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Abstract

Reinforcement learning from visual observations
is a challenging problem with many real-world
applications. Existing algorithms mostly rely on
a single observation from a well-designed fixed
camera that requires human knowledge. Recent
studies learn from different viewpoints with mul-
tiple fixed cameras, but this incurs high compu-
tation and storage costs and may not guarantee
the coverage of the optimal viewpoint. To allevi-
ate these limitations, we propose a straightforward
View-conditional Partially Observable Markov De-
cision Processes (VPOMDPs) assumption and de-
velop a new method, the MOdel-based SEnsor
controlleR (MOSER). MOSER jointly learns a
view-conditional world model (VWM) to simu-
late the environment, a sensory policy to control
the camera, and a motor policy to complete tasks.
We design intrinsic rewards from the VWM with-
out additional modules to guide the sensory pol-
icy to adjust the camera parameters. Experiments
on locomotion and manipulation tasks demon-
strate that MOSER autonomously discovers task-
specific viewpoints and significantly outperforms
most baseline methods.

1 Introduction
Deep reinforcement learning (RL) has achieved remarkable
successes in challenging domains, from game-playing [Mnih
et al., 2015; Schrittwieser et al., 2020] to drug discovery
[Pereira et al., 2021]. Many RL works now focus on learn-
ing skills directly from visual inputs like images and videos,
which are common in real-world settings such as robotics
manipulations [Zhu et al., 2020; Zhan et al., 2021] and au-
tonomous driving [Hu et al., 2022]. Typically, autonomous
agents acquire visual observations through static, fixed cam-
eras to train policies [Levine et al., 2018]. In contrast, humans
dynamically adjust their eye movements to find optimal view-
points that provide the most helpful information to facilitate
task completion [Dodge, 1903].
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Figure 1: Left: Illustration of six different camera viewpoints of the
Walker2d task. Right: The relationship between the test return and
the mutual information I(O;S) for different viewpoints. We collect
20 trajectories with the final policy trained on the Walker2d task
from each viewpoint and record the mean and standard deviation
of the test returns and the mutual information for each. Policies
trained on different viewpoints have different test performances. The
Walker2d task favors viewpoints 3 and 4, which capture more details
of the agent’s legs compared to other views.

In most reinforcement learning environments, camera pa-
rameters are predefined by the designers without much con-
cern about their explicit impact on subsequent learning. Dif-
ferent views provide varying amounts of task-relevant infor-
mation, thus optimal viewpoint design requires effort and
depends on expert knowledge. To provide a straightfor-
ward intuition of this, we conduct a proof-of-concept experi-
ment. We quantify this effect by collecting image trajecto-
ries from well-trained policies under six viewpoints in the
Mujoco Walker2d environment [Todorov et al., 2012]. We
measure the mutual information (MI) between image obser-
vations and ground truth states using the MINE1 method [Bel-
ghazi et al., 2018]. As shown in Figure 1, overall, the policies
trained from viewpoints with high mutual information have
relatively high test performance, indicating that viewpoint is
crucial for the final RL performance. On the other hand, many
studies explore the multi-view RL paradigm [Li et al., 2019;
Kinose et al., 2022] to improve performance with more cam-
eras, but at the cost of increased computation and storage.
This raises an intriguing question: can we design an algo-

1It is worth noting that the MINE method is only used in the
proof-of-concept experiment, and not used to estimate the MI in
main experiments. More details are in Appendix D.1.
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rithm that automatically determines the optimal viewpoint
for RL tasks, thus improving the final performance without
expert knowledge or additional cameras?

This problem poses two challenges: 1) we need to train
a stable motor policy that adapts to the real-time changes
of the observation viewpoint; 2) we need to provide suit-
able signals that guide the sensory policy to find a good
viewpoint. We propose a new method, the MOdel-based
SEnsor controlleR (MOSER), that simultaneously learns a
view-conditional world model to simulate the environment, a
sensory policy to control the camera, and a motor policy to
complete the task. The view-conditional world model over-
comes the two challenges by: 1) incorporating viewpoint in-
formation in the observation decoding process to exclude the
view-related information from the latent states; 2) providing
three types of intrinsic rewards from its dynamics model, re-
ward model, and image decoder to direct the sensory policy
toward the optimal viewpoint.

