summarized as follows:

• We consider the diversity of the samples by assigning
a small weight to the reconstruction error of outliers,
which enhances the robustness of PCA and effectively
resists the impact of outliers.

• We integrate contrastive learning into weighted PCA,
and with the pseudo-labels generated by K-means, we
remove the pseudo-negative samples belonging to the
same class as the anchors, which improves the discrimi-
native capacity of the features extracted by the PCA al-
gorithm.

• We conduct experiments on six datasets to evaluate the
performance of our method, which indicates our method
greatly improves the classification accuracy and demon-
strates its effectiveness in capturing more information
about sample differences.

2 Related Work
In this section, we briefly introduce two related works about
our proposed model, i.e., optimal mean principal component
analysis and instance-level contrastive learning.

2.1 Optimal Mean Principal Component Analysis
PCA is a well-known unsupervised dimension reduction
method that uses a projection matrix to reduce the dimension
of data features. To adjust the features on the same scale,
PCA needs to center the features with a mean matrix. [Nie
et al., 2014] proposed an optimal mean PCA where the mean
matrix is optimized during training to mitigate the sensitivity
of PCA to noise.

Let X = [x1, ......,xN ] ∈ Rd×N be a data matrix. N is
the number of data points. xi ∈ Rd×1 denotes the ith data
point. W ∈ Rd×c is the projection matrix. m is the mean
matrix. The reconstruction error in the form of the optimal
mean PCA loss function is as follows:

min
m,W

N∑
i=1

||xi −m−WWT (xi −m)||22

s.t.WTW = I

(1)

where WWT (xi − m) is the reconstructed data matrix;
WTW = I is the constraint term.

2.2 Instance Level Contrastive Learning
The goal of instance-level contrastive learning is to minimize
the distance between positive pairs while maximizing the dis-
tance between negative pairs. The contrastive learning cross-
entropy loss function is defined as follows:
Definition 1. For the two descriptions A and B, where
A ∈ RN×d, B ∈ RN×d, the number of samples is N and the
dimension is d. ai and bi respectively represent the i-th line
of A and B, i.e., the i-th sample. Suppose s (a,b) = a·bT

∥a∥∥b∥
represents the cosine similarity of the sample a and the sam-
ple b, and then the contrastive loss can be defined as below:

L =
1

2N
(LA + LB) (2)

where,

LA =
N∑
i=1

− log
exp

[
s(ai,bi)

τ

]
N∑
j=1

[
exp

[
s(ai,aj)

τ

]
+ exp

[
s(ai,bj)

τ

]]
(3)

LB =
N∑
i=1

− log
exp

[
s(bi,ai)

τ

]
N∑
j=1

[
exp

[
s(bi,bj)

τ

]
+ exp

[
s(bi,aj)

τ

]]
(4)

ai = xi; bi = WWTxi; s(·, ·) is the cosine similarity
function; τ ∈ (0, 1] is the monitoring temperature.

3 The Proposed Method
In this section, we provide a detailed discussion of our model.
We start with our motivation and objective function. Sub-
sequently, we explain our reconstruction-weighted PCA and
instance-level contrastive learning implementation. Further-
more, we introduce the process of using the clustering results
to compute the confidence level of each sample and selec-
tively eliminate pseudo-negative samples.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5092



W Clustering

















  


Get pseudo 
label

:label1
:label1

:label1

:label2

Anchor

Choose negative 
sample

 

Update

Negative sample 

W
reconstruct









Contrastive 
learning

Get k
Choose negative 

sample

Figure 2: The structure of our proposed PCA method. We use contrastive learning on the real sample and the reconstructed sample obtained
using the projection matrix W. Then we exclude the pseudo-negative examples in contrastive learning using the pseudo-labels obtained by
clustering in the projection space. Instances 1⃝ 2⃝ 3⃝ have the same true label, while 4⃝ has a different label. We use pseudotags to
remove pseudo-negative examples 2⃝ 3⃝ from the instance-level contrast loss, thus improving the classification performance of
PCA-extracted features.

3.1 Motivation and Objective Function
To enhance the robustness of PCA, we incorporate a re-
construction error approach. Simultaneously, we combine
contrastive learning with PCA to ensure that the projected
features retain more class information. Moreover, we use
clustering labels to compute each sample’s confidence level.
Then, we eliminate pseudo-negative samples with high con-
fidence levels. The rate of eliminated samples will increase
with the number of iterations.

