
Unlearning From Weakly Supervised Learning
Yi Tang1 , Yi Gao2,3∗ , Yong-Gang Luo4 , Ju-Cheng Yang4 , Miao Xu5 , Min-Ling Zhang6,3

1School of Automation, Southeast University, China
2School of Cyber Science and Engineering, Southeast University, China

3Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of
Education, China

4AI LAB, Chongqing Changan Automobile Co. Ltd.
5University of Queensland, Australia

6School of Computer Science and Engineering,Southeast University, China
{tangy, gao yi, zhangml}@seu.edu.cn, {luoyg3, yangjc3}@changan.com.cn, miao.xu@uq.edu.au

Abstract

Machine unlearning provides users with the right
to remove their privacy data from a well-trained
model. Existing approaches of machine unlearning
mainly focus on exploring data removing within su-
pervised learning (SL) tasks. However, weakly su-
pervised learning (WSL) is more applicable to real-
world scenarios since collecting WSL data is less
laborious than collecting fully supervised data. In
this paper, we first propose a machine unlearning
approach for WSL by updating the model parame-
ters. Motivated by the uniform distribution of un-
trained model predictions, we derive a formulated
target to force the model’s predictions of removed
data to be indistinguishable. This encourages the
model to forget its ability to recognize features of
data slated for unlearning. Moreover, we employ
formulated targets to transform the classification
unlearning into the convex regression, which can
significantly reduce computational cost and avoid
extra information storage during the training pro-
cess. Additionally, we discuss how to design a tar-
get to ensure the models’ predictions of removed
data being indistinguishable in different learning
scenarios, e.g., SL or WSL. As the flexibility in for-
mulating targets, the proposed approach effectively
deals with the WSL problem while still excels in
SL models. Empirical studies show the superiority
of the proposed approach.

1 Introduction
Organizations and companies extensively leverage user data
for training machine learning models across various appli-
cations, involving movie recommendations or healthcare,
etc [Sekhari et al., 2021a]. As increasing concerns about the
misuse of privacy data, especially sensitive information like
personal emails and medical records [Bourtoule et al., 2021],
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more and more countries place a greater emphasis on pri-
vacy data protection [Mantelero, 2013; Proserpio et al., 2014;
Shokri et al., 2017]. Corresponding regulations empower in-
dividuals to revoke their authorization for the use of their
data in data analysis and machine learning (ML) model
training [State of California Department of Justice, 2023].
This arouses new discussions on data privacy and owner-
ship [Shintre et al., 2019], and promotes the emergence of
machine unlearning that focuses on forgetting data [Bour-
toule et al., 2021; Nguyen et al., 2022].

Existing approaches of machine unlearning can be roughly
divided into two categories: exact unlearning [Golatkar et
al., 2020] and approximate unlearning [Thudi et al., 2022].
Among them, exact unlearning typically expects that the dis-
tribution of the unlearned model is exactly the same as the
retraining one. Intuitively, the straightforward approach is to
retrain the model from scratch using the data that excludes
the information to be unlearned [Yan et al., 2022]. However,
the retraining way comes with a substantial computational
cost that is prohibitively expensive [Bourtoule et al., 2021;
Xu et al., 2024]. To alleviate this problem, many researchers
turn to explore alternative machine unlearning strategy: ap-
proximate unlearning [Wu et al., 2022; Guo et al., 2020].
Approximate unlearning aims to achieve a similar effect of re-
training by modifying model parameters to remove the influ-
ence of specific data on parameter updates [Yan et al., 2022;
Wu et al., 2022]. Compared to approaches belonging to ex-
act unlearning, approaches of approximate unlearning are less
computationally expensive and more efficient for data un-
learning [Guo et al., 2020; Huang et al., 2021].

