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Abstract
In recent years, employing layer attention to en-
hance interaction among hierarchical layers has
proven to be a significant advancement in build-
ing network structures. In this paper, we delve
into the distinction between layer attention and the
general attention mechanism, noting that existing
layer attention methods achieve layer interaction
on fixed feature maps in a static manner. These
static layer attention methods limit the ability for
context feature extraction among layers. To re-
store the dynamic context representation capability
of the attention mechanism, we propose a Dynamic
Layer Attention (DLA) architecture. The DLA
comprises dual paths, where the forward path uti-
lizes an improved recurrent neural network block,
named Dynamic Sharing Unit (DSU), for context
feature extraction. The backward path updates fea-
tures using these shared context representations.
Finally, the attention mechanism is applied to these
dynamically refreshed feature maps among lay-
ers. Experimental results demonstrate the effec-
tiveness of the proposed DLA architecture, out-
performing other state-of-the-art methods in image
recognition and object detection tasks. Addition-
ally, the DSU block has been evaluated as an ef-
ficient plugin in the proposed DLA architecture.
The code is available at https://github.com/tunantu/
Dynamic-Layer-Attention.

1 Introduction
Numerous studies have highlighted the significance of en-
hancing interaction among hierarchical layers in Deep Con-
volutional Neural Networks (DCNNs), which have made sub-
stantial progress across various tasks. For instance, ResNet
[He et al., 2016] introduced a straightforward and highly ef-
fective implementation by incorporating skip connections be-
tween two consecutive layers. DenseNet [Huang et al., 2017]
further improved inter-layer interaction by recycling informa-
tion from all previous layers. Meanwhile, attention mecha-
nisms are playing an increasingly crucial role in DCNNs. The
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Figure 1: The comparison between static and dynamic layer atten-
tion architecture.

evolution of attention mechanisms in DCNNs has progressed
through several stages, including channel attention ([Hu et
al., 2018], [Wang et al., 2020a]), spatial attention ([Carion et
al., 2020], [Wang et al., 2018]), branch attention ([Srivastava
et al., 2015], [Li et al., 2019]), and temporal attention ([Xu et
al., 2017], [Chen et al., 2018a]).

Recently, attention mechanisms have been successfully ap-
plied to another direction, (e.g., DIANet [Huang et al., 2020],
RLANet [Zhao et al., 2021], MRLA [Fang et al., 2023]), indi-
cating the feasibility of strengthening interaction among lay-
ers through attention mechanisms. Compared to simple in-
teraction like those in ResNet and DenseNet, the introduction
of attention mechanisms makes the interaction among layers
more closely effective. DIANet employed a parameter-shared
LSTM module along the network’s depth to facilitate inter-
action among layers. RLANet proposed a layer aggregation
structure to reuse features of previous layers for enhancing
layer interaction. MRLA first introduced the concept of layer
attention, treating each feature as a token to learn useful in-
formation from others by attention mechanisms.

However, we have identified a common drawback in exist-
ing layer attention mechanisms: they are applied in a static
manner, limiting inter-layer information interaction. In chan-
nel and spatial attention, for the input x ∈ RC×H×W , tokens
are input to the attention module, all of which are generated
from x concurrently. However, in existing layer attention,
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(a) Static Layer Attention (b) Dynamic Layer Attention

Figure 2: Visualization of attention scores from stage 3 of the
ResNet-56 between static and the proposed dynamic layer atten-
tion on CIFAR-100 dataset.

features generated from different time steps are treated as to-
kens and passed into the attention module, as shown in Figure
1(a). Since tokens generated earlier do not change once pro-
duced, the input tokens are relatively static, leading to a re-
duction in information interaction between the current layer
and previous layers. Figure 2(a) visualizes the MRLA atten-
tion scores from stage 3 of ResNet-56 trained on CIFAR-100.
When the first 5 layers reuse information from previous lay-
ers through static layer attention, the key values from only
one specific layer are activated, with almost zero attention as-
signed to other layers. This observation verifies that static
layer attention compromises the efficiency of information in-
teraction among layers.