Specifically, we perform contrastive learning between real
and reconstructed samples. The connection between PCA
loss and contrastive learning loss is established through the
projection matrix W. To keep similar samples from being
pushed far away, we use clustering labels to guide contrastive
learning to exclude pseudo-negative examples. The block di-
agram of our model is shown in Figure 2. Our objective func-
tion can be written as follows:

min
r,m,W

N∑
i=1

1

ri
||xi −m−WWT (xi −m)||22 + λL (5)

where W is the projection matrix of PCA; L is the contrastive
learning function; λ is the weight of contrastive learning loss;
xi is the i-th row of X; m is the mean matrix; ri is the recon-
structed weight, which will be discussed later.

In Eq.(2), bi represents the i-th reconstructed sample, and
ai represents its corresponding original sample. Other orig-
inal samples and reconstructed samples that are not pseudo-
negative samples are treated as negative samples. It can then
be considered that LA = LB , and L in our model can be
rewritten as:

L =
1

N
LB

=
1

N

N∑
i=1

− log
exp

[
s(bi,ai)

τ

]
N∑
j=1

[
exp

[
s(bi,bj)

τ

]
+ exp

[
s(bi,aj)

τ

]] (6)

Therefore, the objective function of our model in Eq.(5)
can be rewritten as:

min
m,r,W

N∑
i=1

1

ri
||xi −m−WWT (xi −m)||22

+ λ
1

N

N∑
i=1

− log
exp( s1τ )

N∑
j=1,j ̸=k

[
exp( s2τ ) + exp( s3τ )

]
s.t.r ⩾ 0, rT1 = 1,WTW = I

(7)

Where s1 = s (bi,ai), s2 = s (bi,bj); s3 = s (bi,aj);
k is the index of the pseudo-negative sample, which will be
discussed later; τ ∈ (0, 1] is the monitoring temperature.

3.2 Weighting the Reconstruction Error of Each
Sample

The presence of outliers can significantly impact the projec-
tion direction of PCA since their reconstruction errors tend
to be much larger compared to normal values. To address
this issue, we propose a novel weighted PCA. To be specific,
we weight the reconstruction error of each sample instead of
weighting the samples directly. This approach allows for a
more direct reduction of the reconstruction error of outliers,
and the weights are taken in a larger range. The reconstruc-
tion weights in our method are as defined follows:

min
ri

N∑
i=1

1

ri
g(xi), s.t.

N∑
i=1

ri = 1, 0 ⩽ ri ⩽ 1 (8)

where g(xi) is the reconstruction error of xi, denoted by gi
in the following derivation; ri is the reconstruction weight.

We use the Lagrange multiplier method to solve the recon-
struction weights ri.

L =
N∑
i=1

gi
ri

+ β(1−
N∑
i=1

ri) +

N∑
i=1

γi(−ri) (9)
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where β, γi are Lagrange multipliers. The KKT conditions
are as follows: 

− gi
ri2

− β − γi = 0

γiri = 0

γi ⩾ 0

N∑
i=1

ri = 1

(10)

Then the optimal solution of the weights ri is below:

ri =

√
gi

N∑
i=1

√
gi

(11)

Thus, the reconstruction weighting PCA loss is as follows:

min
m,r,W

N∑
i=1

1

ri
||xi −m−WWT (xi −m)||22

s.t.r ⩾ 0, rT1 = 1,WTW = I

(12)

where r = [r1, r2, ..., rN ]T is the vector of reconstruction
weights ri; m is the mean matrix; W is the projection matrix.

3.3 Removing Pseudo-Negative Samples During
Contrastive Learning

Considering the low complexity of the K-means algorithm,
we first utlize K-means to obtain the pseudo-labels of each
projected sample. Next, the confidence level is obtained by
calculating the cosine similarity between each sample and the
cluster centroid. A high confidence level means that the sam-
ple is close to the cluster center, indicating the sample is more
likely to be a pseudo-negative example of its corresponding
class. The confidence level of xi is calculated as follows:

coni =
sim(zi, cyi)∑p

j=1,j ̸=yi sim(zi, cj)
(13)

Where zi = WT (xi − m); cyi is the cluster center of zi; p
is the class number of X; cj is the cluster center except cyi;
sim is the cosine similarity function.

Pseudo-negative examples are selected according to the
confidence level. First, we rank the confidence levels of each
sample in descending order. Then, we select the pseudo-
negative example with the highest confidence level and ex-
clude it from the denominator of the contrastive learning ob-
jective function. The proportion of choices is constantly in-
creasing with each iteration. The subscript of the selected
pseudo-negative example can be expressed as follows:

k = η ∗ Index(con) (14)

where η = 0 ∼ 100% is the rate of selected pseudo-negative
samples; con = [con1, ......, conN ] ∈ [0, 1] is the sorted con-
fidence level of all samples; Index is a function that can get
the subscript of zi corresponding to the confidence level coni.