Despite machine unlearning brings a novel inspiration to
address the challenge of data unlearning [Sekhari et al.,
2021b], existing machine unlearning approaches both ex-
plore the data removal within the supervised learning (SL)
tasks [Xu et al., 2024; Yan et al., 2022; Wu et al., 2022]. In
SL tasks, collecting extensive data with high-quality labels is
typically required, while annotating large-scale datasets accu-
rately is costly and time-consuming [Gao and Zhang, 2021;
Tang et al., 2024]. Due to collecting weakly supervised learn-
ing (WSL) data is less laborious than SL one, the WSL
paradigm may be more applicable to real-world scenarios,
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which allows the model to learn from the data with im-
precise or incomplete supervised information [Zhou, 2018;
Gao et al., 2023]. The goal of WSL is similar to that of
SL, but approaches in WSL are greater flexibility and un-
restricted by the quality of data annotation. Since ground-
truth labels are unavailable for the training data in the WSL
paradigm, previous machine unlearning approaches cannot
hold the weakly supervised data.

In this paper, we first propose an approach called Uniform
Distribution-guided Regression Unlearning (UDRU) for the
WSL problem to achieve data unlearning by updating the
model parameters, which can effectively deal with the un-
certainty labeling information of WSL data and also excel
in the unlearning of supervised learning models. Naturally,
when a trained model is asked to forget specific data, the un-
learned model’s predictions of these data should become in-
distinguishable or incorrect. Observed by that an untrained
model tends to make predictions following uniform distribu-
tions. Therefore, we expect the model predictions of removal
data to lie in intermediate after unlearning, since the model
may still exhibit a memory of removal data when these pre-
diction probabilities are either excessively high or low. To
modify the learned output, we design a flexible unlearning
target to force predictions of removal data to become indistin-
guishable by minimizing the divergence between probability
distributions of model predictions and a uniform distribution.
Different from some previous approaches relying on training
data, the proposed approach applies formulated targets to re-
place classification unlearning as convex regression, which
makes a model implement data unlearning without additional
training data. Furthermore, the convex regression contributes
to reducing computational cost and smoother convergence.
UDRU can effectively tackle the WSL problem and still ex-
cel in SL models as the flexibility in formulating targets of our
approach. The main contributions are summarized below:

• We propose a machine unlearning approach called
UDRU for the WSL problem by formulating a flexible
target based on a uniform distribution. To the best of
our knowledge, moreover, our work explores machine
unlearning in the WSL problem for the first time.

• UDRU transforms the process of classification un-
learning into convex regression by the formulated tar-
gets, which significantly reduces computational cost and
eliminates the need for storing extra training data or in-
formation during the training process.

• As the flexibility in formulating targets, UDRU is not
only suitable for WSL but also well-adapted on the SL
tasks. Empirical studies on various learning paradigms
across different model scales show the effectiveness of
the proposed approach.

The rest of this paper is organized as follows. In Section 2,
we review related work and then introduce the proposed ap-
proach in Section 3. Experimental results and conclusion are
presented in Section 4 and Section 5, respectively.

2 Related Work
In this section, we will give a brief review of related work of
machine unlearning and the WSL paradigm, including partial

label learning (PLL) and noisy label learning (NLL).

2.1 Machine Unlearning
Before proceeding, we provide a brief overview of notations
and existing approaches in machine unlearning. To formulate
machine unlearning, suppose X ⊂ Rd represents the feature
space with d dimensions, and Y = {1, 2, . . . ,K} is the la-
bel space with K possible labels. Let Dt = {(xi, yi)}Nt

i=1 be
the training dataset with Nt instances, where yi ∈ Y is the
ground-truth label of xi ∈ X . We define Du ⊂ Dt as the un-
learning dataset and Dr = Dt \ Du as the remaining dataset.
Given a mapping model f : X → RK and z = f(x,θ), the
model parameters θ∗ are trained using a learning algorithm
A(·), denoted as θ∗ = A(Dt). To normalize z into a prob-
ability distribution p that satisfies

∑K
i=1 pi = 1, we apply a

softmax function σ. The i-th element of p is expressed as:

pi = σi(z) =
ezi∑K
j=1 e

zj
, (1)

where zi denotes the i-th element of z. As recent line of
work in machine unlearning can be divided into two cate-
gories: exact unlearning [Ginart et al., 2019; Brophy and
Lowd, 2021] and approximate unlearning [Guo et al., 2020;
Wu et al., 2022]. Exact unlearning approaches expect that the
parameter distribution of the unlearning model is identical to
that of the retraining model. This can be formulated as:

K(P (U(A(Dt),Dt,Du) ∈ T ), P (A(Dr) ∈ T )) = 0, (2)

where U(·) refers to an exact unlearning process, and T ⊆ H
denotes the hypothesis space H after unlearning parame-
ters θ. P (·) and K(·) denote the distribution of parameters
and a distribution measurement of KL-divergence, respec-
tively. One representative approach for exact unlearning is
ARCANE [Yan et al., 2022], which divided the training data
according to labels and trained a one-class classifier for each
subset. Here, unlearning specific data only required retrain-
ing the one-class classifier corresponding to the labels of un-
learning data. However, exact unlearning approaches face
challenges in efficiently handling with massive data due to
the reliance of the entire training data.

Consequently, many researchers have turned their at-
tention to approximate unlearning to reduce the computa-
tional cost of data unlearning. Unlike exact unlearning,
approximate unlearning tolerates the divergence between
P (U(A(Dt),Dt,Du) ∈ T ) and P (A(Dr) ∈ T ) within spec-
ified thresholds, i.e.,

e−ε ≤ P (U(A(Dt),Dt,Du) ∈ T )

P (A(Dr) ∈ T )
≤ eε. (3)

Eq. (3) forms the basis for a series of approximate unlearn-
ing approaches, including but not limited to, model-agnostic
algorithms [Chundawat et al., 2023], model-intrinsic algo-
rithms [Baumhauer et al., 2022; Izzo et al., 2021] and data-
driven algorithms [Huang et al., 2021; Shen et al., 2024b;
Shen et al., 2024a]. It is important to note that existing ma-
chine unlearning approaches cannot work well on WSL data
as they are designed for fully supervised tasks.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5001



2.2 Weakly Supervised Learning

Differing from fully SL tasks that require massive data with
accurate supervision information, WSL provides the flexi-
bility of learning with weak supervision. In this paper, we
mainly explore machine unlearning for PLL and NLL in
WSL. We proceed to introduce these two learning problems
as follows.

Partial Label Learning. In the case of PLL, each training
instance is associated with a candidate label set, only one of
which is the ground-truth label. Let Dp = {(xi, si)}

Np

i=1 be
the training dataset including Np instances for PLL, where
si ∈ {2Y \ ∅} is the set of candidate labels for xi. PLL re-
search follows two main strategies: the average-based strat-
egy (ABS) [Zhou and Gu, 2018] and the identification-based
strategy (IBS) [Feng and An, 2019a; Wen et al., 2021]. ABS-
based approaches treat all labels within the candidate label
set equally [Cour et al., 2011]. However, they may suf-
fer from low accuracy since their outputs often overwhelm
the ground-truth label [Shi et al., 2023]. Hence, many
IBS-based approaches have emerged, which aim to purify
each candidate label set and heuristically explore the ground-
truth label during the learning process [Cour et al., 2011;
Feng and An, 2019b].

Noisy Label Learning. With the advent of highly-curated
datasets, deep neural networks have demonstrated promis-
ing performance on various classification tasks [Krizhevsky
et al., 2012; Noh et al., 2015]. In fact, real-world data
is inherently imperfect, which inevitably introduces corrup-
tions commonly known as noise [Zhang and Sabuncu, 2018;
Wei et al., 2022]. The training dataset for NLL is denoted as
Dn = {(xi, ỹi)}Nn

i=1, where an instance (x, ỹ) has the label
ỹ that does not align with the ground-truth label y. Previ-
ous studies have demonstrated that noisy labels pose chal-
lenges for overparameterized neural networks, which results
in overfitting and performance degradation [Arpit et al., 2017;
Zhang et al., 2017]. Therefore, noise-robust algorithms are
proposed, which develop loss functions that can tolerate noisy
labels [Zhang and Sabuncu, 2018]. Additionally, certain ap-
proaches focus on explicitly correcting the loss function by
estimating the noise transition matrix to solve the NLL prob-
lem [Patrini et al., 2017]. In the following section, we will
illustrate UDRU how to implement machine unlearning on
WSL and SL paradigms.