To solve the static problem of layer attention, we propose a
novel Dynamic Layer Attention (DLA) architecture to im-
prove information flow among layers, where the information
of previous layers can be dynamically modified during the
feature interaction. As shown in Figure 2(b), during the reuti-
lization of information from preceding layers, the attention of
the current feature undergo a shift from exclusively focusing
on a particular layer to incorporating information from vari-
ous layers. DLA facilitates a more thorough exploitation of
information, enhancing inter-layer information interaction ef-
ficiency. Experimental results demonstrate the effectiveness
of the proposed DLA architecture, outperforming other state-
of-the-art methods in image recognition and object detection
tasks. The contributions of this paper are summarized as fol-
lows:

• We propose a novel DLA architecture, which consists
of dual paths, where the forward path extracts context
feature among layers using a Recurrent Neural Network
(RNN) and the backward path refreshes the original fea-
ture at each layer using these shared context representa-
tion.

• A novel RNN block, named Dynamic Sharing Unit
(DSU), is proposed to be a suitable component for DLA.
It effectively promotes the dynamic modification of in-
formation within DLA and demonstrates commendable
performance in the layer-wise information integration as
well.

2 Related Work
Layer Interaction. Layer interaction has consistently been
an intriguing aspect of DCNNs. Initially, the implementation

of layer interaction was relatively simple. ResNet [He et al.,
2016] introduced skip connections between consecutive lay-
ers, mitigating issues of gradient vanishing and exploding to
some extent. DenseNet [Huang et al., 2017] further enhanced
layer interaction by reusing information generated from all
preceding layers. In U-Net [Ronneberger et al., 2015], a com-
monly utilized architecture in medical segmentation, the en-
coder and decoder are connected through skip connections to
improve feature extraction and achieve higher accuracy.

Recent studies have explored effective methods for imple-
menting layer interaction. DREAL [Li and Chen, 2020] opti-
mized parameters by introducing arbitrary attention modules
and employed a Long Short-Term Memory (LSTM) [Hochre-
iter and Schmidhuber, 1997] to incorporate previous attention
weights. The update of parameters for both LSTM and atten-
tion layers was achieved through deep reinforcement learn-
ing. DIANet [Huang et al., 2020] incorporated a LSTM
module at the layer level, constructing a DIA block shared
by all layers in the entire network to facilitate inter-layer in-
teraction. RealFormer [He et al., 2020] integrated residual
connections between adjacent attention modules, adding the
attention scores from the previous layer to the current one.
RLANet [Zhao et al., 2021] introduced a lightweight recur-
rent layer aggregation module to describe how information
from previous layers can be efficiently reused for better fea-
ture extraction in the current layer. [Zhao et al., 2022] pro-
posed a straightforward and versatile approach to strike a bal-
ance between effectively utilizing neural network information
and maintaining high computational efficiency. By seam-
lessly integrating features from preceding layers, it foster ef-
fective interaction of information. MRLA [Fang et al., 2023]
treated the features of each layer as tokens, enabling interac-
tion among different hierarchical layers through an attention
mechanism, further strengthening the interaction among lay-
ers.

Dynamic Network Architecture. Dynamic networks rep-
resent a type of neural network structure whose topology or
parameters can dynamically change during runtime, provid-
ing the network with considerable flexibility or other benefits.
[Wang et al., 2020b] proposed a universally adaptable infer-
ence framework for the majority of DCNNs, with costs that
can be easily dynamically adjusted without additional train-
ing. RANet [Yang et al., 2020] introduced an adaptive net-
work that could effectively reduce the spatial redundancy in-
volved in inferring high-resolution inputs. [Han et al., 2021]
have shown that dynamic neural networks can enhance the
efficiency of deep networks. CondenseNetv2 [Yang et al.,
2021] utilized a Sparse Feature Reactivation (SFR) module to
reactivate pruned features from CondenseNet [Huang et al.,
2018], thereby enhancing feature utilization efficiency. To
the best of our knowledge, this paper is the first attempt to
build a dynamic network architecture for strengthening layer
interaction.

3 Dynamic Layer Attention
We will start by reconsidering the current layer attention ar-
chitecture and elucidating its static nature. Subsequently, we
will introduce the Dynamic Layer Attention (DLA). Finally,
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Figure 3: A comparison of LSTM, DIA, and the proposed DSU blocks.

we will present an enhanced RNN plugin block named the
Dynamic Sharing Unit (DSU), integrated within the DLA ar-
chitecture.