Our method prevents similar samples from being projected
to greater distances by deleting pseudo-negative examples

Dataset Quantity Dimension Class
Number

Extended Yale B 2144 1024 38
CMU PIE 2856 1024 68

AR 3120 2000 120
ORL 400 1024 40
Lung 203 3312 5

Table 1: Parameters of the datasets used in our experiments.

with the subscript k in contrastive learning. It is worth not-
ing that the acquisition of pseudo-negative examples and the
extraction of PCA features are carried out alternately and en-
hance each other, thereby improving the discriminative qual-
ity of the recovered features. The detailed optimization can
be found in the Supplementary material 1.

4 Experiment
4.1 Experiment Setting
All our experiments were conducted on the Windows 10 op-
erating system using Python 3.7. The recognition accuracy
follows the 1-nearest neighbor approach. To prevent signifi-
cant differences in clustering outcomes during iterations, we
use the K-means and fix random seed as 4 in the training
process. Furthermore, for fairness, we run each method for
10,000 epochs and set the algorithm parameters in accordance
with the specifications in their papers.

4.2 Datasets Information
Extended Yale B:[Georghiades et al., 2001] The Yale B
dataset comprises 5850 facial images from 10 individuals,
later expanded and renamed the Extended YaleB dataset. It
encompasses 2144 frontal images of 38 subjects captured un-
der diverse lighting setups. Images were resized to 32×32
dimensions and noise blocks with ratios ranging from 0.05
to 0.15 were applied to 14 images per person. From each
individual, 32 images were randomly chosen, with 7 noisy
images assigned for training, totaling 1216 images. The re-
maining 1198 images were allocated for testing purposes.

CMU PIE:[Sim et al., 2002] The CMU PIE database was
created by Carnegie Mellon University. It contains 4,400
frontal faces of 68 people. These images were taken under
43 kinds of light, 13 kinds of postures, and 4 kinds of ex-
pressions. Our experiment adopts the No. 27 posture, which
contains 2856 positive images, 42 for each person. We also
add random noise to 10 images of each person, and the noise
ratio is 0.05 to 0.15. We selected 1428 for training and the
rest for testing.

AR: [Martinez and Benavente, 1998] The AR dataset
comprises 4,000 color facial images from 56 females and
70 males, featuring diverse lighting conditions, expressions,
poses, and occlusions. Biweekly image capture resulted in
26 images per subject. Experimentation involved a subset of
120 subjects, with varying occluded, unobstructed, and sub-
sequent session images. Images were resized to 50x40 pixels,

1https://github.com/lml314159/IJCAI2024
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Method CMU PIE Extended Yale B AR+All AR+glass ORL Lung
L2-PCA 82.65±0.77 52.25±0.69 59.38±0.72 67.00±0.13 83.50±1.35 92.23±0.53
GreedyL1-PCA 84.52±0.73 54.64±0.64 59.24±1.02 67.50±1.43 85.50±1.53 92.23±1.12
Non-greedyL1-PCA 82.06±0.70 49.95±0.90 59.11±0.53 67.00±0.54 85.50±0.89 92.23±0.75
HQ-PCA 83.28±0.89 53.15±0.77 59.96±0.57 68.00±0.57 86.00±1.04 92.32±1.20
R1-PCA 85.23±0.67 55.57±0.51 60.08±0.51 67.50±0.53 84.50±0.86 93.20±0.30
RPCA-OM 85.18±0.65 55.48±0.58 60.24±0.68 69.00±0.56 83.00±1.56 92.23±0.64
RPCA-AN 85.47±0.60 56.21±0.68 60.13±0.59 68.50±0.35 84.50±1.11 93.20±0.76
TRPCA 85.59±0.64 54.97±0.75 60.21±0.74 68.50±0.76 85.76±0.75 93.32±0.74
EGCFS 85.69±0.54 52.56±0.66 58.87±1.35 66.00±0.85 87.50±0.54 92.23±1.20
PCA-CL(ours) 86.27±0.64 57.60±0.75 60.83±0.74 70.28±0.76 90.50±0.75 93.32±0.74

Table 2: The average recognition accuracy(%) and standard deviation on the six datasets with a fixed dimension of 100.