We evaluate MOSER on eight tasks in two environments:
DeepMind Control Suite [Tassa et al., 2018] and Jaco Arm
[Laskin et al., 2021]. MOSER outperforms the baseline
methods on almost all tasks and approaches the performance
of model-based multi-view RL methods on most tasks. We
conduct ablations to analyze the effect of different design
choices and interpret the adapted camera parameters in each
task. These experiments demonstrate that MOSER can find
optimal viewpoints during RL training to improve perfor-
mance across diverse tasks.

Our contributions can be summarized as follows:

1. To the best of our knowledge, we are the first to in-
troduce the sensory policy into model-based RL ap-
proaches for autonomously changing camera parame-
ters.

2. We propose an effective MOdel-based SEnsor con-
trolleR (MOSER) method that simultaneously learns
the view-conditional world model, sensory policy, and
motor policy to find the task-specific viewpoint.

3. Our approach performs excellently on several locomo-
tion and manipulation tasks, demonstrating the signif-
icance of actively changing viewpoints in visual RL
tasks.

2 Related Work
Paradigm of Visual Reinforcement Learning. In many
real-world problems, agents can only observe high-
dimensional inputs, such as images or videos, rather than
the underlying states. Previous works have defined this
problem from various perspectives; for example, POMDP
[Hausknecht and Stone, 2015] models it as a partially ob-
servable problem. HCMDP [Ma et al., 2022] considers
high-dimensional input as a combination of mappings of
task-relevant state and task-irrelevant contexts. Block MDP
[Zhang et al., 2020] assumes that observation generation is
the concatenation of noise and state variables. However, these
definitions neglect an important factor - how images are cap-
tured. Different perspectives can lead to different visual rep-
resentations of the same object, directly affecting the task-

relevant information in observations. We propose a View-
conditional Partially Observable Markov Decision Processes
(VPOMDPs) assumption incorporating viewpoint factors into
the observation generation process.
Multi-view Reinforcement Learning. Many studies ex-
ploit observations from multiple cameras to improve RL task
performance. MVRL [Li et al., 2019] proposed a frame-
work and model-free/based solutions for multi-view rein-
forcement learning. Multi-view Dreaming [Kinose et al.,
2022] uses contrastive learning to embed multi-view obser-
vations in a shared latent space. MV-MWM [Seo et al.,
2023] trains a masked multi-view autoencoder and world
model. The model-free LookCloser [Jangir et al., 2022] inte-
grates multi-view observations via cross-view attention. The
Fuse2Control [Hwang et al., 2023] learns the underlying state
space model from multi-view observation sequences with an
information-theoretic method, showing the effectiveness in
aggregating task information across many views. While these
approaches outperform single-view methods, they increase
computation and storage costs and may not guarantee the cov-
erage of the best viewpoint. In contrast, our method receives
observations from a movable camera from one viewpoint at a
time instead of multiple cameras.
Active Vision in Reinforcement Learning. Actively seek-
ing optimal viewpoints is essential for agents performing vi-
sual RL tasks. Previous work has enabled control of hand and
eye movements to avoid occlusions and complete manipula-
tion tasks [Cheng et al., 2018; Grimes et al., 2023]. SUG-
ARL [Shang and Ryoo, 2023] proposes active perception of
acquired images by selectively focusing on certain image re-
gions. The recent work SAM-RL [Lv et al., 2023] uses a
differentiable physics simulator and rendering and learns a
sensing-aware Q function for sensory and motor action selec-
tion. Our method fundamentally differs from previous work:
(1) We use a sensory policy decoupled from the motor pol-
icy and change camera parameters guided by intrinsic sig-
nals. (2) We efficiently train the motor policy inside a View-
conditional World Model, simulating the environment under
viewpoint changes.