3.1 Rethinking Layer Attention
Layer attention was recently defined by [Fang et al., 2023]
and is illustrated in Figure 1(a), where the attention mecha-
nism enhances layer interaction. [Fang et al., 2023] focused
on reducing the computational cost of layer attention and pro-
posed the Recurrent Layer Attention (RLA) architecture. In
RLA, features from distinct layers are treated as tokens and
undergo computations, ultimately producing attention output.
Let the feature output of the l-th layer be xl ∈ RC×W×H .
The vectors Ql, Kl, and V l can be calculated as follows:

Ql = f l
q(x

l)

Kl = Concat
[
f1
k (x

1), . . . , f l
k(x

l)
]

V l = Concat
[
f1
v (x

1), . . . , f l
v(x

l)
]
,

(1)

where fq is a mapping function to extract information from
the l-th layer, while fk and fv are corresponding mapping
functions intended to extract information from the 1st to l-
th layers, respectively. The attention output ol is given as
follows:

ol = Softmax

(
Ql(Kl)T
√
Dk

)
V l

=
l∑

i=1

Softmax

(
Ql
[
f i
k(x

i)
]T

√
Dk

)
f i
v(x

i),

(2)

where Dk serves as the scaling factor. A lightweight version
of RLA was proposed to recurrently update the attention out-
put ol as follows:

ol = λl
o ⊙ ol−1 + Softmax

(
Ql
[
f l
k(x

l)
]T

√
Dk

)
f l
v(x

l), (3)

where λl
o is a learnable vector and ⊙ indicates the element-

wise multiplication. With the multi-head structure design,
Multi-head RLA (MRLA) is introduced.

3.2 Motivation
MRLA successfully integrated the attention mechanism to
enhance layer interaction, effectively addressing computa-
tional costs. However, when MRLA is applied in the l-th

layer, a preceding feature output xm (m < l) has already
been generated in the m-th layer, with no subsequent changes.
Consequently, the information processed by MRLA com-
prises fixed features from the previous layers. In contrast,
widely used attention-based models, such as channel atten-
tion [Hu et al., 2018; Wang et al., 2020a], spatial attention
[Carion et al., 2020; Huang et al., 2019], and Transformers
[Vaswani et al., 2017; Liu et al., 2021; Chen et al., 2023;
Jiao et al., 2023], pass tokens into the attention module gener-
ated simultaneously. Applying the attention module between
freshly generated tokens ensures that each token consistently
learns up-to-date features. Therefore, we categorize MRLA
as a static layer attention mechanism, limiting interaction be-
tween the current layer and shallower layers.

In a general self-attention mechanism, the feature xm

serves two purposes: conveying essential information and
representing context. The essential information extracted at
the current layer distinguishes it from that at other layers.
Meanwhile, the context representation captures changes and
evolution of features along the temporal axis, a critical as-
pect in determining feature freshness. In the general attention
mechanism, essential information is generated at each layer,
and the context representation is transferred to the next layer
for calculating the attention output. In contrast, in layer atten-
tion, once tokens are generated, attention is calculated with a
fixed context representation, diminishing the efficiency of the
attention mechanism. Therefore, this paper aims to establish
a novel method to restore the context representation, ensuring
that the information fed into the layer attention is consistently
dynamic.

3.3 Dynamic Layer Attention Architecture
To address the static issue of MRLA, we propose the use of
a dynamic updating rule to extract the context representation
and promptly update features at previous layers, resulting in
a Dynamic Layer Attention (DLA) architecture. As illus-
trated in Figure 1(b), DLA consists of dual paths: forward
and backward. In the forward path, a Recurrent Neural Net-
work (RNN) is employed for context feature extraction. Let
the RNN block be denoted as “Dyn”, and the initial context
as c0, respectively. c0 is randomly initialized. Given an input
xm ∈ RC×W×H where m < l, a Global Average Pooling
(GAP) is applied to extract global features at m-th layer as
follows:

ym = GAP(xm), ym ∈ RC . (4)
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The context representation is extracted as follows:

cm = Dyn(ym, cm−1; θl). (5)

where θl represents the shared trainable parameters of “Dyn”.
Once the context cl is calculated, the features of each layer
are simultaneously updated in the backward path as follows:{

dm = Dyn(ym, cl; θl)

xm ← xm ⊙ dm (6)

Referring to Equation (5), the forward context feature ex-
traction is a step-by-step process with a computation com-
plexity ofO(n). Meanwhile, the feature updating in Equation
(6) can be performed in parallel, resulting in a computation
complexity of O(1). After updating xm, the basic version of
DLA use Equation (2) to compute the layer attention, abbrevi-
ated as DLA-B. For the lightweight version of DLA, Simply
update ol−1 and then use Equation (3) to obtain DLA-L.
Computation Efficiency. DLA possesses several advan-
tages in its structural design. Firstly, global information is
condensed to compute context information, a utility that has
been validated in [Huang et al., 2020]. Secondly, DLA em-
ploys shared parameters within a RNN block. Thirdly, the
context cl is separately fed into the feature maps at each layer
in parallel. Both the forward and backward paths share the
same parameters throughout the entire network. Finally, we
introduce an efficient RNN block for calculating context rep-
resentation, which will be elucidated in the following sub-
section. With these efficiently designed structural rules, the
computation cost and network capacity are guaranteed.