PCA RW CL k CMU PIE Extended Yale B AR+ALL AR+glass ORL Lung

✓ 82.65 52.25 60.13 64.67 85.45 89.32
✓ ✓ 83.43 53.32 60.32 65.13 86.67 90.42
✓ ✓ 84.22 55.22 60.54 66.22 87.72 91.43
✓ ✓ ✓ 85.96 56.50 60.77 68.14 88.34 91.67
✓ ✓ ✓ ✓ 86.27 57.60 60.83 70.28 90.50 93.32

Table 3: The recognition rate (%) under different settings with a fixed dimension of 100. RW represents the reconstruction error weights, CL
represents contrastive learning, and k represents the strategy of removing pseudo-negative examples.

with 1560 images designated for training and the remainder
for testing. Occluded images were deemed noisy samples.
Two categories emerged: (1) AR+all, using initial session im-
ages for training and subsequent session images for testing;
(2) AR+glass, employing non-disguised subjects’ initial ses-
sion images along with one glass-wearing image for training,
while two additional glass-wearing images were incorporated
from both initial and subsequent sessions for testing.

ORL:[Jin et al., 2001] The ORL dataset includes 400 gray-
scale frontal facial images of 40 subjects, showcasing varia-
tions in shooting time, posture (frontal, lateral), expression
(open eyes, closed eyes, smiling), lighting conditions, occlu-
sion (presence of sunglasses), and environmental factors. Im-
ages were resized uniformly to 32x32 dimensions for experi-
mentation. Half of each subject’s images were randomly as-
signed for training, with the other half reserved for testing.
Images with shading or occlusions were classified as noisy
samples.

Lung:[Li et al., 2018] The Lung dataset constitutes a bi-
ological repository comprising 203 samples categorized into
five distinct classes. Our experimental protocol entails ran-
domly partitioning 50% of the images, totaling 539 samples
per category, for the training subset, while the residual sam-
ples are earmarked for the test subset. This partitioning pro-
cedure is iterated tenfold to yield ten independent sets of ran-
domized datasets.

4.3 Comparison Algorithms
We compare our method with L2-PCA [Turk and Pentland,
1991], GreedyL1-PCA [Kwak, 2008], Non-greedyL1-PCA
[Wang et al., 2014], HQ-PCA [He et al., 2011], R1-PCA
[Ding et al., 2006], RPCA-OM [Nie et al., 2014], RPCA-
AN [Zhang and Tong, 2019], TRPCA [Nie et al., 2020], and
a feature extraction method based on graph structure: EGCFS

[Zhang et al., 2020]. Then we carry out experiments on Ex-
tended Yale B [Georghiades et al., 2001], CMU PIE [Sim et
al., 2002], AR [Martinez and Benavente, 1998], AR+glass,
ORL, and Lung datasets. We will briefly introduce the above
comparison methods:

L2-PCA: It uses L2-norm to constrain reconstruction error,
which is a traditional PCA algorithm.

Greedy-L1PCA: It uses the L1-norm to measure recon-
struction error, which has the advantage of satisfying rotation
invariance.

Non-greedy-L1PCA: It proposes a non-greedy algorithm
to solve the L1-norm maximization problem, which ensures
that the algorithm converges to the global optimal solution.

HQ-PCA: It’s based on the maximum entropy criterion and
has rotation invariance.

R1-PCA: It uses the R1 norm to replace the traditional F
norm, which has rotation invariance, and uses the subspace
iteration method to solve the model.

RPCA-OM: It uses the optimal mean to replace the fixed
mean so that the mean matrix is optimized during the itera-
tion. This approach effectively reduces the sensitivity of PCA
to noise.

RPCA-AN: It introduces the adaptive weight into PCA, ef-
fectively eliminates outliers in the training process and en-
hances the robustness of PCA.

TRPCA: It ignores outliers by truncation and minimizes
the reconstruction error in ℓ2,1-norm.

EGCFS: A graph structure-based feature extraction
method.

4.4 Recognition Accuracy
In this section, we compare the recognition accuracy of our
method with the mentioned comparison methods. We con-
duct feature extraction on six datasets with these six methods
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Figure 3: The average recognition curve on the CMU PIE, Extended YaleB, AR+all, AR+glass, ORL, Lung datasets.

and analyze the recognition rate curves across different di-
mensions, as illustrated in Figure 3. Subsequently, we present
the average recognition rates of all methods at a fixed dimen-
sion of 100, as summarized in Table 2. The experimental re-
sults reveal that our proposed approach initially exhibits com-
mendable performance and surpasses other PCA techniques
as dimensionality increases, indicating its robustness against
outliers. Furthermore, we conduct ten iterations of experi-
ments and maintain a constant projection dimension of 100
across three datasets. Our method consistently outperforms
the compared methods in terms of accuracy, which demon-
strates its effectiveness in extracting discriminative features
and consequently enhancing classification accuracy. In sum-
mary, our method shows its superiority in capturing discrim-
inative features for accuracy improvement.