3 Preliminary
View-conditional Partially Observable Markov Decision
Processes. A standard RL problem can be defined as
a Markov decision process (MDP), which is a tuple of
M = (S,A,P, p, r, γ), where S is the state space, A is the
action space, P : S × A → S is the transition function,
p is the initial state distribution, r : S × A × S → R is
the reward function, and γ is the discount factor. The goal
of RL is to learn an optimal policy π⋆(a|s) that maximizes
the expected cumulative discounted return RM(π) =
Es0∼p(·),at∼π(·|st),st+1∼P(·|st,at) [

∑∞
t=0 γ

tr(st, at, st+1)].
To solve RL problems with incomplete observations such as
high-dimensional images, prior works [Hafner et al., 2019;
Hafner et al., 2020; Yarats et al., 2021b;
Bharadhwaj et al., 2022] adopt partially observable
Markov decision processes (POMDPs) assumption which
additionally introduces an observation space O and generates
observations by an emission function ϕ : S → O. We
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modify the emission function as ϕ(o|s, c) and reformulate a
new assumption named view-conditional partially observable
Markov decision processes (VPOMDPs), where observations
are generated based on the ground-truth state s and the sensor
parameter c.

Model-based Reinforcement Learning. Model-based re-
inforcement learning (MBRL) learns a model of the environ-
ment’s transition dynamics p(st+1|st, at) and reward func-
tion r(st, at) from experience and leverages this model to
plan actions by searching over possible future states [Janner
et al., 2019; Wang et al., 2019]. Model-based methods enable
sample-efficient learning as the agent can learn from the sim-
ulated environment instead of the real one [Moerland et al.,
2023]. This is especially beneficial when the input is high-
dimensional images [Hafner et al., 2019; Hafner et al., 2020;
Hafner et al., 2021], as MBRL can obtain a low-dimensional
surrogate environment to reduce the storage cost and improve
the learning efficiency. Our method adopts a model-based ap-
proach to learn the dynamics of the environment and obtain
an abstract state representation based on historical informa-
tion, stabilizing policy training under varying viewpoints.

Soft Actor Critic. Soft Actor-Critic (SAC) [Haarnoja et al.,
2018; Haarnoja et al., 2019] is an off-policy actor-critic deep
RL algorithm based on the maximum entropy framework that
optimizes a stochastic policy to maximize expected reward
while also maximizing entropy. The agent learns a policy
network πθ(at|st) and two Q-networks Qψ(st, at) to opti-
mize the expected return J(π) = E(st,at)∼ρπ [r(st, at) +
αH(π(·|st))], where ρπ is the state-action marginal distri-
bution, r(st, at) is the reward, and H represents entropy
[Haarnoja et al., 2018]. The policy and Q-functions are up-
dated by backpropagating the gradients of the expected return
via the reparameterization trick, while the temperature pa-
rameter α is automatically adjusted to ensure sufficient explo-
ration [Haarnoja et al., 2019]. The two Q-networks mitigate
positive bias and improve training stability. We choose SAC,
a typical off-policy algorithm, to update the sensory policy
since it can efficiently utilize the collected sensory data. Any
off-policy algorithm can instantiate our sensory policy.

4 Methods
In this section, we first introduce the model components
and training objective of the View-conditional World Model
(VWM) (Section 4.1). We then detail the designed intrinsic
rewards for sensory policy training from three aspects, active
mutual information maximization, next-frame prediction, and
future reward maximization (Section 4.2). Finally, we use
the actor-critic algorithm to train the motor policy by imag-
ining in the learned world model (Section 4.3). We present
an overview of our training process in Figure 2a, the detailed
algorithm in Appendix B, the network architectures in Ap-
pendix D.3, and the hyper-parameters in Appendix F.