3.4 Dynamic Sharing Unit
LSTM, as depicted in Figure 2(a), is designed for process-
ing sequential data and learning temporal features, enabling
it to capture and store information over long sequences. How-
ever, the fully connected linear transformation in LSTM sig-
nificantly increases the network capacity when embedding
LSTM as the recurrent block in DLA. To mitigate this ca-
pacity increase, a variant LSTM block named the DIA unit
was proposed by [Huang et al., 2020], as illustrated in Figure
2(b). Before feeding data into the network, DIA first utilizes a
linear transformation followed by a ReLU activation function
to reduce the input dimension. Additionally, DIA replaces the
Tanh function with a Sigmoid function at the output layer.

LSTM and DIA generate two outputs, comprising a hid-
den vector hm and a cell state vector cm. Typically, hm is
used as the output vector, and cm serves as the memory vec-
tor. DLA is exclusively focused on extracting context char-
acteristics from different layers, where the RNN block has
no duty to transform its internal state feature to the outside.
Consequently, we discard the output gate and merge the mem-
ory and hidden vector by omitting the hm symbol. The pro-
posed simplified RNN block is named Dynamic Sharing Unit
(DSU). The workflow of the DSU is illustrated in Figure 2(c).
Specifically, before adding cm−1 and ym, we first normalize
cm−1 using an activation function σ(·). Here, we opt for the
Sigmoid function (σ(z) = 1/(1+e−z)). Therefore, the input
to DSU was compressed as follows:

sm = ReLU
(
W 1

[
σ(cm−1),ym

])
. (7)

The hidden transformation, the input gate, and the forget
gate can be represented by the following formula:

c̃m = Tanh(W c
2 · sm + bc)

im = σ(W i
2 · sm + bi)

fm = σ(W f
2 · sm + bf )

(8)

Subsequently, we obtain

cm = fm ⊙ cm−1 + im ⊙ c̃m (9)

To decrease the network parameters, let W 1 ∈ RC
r ×2C

and W 2 ∈ RC×C
r , where r is the reduction ratio. DSU re-

duces the parameters to 5C2/r, which is fewer than 8C2 of
LSTM and 10C2/r of DIA.

4 Experiments
4.1 Image Classification
Experimental Setup. We conducted experiments on the
CIFAR-10, CIFAR-100, and ImageNet-1K datasets using
ResNets [He et al., 2016] as the backbone network for image
classification. For the CIFAR-10 and CIFAR-100 datasets,
we employed standard data augmentation strategies [Huang
et al., 2016]. The training process involved random horizon-
tal flipping of images, padding each side by 4 pixels, and then
randomly cropping to 32×32. Normalization with mean and
standard deviation adjustment was implemented, and train-
ing hyperparameters such as batch size, initial learning rate,
and weight decay followed the recommendations of the orig-
inal ResNets [He et al., 2016]. To address hyperparameter
uncertainty, we conducted five runs of experiments. For the
ImageNet-1K dataset, we adopted the same data augmenta-
tion strategy and hyperparameter settings outlined in [He et
al., 2016] and [He et al., 2019]. During training, images were
randomly cropped to 224×224 with horizontal flipping. In
the testing phase, images were resized to 256×256, then cen-
trally cropped to a final size of 224×224. The optimization
process utilized an SGD optimizer with a momentum of 0.9
and weight decay of 1e-4. The initial learning rate was set
to 0.1 and decreased according to the MultiStepLR schedule
over 100 epochs for a batch size of 256, consistent with the
ResNet approach [He et al., 2016]. Meanwhile, the reduc-
tion ratio r was set to 4 for the CIFAR-10 and CIFAR-100
datasets, and 20 for the ImageNet-1K dataset, consistent with
the settings in DIANet [Huang et al., 2020].