3 The Proposed Approach

In this section, we introduce a novel approach called UDRU,
which solves machine unlearning by formulating an unlearn-
ing target adhering to a uniform distribution. Through analyz-
ing the outputs of different learning paradigms, we formulate
distinct unlearning targets tailored to each learning paradigm.
We theoretically prove the feasibility of these unlearning tar-
gets. Moreover, UDRU employs regression to solve classifi-
cation unlearning tasks, which significantly reduces compu-
tational cost.

3.1 Unlearning in Supervised Learning
Given a SL model f(x,θ∗) learned with a learning algorithm
A(·) on the training dataset Dt, the goal of machine unlearn-
ing is to remove the unlearning dataset Du ⊂ Dt from the
model through updating the model’s parameters from θ∗ to
θu without seriously degrading its prediction performance.
Evaluating the efficacy of the unlearning process is crucial
for an unlearning approach, which reflects the expected ef-
fect of an unlearning approach. Unfortunately, we find that
using Eq. (2) or Eq. (3) for a consistent evaluation of unlearn-
ing is challenging, because the training dataset may not be
available in many cases. Hence, we are eager to design an
evaluation measure without the restriction on the availability
of the training dataset.

In experiments, we can observe that predictions from an
untrained model tend to follow uniform distributions when it
is used to assign the ground-truth labels for unseen instances.
Conversely, a well-trained model provides distinct probabil-
ity predictions for the features of input instances. This implies
that a trained model, after removing specific data, is expected
to exhibit similar predictions for these specific data as an un-
trained model. Motivated by this, we design an evaluation
measure that gets rid of the reliance on the availability of the
training dataset. Here, we will investigate the evaluation mea-
sure for machine unlearning from the definition of a uniform
distribution as follows.

Definition 1 (Uniform Distribution). Let p̄ ∈ RK be a uni-
form distribution. When the number of labels is K, the i-th
element of p̄ satisfies p̄i = 1

K , where i ∈ {1, 2, . . . ,K}.
With only an unlearning dataset Du available, we can sub-

stitute Eq. (2) or Eq. (3) with the divergence from an un-
trained model which has no bias for the features of unlearning
data. The evaluation measure is implemented by minimiz-
ing the divergence between the uniform distribution p̄ and
the output probability distribution p. KL-Divergence has the
ability to measure the difference between two distributions,
which is adopted to facilitate the achievement of the evalua-
tion measure. The evaluation measure is expressed as:

DKL(p̄‖p) =

K∑
i=1

p̄i ln
p̄i
pi

=

K∑
i=1

1

K
ln

1
K

pi
. (4)

Next, we will introduce how to formulate an unlearning tar-
get in SL with the evaluation measure. In the process of un-
learning specific data, our goal is to diminish the model’s bias
towards a particular class label while maintaining the perfor-
mance of the output for other class labels. For this reason, we
expect to derive an unlearning target whose prediction has the
minimal divergence with predictions of an untrained model
and does not influence the outputs of other classes. Due to the
structures of neural networks, there are numerous and sepa-
rated parameters that are only sensitive to relevant features.
Therefore, we can assume that the unlearning process has lit-
tle effect on the i-th output zi (i 6= y) of the model when the
scale of the model is sufficient and relatively irrelevant pa-
rameters are not responsible for the unlearning modification.
According to this assumption, we only need to keep the out-
puts corresponding to all labels except the ground-truth one
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unchanged and assign a moderate value to the output asso-
ciated with the ground-truth label. Obviously, the unlearning
target t ∈ RK should satisfy the conditions shown as follows:

ti ≈ zi, i 6= y

ti = arg minzi DKL(p̄‖σ(z)), i = y

min z ≤ ti ≤ max z, i = y

(5)

where ti denotes the i-th element of t. To construct the un-
learning target t under the conditions of Eq. (5), we derive
a function T (z, y) to automatically formulate t according to
each instance (x, y), i.e., t = T (z, y). Theorem 2 shows
the unlearning target function T (z, y) that satisfies the above
conditions.
Theorem 2. To satisfy the conditions shown in Eq. (5),
T (z, y) in SL is derived as:

Ti(z, y) =


zi, i 6= y

ln(
1

K − 1

∑
j 6=y

ezj ), i = y

where Ti(z, y) presents the i-th element of T (z, y).
The proof is provided in Appendix A. With this formulated

target, we can ensure that the modified predictions attain min-
imal divergence from the uniform distribution and maintain
performance on the outputs except the ground-truth one. Af-
ter obtaining this target, we derive a convex objective function
by introducing a regularization term, which is defined as:

J (θ,θ∗,Du) = δ‖θ − θ∗‖2

+
1

|Du|

|Du|∑
i=1

‖f(xi,θ)− T (f(xi,θ
∗), yi)‖2,

(6)

where θ denotes the parameter variable that needs optimiza-
tion, and δ is a trade-off parameter used to balance the
strength of ‖θ − θ∗‖2. Then, the unlearned parameters θu
can be obtained by optimizing the following equation:

θu = arg min
θ

J (θ,θ∗,Du). (7)

Building on this regression, UDRU effectively facilitates
the unlearning of specific data while preserving performance
on the remaining data. Moreover, the utilization of specific
targets substantially reduces computational and time cost,
leading to smooth and rapid convergence. δ is the only hy-
perparameter, which falls within a certain range to avoid a
significant impact on the final convergence results.

3.2 Unlearning in Partial Label Learning
Suppose θ∗ is the parameters of a PLL model fPL(x,θ∗)
learned from the PLL training datasetDp. The solution to the
PLL problem is similar to that of the SL problem, which aims
to derive θu through constructing an unlearning target. Given
an unlearning dataset Du = {(xi, si)}Nu

i=1 and Du ⊂ Dp,
each candidate set si consists of a ground-truth label ofxi and
incorrect labels. Due to the supervision information in PLL
differing from SL, the formulated unlearning target and the
corresponding conditions of PLL have also changed accord-
ing to the weak supervision information. Theorem 3 shows
the unlearning target of PLL and the associated conditions.

Theorem 3. Let z = fPL(x,θ) and zi denotes the i-th ele-
ment of z. The i-th element of the unlearning target T (z, s)
in PLL is expressed as:

Ti(z, s) =


zi, i 6∈ s

ln(
1

K − |s|
∑
j 6∈s

ezj ), i ∈ s

which satisfies the following conditions:
ti ≈ zi, i 6∈ s
ti = arg min

zi,i∈s
DKL(p̄‖σ(z)), i ∈ s

min z ≤ ti ≤ max z, i ∈ s

The proof is stated in Appendix B. Theorem 3 displays the
unlearning target of PLL, which is theoretically inferred by
Definition 1 and satisfies certain conditions. Then, the opti-
mized objective for machine unlearning in PLL is defined as:

Jp(θ,θ∗,Du) = δ‖θ − θ∗‖2

+
1

|Du|

|Du|∑
i=1

‖fPL(xi,θ)− T (fPL(xi,θ
∗), si)‖2

(8)

The unlearned parameters θu can be acquired by minimizing
the objective function:

θu = arg min
θ

Jp(θ,θ∗,Du) (9)

These updated parameters will effectively remove the influ-
ence of the unlearning data from PLL models, while main-
taining performance on the remaining data. Applying this
unlearning approach enables effective handling of situations
where the labels contain inaccurate information.

3.3 Unlearning in Noisy Label Learning
Machine unlearning in NLL shares similarities with the afore-
mentioned learning paradigms, which aims to find θu that
achieves the ability of unlearning specific data. Given θ∗ as
the parameters of a trained NLL model fNL(x,θ), the un-
learning dataset is denoted as Du = {(xi, ỹi)}Nu

i=1. In the
NLL problem, the given label ỹ of an instance x has a chance
of being corrupted. This means that ỹ may represent the
ground-truth label of x, or it may be a noisy label. Hence, we
can encompass all scenarios when using the model to predict
a label ŷ for an instance, which are summarized as follows:
(1) ŷ = ỹ, and ỹ is the ground-truth label of x;
(2) ŷ = ỹ, and ỹ is an incorrect label of x;
(3) ŷ 6= ỹ, and one of them is the ground-truth label of x;
(4) ŷ 6= ỹ, and are both incorrect.