4.1 Training View-conditional World Model
To enable the agent to train stably under varying viewpoints,
we propose the View-conditional World Model (VWM), a
variant of the world model [Ha and Schmidhuber, 2018;

Hafner et al., 2019; Hafner et al., 2020]. We model the im-
age decoder of the VWM as the emission function under the
VPOMDPs assumption to separate the viewpoint information
from the latent state. The image decoder pϕ

(
ôt|st, ast−1

)
re-

constructs the original image oct from the current latent state
st and the previous sensory action ast−1. The other compo-
nents of VWM are as follows:

Encoder: st ∼ qψ
(
st|st−1, a

m
t−1, o

c
t

)
Dynamics model: ŝt ∼ pθ

(
ŝt|st−1, a

m
t−1

)
Reward Decoder: r̂t ∼ pα (r̂t|st)

The encoder infers latent state st from the previous la-
tent state st−1, previous motor action amt−1, and current ob-
servation oct . The dynamics model predicts the latent state
st without observation oct , enabling the model to forecast
future states in the latent space. The reward decoder esti-
mates rewards for possible future states. We jointly optimize
the VWM parameters by minimizing the negative variational
lower bound [Hafner et al., 2020] as below:

LM = βKL[qψ(st|st−1, a
m
t−1, o

c
t)||pθ(ŝt|st−1, a

m
t−1)]

− ln pϕ(o
c
t |st, ast−1)− ln pα(rt|st),

(1)

where β is a hyperparameter to weigh the KL-divergence
term. The detailed derivation of the loss is in Appendix C.

4.2 Learning Sensory Policy
The desiderata of the optimal view captured by the camera for
real-world RL tasks are threefold. First, the view should be
informative, containing rich proprioceptive information about
the ground truth state. Second, the view between adjacent
frames should exhibit temporal coherence, as consistent and
continuous visual inputs can stabilize the world model train-
ing and policy learning. Finally, the view should inform high
potential future rewards for the policy. In this section, we for-
mulate these desiderata into three types of intrinsic rewards
that encourage the sensory policy to take proper actions.

Active Mutual Information Maximization (AMIM).
Based on the result of the proof-of-concept experiment in Fig-
ure 1, viewpoints containing rich information about the
ground-truth state benefit policy training. We employ the sen-
sory policy to select actions that adjust camera parameters
to maximize the mutual information between the image ob-
servations oc and latent states s, conditioned on the previous
states and actions.

as⋆t = argmax
ast

I(oct+1; st+1|st, amt , ast ) (2)

Directly optimizing this mutual information is challenging.
We can decompose it into two terms:

I(oct+1; st+1|st, amt , ast )

= H(st+1|st, amt , ast )−H(st+1|st, amt , ast , o
c
t+1)

= H(st+1|st, amt )
(i)diversity

−H(st+1|st, amt , oct+1)
(ii)uncertainty

(3)

Equation (3) tells us that maximizing the original mutual in-
formation is equivalent to maximizing the above information
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Figure 2: (a) The main framework of the MOSER method: 1) Left: The motor policy interacts with the environment, generates trajectories
for training, and optimizes itself in the latent state space. The sensory policy selects the optimal viewpoint through intrinsic reward guidance,
which requires view awareness in the RL process. 2) Right: We construct the world model following DreamerV2 [Hafner et al., 2021] and
add the viewpoint condition to the image decoder to form the VWM. The VWM generates three types of intrinsic rewards rat , rnt , and rpt for
sensory policy updating, without additional modules. (b) For a specific target, the camera pose is parameterized as (d, β, h), corresponding
to the radius d, azimuth angle β, and elevation angle h.

gain, which maximizes the diversity in latent state space and
minimizes the uncertainty after obtaining the observation un-
der a selected viewpoint. We omit the sensory action ast in the
above two entropy terms for two reasons: (i) in the VWM’s
latent state space, predicting the next state st+1 does not re-
quire sensory actions; (ii) ast only affects the generation of the
image observation oct+1 and can be absorbed into it. There-
fore, to maximize the mutual information, we only need to
minimize the second term in Equation (3), which depends on
the sensory policy’s actions. The sensory policy should se-
lect the action that produces the most informative observation
oct+1, reducing the uncertainty of the posterior distribution as
much as possible. To encourage this behavior, we define the
AMIM reward as:

rat = −H(st+1|st, amt , oct+1), (4)

where oct+1 is generated by the underlying emission function
ϕ(oct+1|st+1, a

s
t ) of the environment, and ast is determined by

the sensory policy. We can effectively estimate the posterior
entropy in Equation (4) by the encoder qψ(st+1|st, amt , oct+1)
of VWM, which outputs the mean and standard deviation of
a Gaussian distribution.