Results on CIFAR. The experimental results, showcasing
Accuracy±Std, are presented in Table 1. These results under-
score the significant superiority of our DLA-B and DLA-L
models over other challenging networks, including SE [Hu
et al., 2018], ECA [Wang et al., 2020a], DIANet [Huang
et al., 2020], MRLA [Fang et al., 2023] on the CIFAR-10
and CIFAR-100 datasets. In comparison with the baselines,
DLA-L’s top-1 accuracy on CIFAR-10 surpasses ResNets by
1.32%, 1.60%, and 1.62%, and even outperforms them on
CIFAR-100 by 4.96%, 2.94%, and 3.41%. Furthermore, both
DLA-B and DLA-L outperform MRLA-B and MRLA-L,
which are typical static layer attention models. It is notewor-
thy that DLA-L-20 (embedding ResNet-20) achieves fewer
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parameters than ResNet-56 while maintaining comparable
top-1 accuracy on the CIFAR-10 (92.96% vs. 92.95%) and
CIFAR-100 (72.26% vs. 72.32%) datasets. Furthermore,
DLA-L-56 outperforms ResNet-110 by 1.51% and 2.46% on
CIFAR-10 and CIFAR-100 datasets, respectively. As de-
picted in Figure 4, ResNet, DIANet, and MRLA-L exhibit
a relatively slow growth in capabilities with increasing net-
work depth. In contrast, the proposed DLA demonstrates a
faster increase in test accuracy on the CIFAR-10 and CIFAR-
100 datasets as the network depth increases. This observation
verifies that strengthening layer interaction through DLA is
more beneficial in a deeper network structure.

Model
Data CIFAR-10 CIFAR-100

#P(M) Top-1 #P(M) Top-1
ResNet-20 0.22 91.64±0.18 0.24 67.30±0.28
SE 0.24 91.29±0.24 0.27 68.93±0.35
ECA 0.22 91.63±0.16 0.24 67.23±0.24
DIANet 0.44 91.43±0.14 0.46 67.67±0.22
MRLA-B 0.23 92.15±0.23 0.25 71.44±0.49
DLA-B (ours) 0.41 92.47±0.10 0.43 72.01±0.37
MRLA-L 0.23 92.65±0.08 0.25 71.46±0.27
DLA-L (ours) 0.41 92.96±0.18 0.43 72.26±0.29
ResNet-56 0.59 92.95±0.18 0.61 72.32±0.36
SE 0.66 93.60±0.18 0.68 73.51±0.28
ECA 0.59 93.72±0.14 0.61 72.63±0.35
DIANet 0.81 93.88±0.21 0.83 73.87±0.27
MRLA-L 0.62 94.28±0.26 0.65 74.18±0.17
DLA-L (ours) 0.80 94.55±0.13 0.82 75.46±0.26
ResNet-110 1.15 93.04±0.33 1.17 73.00±0.36
SE 1.28 94.09±0.11 1.30 75.01±0.20
ECA 1.15 93.76±0.31 1.17 73.97±0.36
DIANet 1.37 94.48±0.08 1.39 75.31±0.16
MRLA-L 1.21 94.49±0.31 1.24 75.16±0.24
DLA-L (ours) 1.39 94.66±0.23 1.41 76.41±0.36

Table 1: Testing accuracy (%) on CIFAR-10 and CIFAR-100
datasets. “#P(M)” means the number of parameters (million).

(a) Testing acc. on CIFAR-10 (b) Testing acc. on CIFAR-100

Figure 4: Comparison of testing accuracy of different models with
different depths.

Results on ImageNet-1K. We compare the DLA-L archi-
tecture with other challenging methods using ResNets as
baselines. Experimental results, shown in Table 2, indi-
cate that our model significantly outperforms other models.
Firstly, our DLA-L exhibits an increase of 1.9% and 1.5% in
top-1 accuracy to ResNet-50 and ResNet-101, respectively.

Model Params FLOPs Top-1 Top-5
ResNet-50 25.6M 4.1B 76.1 92.9
SE 28.1M 4.1B 76.7 93.4
CBAM 28.1M 4.2B 77.3 93.7
A2 34.6M 7.0B 77.0 93.5
AA 27.1M 4.5B 77.7 93.8
all GC 29.4M 4.2B 77.7 93.7
ECA 25.6M 4.1B 77.5 93.7
DIANet 28.4M - 77.2 -
RLAg 25.9M 4.5B 77.2 93.4
MRLA-L 25.7M 4.2B 77.7 93.8
DLA-L (ours) 27.2M 4.3B 78.0 94.0
ResNet-101 44.5M 7.8B 77.4 93.5
SE 49.3M 7.8B 77.6 93.9
CBAM 49.3M 7.9B 78.5 94.3
AA 47.6M 8.6B 78.7 94.4
ECA 44.5M 7.8B 78.7 94.3
RLAg 45.0M 8.4B 78.5 94.2
MRLA-L 44.9M 7.9B 78.7 94.4
DLA-L (ours) 47.8M 8.1B 78.9 94.5

Table 2: Comparisons of accuracy (%) on the ImageNet-1K valida-
tion set (All results of the following methods are captured from their
original papers).