4.5 Low-dimensional Data Visualization
Figure 4 illustrates that the low-dimensional features obtained
by applying the proposed PCA method are more discrimina-
tive, which indicates that features within the same category
exhibit higher similarity. The figure consists of 16 samples
displayed along the vertical axis from the four categories in
the AR dataset. Each set of four consecutive samples cor-
responds to the same category and includes five selected at-
tributes per sample, displayed along the horizontal axis. Fig-
ure 4(a) depicts the digitized features before PCA dimen-
sionality reduction, in which different colors represent dif-
ferent digitized features whose values are up to four decimal
places. It is evident that the feature values before PCA re-
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data
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(b) Low-dimensional data
after 10000 training epoches

Figure 4: A low-dimensional projection of 16 samples from 4
classes in the AR dataset. Each row represents a sample, and each
column represents a feature.

duction are ambiguous, posing challenges in distinguishing
between classes. Figure 4(b) depicts the visualized features
after PCA reduction, which reveals that the feature values of
four consecutive samples within the same category exhibit
higher similarity, as indicated by color consistency. This ob-
servation provides evidence that the PCA method proposed
in this paper effectively extracts the discriminative features
present in the dataset.

4.6 Ablation Experiment
We conducted the ablation experiments to assess the effi-
cacy of each component of our method. Table 3 presents its
recognition outcomes across different configurations. The ex-
perimental results indicate that contrastive learning notably
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Figure 6: Parametric analysis on the Extended Yale B dataset

enhances recognition accuracy across six different datasets,
demonstrating its capacity to extract discriminative fea-
tures. Specifically, after the elimination of pseudo-negative
instances, the proposed method achieves improvement of
0.31%, 1.1%, 0.06%, 2.14%, 2.16%, and 1.65% on the CMU
PIE, Extended YaleB, AR+all, AR+glass, ORL, and Lung
datasets, respectively. The efficacy of the pseudo-negative
elimination strategy is particularly effective on Yale B, ORL,
and Lung datasets, potentially owing to their reduced cat-
egory diversity and consequent heightened clustering accu-
racy. Consequently, the removal of pseudo-negative instances
yields more precise representations and hence strengthens the
efficacy of contrastive learning mechanisms.

4.7 Parametric Analysis
Figure 6 illustrates the effect of two hyperparameters on the
Extended Yale B dataset in each dimension. When the hy-
perparameter η is fixed as 0.8, the recognition rate under each
dimension reaches its highest value when the weight λ of con-
trastive learning is set to around 0.0001. When setting λ with
different values, the resulting changes in recognition accu-
racy are not significant. When fixing λ to 0.0001, it is found
that the recognition accuracy under each dimension reaches
its highest value when η is set to around 0.8, while the recog-
nition accuracy does not change much when it is set to other
values. Therefore, when λ is set to 0.0001 and η is set to 0.8,
this method has the highest recognition accuracy.

4.8 Time Complexity Analysis
The time complexity of our method is comparable to the com-
pared methods since they all rely on the SVD decomposition

of the projection matrix W. Specifically, when applied to a
dataset of dimension N×d (N is sample number, d is feature
dimension), PCA has a complexity of O(Nd2). The detailed
optimization can be seen in the Supplementary material2 .

4.9 Convergence Analysis

We analyze the convergence of our optimization algorithm
with an extra experiment on these datasets. Figure 5 depicts
the objective value with regard to the iteration number. The
objective value decreases as the iteration number increases,
and eventually, it converges to a constant value. It indicates
that our algorithm successfully minimizes the objective func-
tion and achieves good convergence.

5 Conclusion

This work presents a novel weighted PCA method that aims
to enhance feature discriminability and mitigate the influence
of outliers. The weight assigned to each sample is deter-
mined based on its reconstruction error, with higher weights
assigned to samples with lower reconstruction errors, which
reduces the impact of outliers on the algorithm. It further
improves discriminability by leveraging contrastive learning,
which removes pseudo-negative samples to enhance the sep-
arability between low-dimensional features of different cat-
egories. Experiments on six datasets demonstrate the effec-
tiveness and superiority of our method.
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