Next-Frame Prediction (NFP). The key challenge of ex-
ploring viewpoints is that timely changing camera parame-
ters can cause inconsistent observations for model and pol-
icy learning. To alleviate abrupt changes in adjacent obser-
vations, the sensory policy should output predictable actions
that can help predict the next frame from the latent state.
Based on this, we design the NFP reward as the log-likelihood
of the next frame prediction by the VWM’s image decoder, as
follows:

rnt = log pϕ(o
c
t+1|st+1, a

s
t ) (5)

Future Reward Maximization (FRM). The sensory pol-
icy should take actions that generate image observations that

imply high rewards. To achieve this, we use the VWM’s re-
ward decoder Rϕ to predict the potential reward associated
with the selected observation, without introducing any addi-
tional modules. We formulate the FRM reward as a prediction
of the potential task reward on the image observation oct+1,
which is controlled by the sensory action ast and the latent
state st+1:

rpt = Rϕ(o
c
t+1),where oct+1 = ϕ(st+1, a

s
t ) (6)

Sensory Policy Training. We update the sensory policy
through the SAC algorithm [Haarnoja et al., 2018] based on
the weighted sum of three intrinsic rewards (ra, rn, and rp).
In principle, the sensory policy can be optimized with any
off-policy RL algorithm. The critic of the sensory policy fits
the value function based on the bootstrapped intrinsic rewards
and guides the actor to select actions based on the current
camera parameters ct. The components of the sensory policy
are shown below:
Intrinsic Reward: rst = α1r

a
t + α2r

n
t + α3r

p
t

Sensory Actor: ast ∼ πs(a
s
t |ct)

Sensory Critic: vs(ct, a
s
t ) ≈ Eπs(·|ct)

[ T∑
k=t

γk−t log rsk

]
where α1, α2, α3 are the weights of different intrinsic re-
wards. The detailed training algorithm of the sensory policy
is in Algorithm 2 of Appendix B, and the values of α1, α2, α3

are in Table 3 of Appendix F.

4.3 Learning Motor Policy
We adopt the behavior learning mechanism of Dreamer
[Hafner et al., 2020] to optimize the motor policy within the
VWM. We only train the motor policy on the imagined trajec-
tories inside the VWM to improve sample efficiency. Specif-
ically, the critic of the motor policy estimates the value func-
tion using the decoded reward and bootstraps, and the actor
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Figure 3: Performance results of our method MOSER and the five baseline methods over four seeds in four visual control tasks of DMC.
The solid curves show the average episodic returns and the shaded region indicates the performance range under different runs. MOSER
consistently beats the compared methods except for MB-multiview in almost all environments. It is worth noting that multi-view methods
receive twice as much data as single-view methods, as they obtain two image observations of distinct views per step.

samples actions based on the imagined latent state, maximiz-
ing the expected return.

Motor Actor: amt ∼ πm(amt |st)

Motor Critic: vm(st) ≈ Eπm(·|st)

[ T∑
k=t

γk−t log rmk

]

5 Experiments
We conduct several experiments to answer the following re-
search questions (RQs):

1. Effectiveness (RQ1): How effective is MOSER in con-
tinuous control tasks?

2. Ablation (RQ2): How do the critical designs of MOSER
contribute to the final performance?

3. Specialization (RQ3): Can MOSER identify specific
viewpoints for different environments and tasks?

4. Optimality (RQ4): Can the best camera parameters
found by MOSER improve the performance of the cur-
rent algorithms?

5.1 Experiments Setup
Locomotion. We select four visual control tasks from
DeepMind Control Suite [Tassa et al., 2018]: cheetah run,
walker walk, reacher easy, and quadruped run. These tasks
pose challenges like sparse rewards, contact dynamics, and
3D scenes. The shape of image observation is 64×64×3 for
all tasks.