Then, when compared to the channel attention method, DLA-
L-50 has 0.9M fewer parameters than SE-50 and CBAM-50
[Woo et al., 2018], but its top-1 accuracy is higher by 1.3%
and 0.7%. DLA-L-101 has 1.5M fewer parameters than SE-
101 and CBAM-101 [Woo et al., 2018] while achieving a
1.3% and 0.4% top-1 accuracy increase, respectively. Mean-
while, when compared to the lightweight model, DLA-L-50
and DLA-L-101 remains a 0.5% and 0.2% higher top-1 ac-
curacy than ECA-50 and ECA-101. DLA-L also outperforms
other popular layer interaction models. With 1.2M fewer pa-
rameters than DIANet-50 , DLA-L-50 achieves a 0.8% higher
top-1 accuracy than DIANet-50. Although DLA-L introduces
more parameters compared to RLAg [Zhao et al., 2021], it
achieves a 0.8% and 0.4% higher top-1 accuracy than RLAg-
50 and RLAg-101, respectively. Additionally, DLA-L also
surpasses recent models such as A2 [Chen et al., 2018b], AA
[Bello et al., 2019], and GC [Cao et al., 2019]. Finally, in
comparison with static layer attention, DLA-L exhibits an
increase of 0.3% and 0.2% in top-1 accuracy to MRLA-L-
50 and MRLA-L-101 with a tolerable increase in the num-
ber of parameters. In summary, through comparisons with
well-known channel attention models, layer interaction mod-
els, and various other challenging models, we have validated
that our proposed DLA architecture serves as a more effec-
tive layer interaction model, outperforming other models in
the domain of image classification.

4.2 Object Detection
Experimental Setup. In the context of object detection, our
approach was evaluated on the COCO2017 dataset using the
Faster R-CNN [Ren et al., 2015] and Mask R-CNN [He et
al., 2017] frameworks as detectors. The implementations of
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Methods Detectors Params AP AP50 AP75 APS APM APL

ResNet-50 [He et al., 2016]

Faster
R-CNN

41.5M 36.4 58.2 39.2 21.8 40.0 46.2
SE [Hu et al., 2018] 44.0M 37.7 60.1 40.9 22.9 41.9 48.2
ECA [Wang et al., 2020a] 41.5M 38.0 60.6 40.9 23.4 42.1 48.0
RLAg [Zhao et al., 2021] 41.8M 38.8 59.6 42.0 22.5 42.9 49.5
BA [Zhao et al., 2022] 44.7M 39.5 61.3 43.0 24.5 43.2 50.6
MRLA-L [Fang et al., 2023] 41.7M 40.4 61.5 44.0 24.2 44.1 52.7
DLA-L (ours) 44.2M 40.6 61.6 44.2 24.5 44.2 52.9
ResNet-101 [He et al., 2016] 60.5M 38.7 60.6 41.9 22.7 43.2 50.4
SE [Hu et al., 2018] 65.2M 39.6 62.0 43.1 23.7 44.0 51.4
ECA [Wang et al., 2020a] 60.5M 40.3 62.9 44.0 24.5 44.7 51.3
RLAg [Zhao et al., 2021] 60.9M 41.2 61.8 44.9 23.7 45.7 53.8
MRLA-L [Fang et al., 2023] 60.9M 42.0 63.1 45.7 25.0 45.8 55.4
DLA-L (ours) 63.4M 42.3 63.3 45.8 25.2 46.0 55.5
ResNet-50 [He et al., 2016]