Manipulation. We test the method’s ability to control cam-
eras and adapt to different goals while performing simple ma-
nipulation tasks on the Jaco Arm, a 6-DOF robotic arm with
a three-finger gripper. The Jaco Arm has been used in pre-
vious unsupervised RL works [Laskin et al., 2021]. This en-
vironment is challenging due to the sparse reward, as shown
in prior work [Laskin et al., 2021; Yarats et al., 2021a]. We
consider four tasks with different target positions: top left,
top right, bottom left, and bottom right. The shape of obser-
vations is the same as that in the Locomotion tasks.

8 16 24 32
MOSER (ours)

SUGARL
MF-joint
MB-free

MF-Multiview
MB-Multiview

Median

10 20 30

IQM

8 16 24 32

Mean

Score

Figure 4: Aggregate metrics on Jaco Arm tasks of MOSER and the
baselines with 95% confidence intervals. Higher mean, median and
IQM scores are better. MOSER consistently outperforms the com-
pared methods in Jaco Arm tasks.

Settings of camera parameters. As depicted in Figure 2b,
each sensory state is represented by the tuple (d, β, h) in a
spherical coordinate system, where d is the distance from the
target to the camera, β is the azimuth angle, and h is the eleva-
tion angle. For both locomotion and manipulation tasks, the
sensory state space is continuous, initialized at (3, 90,−45)
and bounded within the ranges of [0, 10] for d, [0, 180] for β,
and [−90, 90] for h. The sensory action space is also contin-
uous, spanning [−1, 1] in all three dimensions. The examples
of camera parameters are shown in Appendix A.
Baselines. We compare our method with several baselines
on both DMControl Suite and Jaco Arm:

• SUGARL: A visual reinforcement learning method that
trains a sensory policy to actively select the optimal re-
gion from the original image observation as the input for
the motor policy [Shang and Ryoo, 2023].

• MF-joint: A model-free RL method that jointly trains
sensory and motor policies based on the environmental
reward. We use the DrQ algorithm [Yarats et al., 2021b]
as the backbone, which is a state-of-the-art model-free
visual RL method.

• MB-free: A model-based RL method that learns a sen-
sory policy with the environmental reward and trains the
motor policy inside the model. We employ the Dream-
erV2 algorithm [Hafner et al., 2021], an MBRL method
that plans through a learned world model.

• MF-multiview: A model-free RL method with multi-
view observation. We choose the DrQ algorithm [Yarats
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et al., 2021b] as the backbone and concatenate the first-
and third-person image observations at each step as in-
puts.

• MB-multiview: A model-based RL method with multi-
view observation. We select the DreamerV2 algorithm
[Hafner et al., 2021] as the backbone and process the
inputs the same way as MF-multiview.

5.2 Effectiveness (RQ1)
Locomotion. As shown in Figure 3, MOSER enhances per-
formance in tasks with single fixed-camera observations, out-
strips the model-free multi-view approach, and rivals the
model-based multi-view method in nearly all tasks. The MF-
joint method struggles with task execution and viewpoint op-
timization due to fluctuating observations from changing per-
spectives. Interestingly, without explicit sensory rewards, the
MB-free method outperforms the MF-joint method, possi-
bly because its long-term predictions enable accurate propri-
oceptive state estimation and facilitate motor control under
viewpoint changes. The SUGARL method, although it seeks
ideal image regions, is hindered by static camera settings.
MOSER exceeds SUGARL across all tested environments by
actively selecting the best viewpoints. It also surpasses the
MF-multiview in four environments, suggesting that a sin-
gle optimal viewpoint can be as informative as multiple ones.
While MOSER nears the performance of the MB-multiview
method in three tasks, it lags in Cheetah Run. Notably, the
MB-multiview benefits from utilizing twice the amount of
data compared to MOSER, as it receives two observations
from distinct views at each step. This substantial increase in
data volume significantly contributes to its performance ad-
vantage. Our objective is not to supplant the multiview ap-
proach with MOSER universally but to enhance the efficacy
of existing visual RL methods by a learnable viewpoint.