Mask
R-CNN

44.2M 37.2 58.9 40.3 34.1 55.5 36.2
SE [Hu et al., 2018] 46.7M 38.7 60.9 42.1 35.4 57.4 37.8
ECA [Wang et al., 2020a] 44.2M 39.0 61.3 42.1 35.6 58.1 37.7
NL [Wang et al., 2018] 46.5M 38.0 59.8 41.0 34.7 56.7 36.6
GC [Cao et al., 2019] 54.4M 39.9 62.2 42.9 36.2 58.7 38.3
RLAg [Zhao et al., 2021] 44.4M 39.5 60.1 43.4 35.6 56.9 38.0
BA [Zhao et al., 2022] 47.3M 40.5 61.7 44.2 36.6 58.7 38.6
MRLA-L [Fang et al., 2023] 44.3M 41.2 62.3 45.1 37.1 59.1 39.6
DLA-L (ours) 46.9M 41.4 62.5 45.3 37.2 59.3 39.7
ResNet-101 [He et al., 2016] 63.2M 39.4 60.9 43.3 35.9 57.7 38.4
SE [Hu et al., 2018] 67.9M 40.7 62.5 44.3 36.8 59.3 39.2
ECA [Wang et al., 2020a] 63.2M 41.3 63.1 44.8 37.4 59.9 39.8
NL [Wang et al., 2018] 65.5M 40.8 63.1 44.5 37.1 59.9 39.2
GC [Cao et al., 2019] 82.2M 41.7 63.7 45.5 37.6 60.5 39.8
RLAg [Zhao et al., 2021] 63.6M 41.8 62.3 46.2 37.3 59.2 40.1
MRLA-L [Fang et al., 2023] 63.5M 42.8 63.6 46.5 38.4 60.6 41.0
DLA-L (ours) 66.1M 42.9 63.8 46.7 38.6 60.9 41.2

Table 3: The object detection results on the COCO val2017 with Faster R-CNN and Mask R-CNN.

all detectors were carried out using the MMDetection toolkit
[Chen et al., 2019], following the default settings. In the pre-
processing stage, the shorter side of input images was resized
to 800 pixels. The optimization process employed SGD with
a weight decay of 1e-4, momentum of 0.9, and a batch size
of 8. The models underwent training for a total of 12 epochs,
starting with an initial learning rate of 0.01. Learning rate
adjustments occurred at the 8th and 11th epochs, with a re-
duction by a factor of 10 each time.

Results on COCO2017. As shown in Table 3, when uti-
lizing Faster R-CNN as the detectors, our proposed DLA-
L demonstrates a remarkable improvement in average preci-
sion (AP) of 4.2% and 3.6% on ResNet-50 [He et al., 2016]
and ResNet-101 [He et al., 2016], respectively, which vali-
dates the outstanding capability of the DLA architecture in
enhancing object detection performance. Notably, DLA-L
outperforms other models, when compared to the challenging
channel attention block, DLA-L-50 exhibits similar parame-
ter counts to SE-50 [Hu et al., 2018] but achieves a higher AP
by 2.9% and a 3.3% improvement on AP75. When compared
to representative layer interaction models, DLA-L continues
to exhibit excellence. Despite introducing more parameters

compared to RLAg [Zhao et al., 2021], there is an excellent
increase in AP by 1.8% and 1.1% on DLA-L-50 and DLA-
L-101, respectively. Meanwhile, in contrast to a static layer
attention model, MRLA-L [Fang et al., 2023], our DLA-L
achieves a respective increase of 0.2% and 0.3% in AP. When
utilizing Mask R-CNN as the detector, our DLA-L also out-
performs the aforementioned models. Additionally, it sur-
passes NL [Wang et al., 2018], GC [Cao et al., 2019], BA
[Zhao et al., 2022], and other models, showcasing the remark-
able potential of the DLA architecture in facilitating dynamic
modification in inter-layer information, even with the intro-
duction of a tolerable parameter increment.

5 Ablation Study
5.1 Evaluating Different RNN Blocks in DLA-L
In order to validate the effectiveness of our proposed DSU
block in implementing dynamic layer attention, we incorpo-
rated the original RNN block, DIA block and LSTM block
as plugins into DLA to replace DSU block for comparative
experiments. Due to limitations in computational resources,
our ablation experiments were conducted using ResNet-110
as the baseline on CIFAR-100. Each experiment was run five
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times, and the results were expressed in the form of Accuracy
± Std.

Block Params Top-1 acc. (%)
Original RNN 1.41M 73.65±0.23
LSTM 1.93M 75.32±0.34
DIA 1.46M 75.60±0.36
DSU 1.39M 76.41±0.36

Table 4: Testing accuracy of different RNN blocks in DLA-110 on
the CIFAR-100 dataset.

As illustrated in Table 4, the dynamic layer attention im-
plemented by the four RNN blocks exhibits varying perfor-
mance. The original RNN blocks show the poorest perfor-
mance, with even a little top-1 accuracy increase than the
baseline. LSTM block and the DIA block demonstrate com-
parable performance, outperforming baseline by 2.32% and
2.60%, respectively. However, the LSTM block has an addi-
tional parameter count of 0.47M compared to the DIA block,
making it impractical applying LSTM in DLA. On the other
hand, our proposed DSU block, utilizing even fewer param-
eters, achieves superior results. In comparison to the DIA
block, we have 0.07M fewer parameters, leading to a 0.81%
improvement in top-1 accuracy. Therefore, it can be inferred
that our proposed DSU is the most effective block among ex-
isting RNN blocks for implementing DLA.

5.2 Evaluating the Introduced σ Function in DSU
Compared to other RNN blocks, our DSU block first normal-
izes cm−1 using an activation function, where we employ the
Sigmoid function σ(z) = 1

1+e−z for this purpose. To contrast
the role of the σ function utilized in DSU, we will substitute
it with various activation functions, including Identity map-
ping, Tanh, and ReLU functions.

Model Function Top-1 acc. (%)

DLA-L-56

Identity mapping 74.63±0.14
Tanh 74.88±0.21
ReLU 74.95±0.40
Sigmoid 75.46±0.26

DLA-L-110

Identity mapping 75.37±0.38
Tanh 75.67±0.20
ReLU 75.99±0.29
Sigmoid 76.41±0.36

Table 5: Testing accuracy of different activation functions used for
normalizing cm−1 in DLA-L on CIFAR-100 dataset.

As shown in Table 5, we conducted experiments on
the CIFAR-100 dataset using DLA-L-56 and DLA-L-110.
Firstly, we observed in DSU that normalizing cm−1 is essen-
tial compared to Identity Mapping. The inclusion of an acti-
vation function resulted in significantly higher top-1 accuracy
compared to Identity mapping. Secondly, among various acti-
vation functions, the Sigmoid function has been proven effec-
tive in scaling cm−1 to the range of (0, 1), facilitating better

fusion with ym as input for the DSU block. Experimental
results confirm this observation, achieving impressive top-1
accuracy of 75.46% and 76.41% on DLA-L-56 and DLA-L-
110, respectively, far surpassing the baseline.

5.3 Evaluating DSU Block in Layer-wise
Information Integration

We also attempt to evaluate that whether the proposed DSU
block could be deployed to other layer interaction methods.
[Huang et al., 2020] introduced a Layer-wise Information In-
tegration (LII) architecture that shared a RNN block through-
out different network layers. And DIANet serves as a sim-
ple and effective form of LII architecture, demonstrating no-
table achievements in image classification. We evaluated the
performance of the proposed DSU, LSTM, and DIA blocks,
when integrating them into the LII. Additionally, we em-
ployed ResNets as the backbone and conduct experimental
comparisons on the CIFAR-100 dataset.

Block Params Top-1 acc. (%)
ResNet-56 0.61M 72.32±0.36
LII (LSTM) 1.31M 69.28±0.44
LII (DIA) 0.83M 73.87±0.27
LII (DSU) 0.79M 74.23±0.22
ResNet-110 1.17M 73.00±0.36
LII (LSTM) 1.86M 71.31±0.33
LII (DIA) 1.39M 75.31±0.16
LII (DSU) 1.35M 75.14±0.21

Table 6: Testing accuracy of different RNN blocks in layer-wise
information integration on the CIFAR-100 dataset.

As shown in Table 6, the experimental results demonstrate
that the RNN blocks exhibits favorable performance when
applied to LII. On the CIFAR-100 dataset, our DSU block
shows improvements of 1.91% and 2.14% on ResNet-56 and
ResNet-110, respectively. While the introduced parameters
are 0.04M smaller than DIA block, DSU block outperforms
DIA block by 0.36% on ResNet-56. Meanwhile, DSU block
performs comparably with DIA block on ResNet-110. On the
contrary, LSTM block has the highest number of parameters
but performs the worst. Therefore, it could be concluded that
DSU block is also a challenging method in LII, which could
achieve comparable results to DIA block in LII architecture
while having fewer parameters.

6 Conclusion
In this paper, we first unveil the inherent static nature of exist-
ing layer attention mechanisms and analyze their limitations
in facilitating feature extraction through layer interaction. To
address these limitations and restore the dynamic features of
attention mechanisms, we propose and construct a framework
called Dynamic Layer Attention (DLA). For implementing
DLA, we design a novel RNN block, named Dynamic Shar-
ing Unit (DSU). Experimental evaluations in the domains of
image classification and object detection demonstrate that our
framework outperforms static layer attention significantly in
promoting layer interaction.
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