Manipulation. In Figure 4, the MOSER method outper-
forms all other methods with fixed camera observation inputs,
including single-view and multi-view, on Jaco Arm. This is
because the manipulation task requires the agent to control
the arm to reach the goal, which demands dynamic view-
point changes to capture the relative position between the arm
and the goal and contribute to policy adaptation. Multi-view
methods perform significantly better than single-view meth-
ods on the Jaco Arm task since multiple viewpoint inputs can
provide richer task-relevant information. Overall, MOSER
achieves superior results by actively selecting suitable view-
points to optimize the raw input for the motor policy.

5.3 Ablation (RQ2)
To evaluate the contribution of different components of
MOSER, we conduct ablation studies on the viewpoint con-
dition, the designed intrinsic rewards, and the frequency of
executing sensory actions.

Impact of viewpoint condition. To examine the influence
of viewpoint conditioning, we modify the image decoder in
VWM to reconstruct the image observation from the latent
state only. In Figure 5, MOSER with WM shows a significant
performance drop on multiple tasks compared to the original

(a) Ablation study. (b) The effect of sensor action frequency.

Figure 5: (a) The ablation study of the viewpoint condition on the
world model and three types of intrinsic rewards. Removing any one
will result in decreased performance. (b) Investigation of the effect
of sensory action frequency on policy performance. The horizontal
axis shows the frequency of sensory actions, with k = 2, 4, 6, 8, 10
representing sensory actions executed once every 2, 4, 6, 8, 10 mo-
tor actions, respectively. Larger values indicate less frequent sensory
actions. Policies trained with different sensory action frequencies
show different performances. We run all experiments on DMC tasks
with error bars indicating performance standard deviation across
four seeds.

MOSER, especially on the Quadruped Run task. This indi-
cates that incorporating the viewpoint condition in the world
model of MOSER is essential for stable training and achiev-
ing high performance.

Effects of intrinsic rewards. To investigate the individ-
ual effects of different intrinsic rewards - AMIM, NFP, and
FRM - we conduct ablation studies on each separately within
DMC environments. In Figure 5a, removing the AMIM re-
ward leads to a significant performance decrease in the DMC
tasks, indicating that a good viewpoint needs to maximize the
amount of information about the proprioceptive state. Elim-
inating the NFP reward results in a high variance of per-
formance, revealing that predicting the following observa-
tion from the previous state and current sensory action helps
smooth and continuous viewpoint changes. Removing FRM
results in a remarkable performance drop across environ-
ments, confirming good viewpoints should enable high re-
wards. Each component is crucial to learning good view-
points across diverse control tasks. We present the change
of these intrinsic rewards during training in Appendix E.4.

Impact of sensory action frequency. Different sensory ac-
tion frequencies can affect training stability and final perfor-
mance. We investigate the effects of different sensory action
frequencies on experimental performance. The results in Fig-
ure 5b show that agents prefer high sensory action frequency
to adapt to the environment in complex environments such as
Quadruped Run. In contrast, in 2D locomotion environments
like Cheetah Run and Walker Walk, changing camera param-
eters every 10 steps leads to optimal performance, suggesting
that low sensory action frequency is more suitable for these
environments.

5.4 Specialization (RQ3)
We present the camera parameters selected by MOSER for
four DMC tasks in Figure 6a, illustrating the preference for
different viewpoints in each environment. Cameras are posi-
tioned closer to the agent in tasks like Cheetah Run, Walker
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(a) DMControl Suite. (b) Jaco Arm.

Figure 6: The optimal camera parameters selected by MOSER for
tasks of (a) DMControl Suite and (b) Jaco Arm. For each task, we
report the average parameters (d, β, h) with β and h expressed in
radians2for clarity.

Walk, and Reacher Easy compared to Quadruped Run, to ac-
commodate the need for a broader view in 3D locomotion
tasks. Variations in azimuth angles across tasks highlight the
unique optimal viewpoints required for each. Elevation an-
gles, consistently negative, suggest a universal preference for
a bottom-up perspective to observe leg movements. These
findings underscore MOSER’s capability to tailor viewpoints
to specific tasks.

Figure 6b details the camera parameters selected by
MOSER for four Jaco Arm tasks, revealing shared and dis-
tinct viewpoint preferences within the same environment un-
der varied objectives (the red balls). All four tasks display
similarities in camera distances and elevation angles while
differing in azimuth angles, notably demonstrating symme-
try between the Top and Bottom tasks (with the y-axis as the
axis of symmetry). Such variations in azimuth are attributable
to the target’s horizontal positioning, influencing the optimal
viewpoint. These results confirm MOSER’s proficiency in
discerning both common and subtle task characteristics to de-
termine ideal camera perspectives.

5.5 Optimality (RQ4)
We validate the optimality of the searched camera parame-
ters in Quadruped Run, a challenging 3D locomotion task.
Specifically, we compare three environmental settings: (1)
camera parameters chosen by MOSER, (2) original default
camera parameters, and (3) two distinct cameras with default
views. We run DreamerV2 and DrQ algorithm on these three
environments with all other settings identical and record the
episodic return for 100K, 250K, and 500K steps. In Fig-
ure 7, all methods exhibit performance gains to varying de-
grees in the environment with camera parameters selected by
MOSER. With pre-training viewpoints by MOSER, the per-
formances of both algorithms surpass that of human-defined
multiviews. These results reveal that learning from an opti-
mal viewpoint can improve the performance of current visual
RL algorithms, thus corroborating our initial motivation.

2Angles in degrees can be converted to radians by multiplying
by π
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Figure 7: Performance comparison of DreamerV2 and DrQ algo-
rithms on the Quadruped Run task with three camera parameter set-
tings: default, MOSER-selected, and multi-view. The episodic re-
turns are recorded over 100K, 250K, and 500K steps, with error bars
representing the standard deviation across four runs. The MOSER-
selected camera setting enhances both methods’ performance at the
intermediate and final stages.

6 Conclusion
In visual RL research, learning from a fixed single-view ob-
servation requires expert knowledge to determine the view-
point, and learning from a multi-view input will incur ad-
ditional computing and storage costs. To tackle this prob-
lem, we introduce the view-conditional partially observable
Markov decision processes assumption to incorporate the
view-related parameters into the emission function and de-
velop the view-conditional world model based on this as-
sumption. We propose the MOdel-based SEnsor controlleR
(MOSER) method, which learns the sensory policy to con-
trol the camera parameters and optimizes the motor policy to
complete the RL task simultaneously. We evaluate the per-
formance of MOSER on four locomotion tasks and four ma-
nipulation tasks. Moreover, we conduct ablation studies to
analyze the contribution of viewpoint conditioning and differ-
ent intrinsic rewards. We explore the suitable sensory action
frequency in diverse tasks. MOSER can select task-specific
viewpoints and improve the performance of the visual RL
methods with a single fixed camera.

One limitation of MOSER lies in its performance on spe-
cific tasks compared to the MB-multiview method. The lat-
ter benefits from a richer data regime with two distinct im-
ages as input at each step. Our objective is not to replace
the multi-view method with MOSER but to offer a possi-
ble improvement of autonomously selecting optimal view-
points when using model-based multi-view methods. We will
explore this further in future work. Furthermore, our cur-
rent experiments involve task-centric observations, such as
those in DMControl environments. Robotics manipulation
and some navigation tasks typically require more flexibility
from the camera. We plan to explore other scenes [Yang et al.,
2023] beyond the Jaco Arm task to demonstrate MOSER’s
capabilities. Additionally, real-world scenarios often present
distracting inputs impacting sensory and motor policy op-
timization. One straightforward approach is to separately
model task-relevant and irrelevant dynamics [Fu et al., 2021;
Wan et al., 2023] within the view-conditional world model,
without modifying other aspects of MOSER. Further investi-
gation of this is a promising direction for future work.
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