For scenario (1), it resembles the case in SL. In scenario
(2), the model fails to learn the correct information from
this particular instance. Scenario (3) reveals that the pre-
diction label may be the ground-truth label, which requires
to be unlearned. Scenario (4) shows that the model does
not learn correct information from this data. To ensure the
model erases any potential information learned from unlearn-
ing data, the labeling information of NLL should cover all
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Dataset Original Approach unlearning data ↓ remaining data ↑
20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

MNIST 98.53

Retrain 0.00 0.00 0.00 0.00 0.00 97.45 96.95 97.22 97.06 96.85
Amnesiac ML 5.1 3.27 0.15 0.00 0.00 45.71 32.16 8.81 0.39 0.09

K-priors 0 0.52 0.87 2.61 2.95 97.26 96.95 96.64 96.46 96.34
UDRU 0.00 0.00 0.00 0.00 0.00 97.63 97.64 97.63 97.62 97.61

Fashion 98.05
Retrain 0.00 0.00 0.00 0.00 0.00 94.8 94.7 94.7 94.8 94.7
K-priors 0.42 1.07 1.72 6.48 9.43 94.74 94.61 94.12 95.15 96.35
UDRU 0.54 1.04 2.41 3.29 3.64 96.72 96.53 96.47 96.82 96.98

CIFAR10 99.31
Retrain 0.00 0.00 0.00 0.00 0.00 91.19 91.12 91.10 91.24 91.15
K-priors 0.01 3.14 6.09 8.98 11.94 89.99 90.19 89.98 90.14 90.07
UDRU 0.02 0.04 0.03 0.01 0.01 98.52 97.26 97.16 96.01 95.51

Table 1: Experimental results on 3 datasets over the multi-class classification in SL. Value shows accuracy (in %). The best performance is
shown in boldface.

Dataset Original Approach unlearning data↓ remaining data↑
20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

MNIST 98.68

Retrain 0.00 0.00 0.00 0.00 0.00 95.25 95.41 95.69 95.20 95.51
Amnesiac ML 2.99 1.21 0.00 0.00 0.00 36.36 14.36 8.59 0.00 0.00

K-priors 94.99 94.43 92.21 92.30 90.57 93.51 94.02 93.87 95.84 94.53
UDRU 0.81 0.82 0.84 0.86 0.89 96.21 96.57 96.19 96.77 96.49

Fashion 93.20
Retrain 0.00 0.00 0.00 0.00 0.00 92.81 91.71 91.68 91.75 91.31
K-priors 91.02 89.02 90.57 88.77 87.75 91.19 90.24 90.34 90.04 88.39
UDRU 1.21 1.35 1.54 1.75 1.76 93.65 93.24 92.91 92.35 93.15

Table 2: Experimental results on MNIST and Fashion-MNIST over the multi-class classification in PLL. Value shows accuracy (in %). The
best performance is shown in boldface.

scenarios. Therefore, we employ a way to construct a set s̃
that guarantees the unlearning instance x associated with all
potential information. If ŷ = ỹ, s̃ = {ỹ}. On the other hand,
if ŷ 6= ỹ, we combine ŷ and ỹ into s̃. The computation of s̃ is
defined as:

s̃ =

{{ỹ}, ŷ = ỹ

{ỹ, ŷ}, ŷ 6= ỹ
. (10)

With Eq. (10), we can observe that the format of supervi-
sion information in NLL is the same as that in PLL. There-
fore, the unlearning target T (z, s̃) of NLL can be defined as:

Ti(z, s̃) =


zi, i 6∈ s̃

ln(
1

K − |s̃|
∑
j 6∈s̃

ezj ), i ∈ s̃, (11)

where Ti(z, s̃) refers to the i-th element of T (z, s̃). Finally,
the objective function of NLL for machine unlearning is:

Jn(θ,θ∗,D) = δ‖θ − θ∗‖2

+
1

|D|

|D|∑
i=1

‖fNL(xi,θ)− T (fNL(xi,θ
∗), s̃i)‖2.

(12)

The unlearned parameters θu can be obtained by minimizing

the objective function:

θu = arg min
θ

Jn(θ,θ∗,Du). (13)

Minimizing the objective function Jn enables successful un-
learning of the data, regardless of the correctness of the label
or whether the model has previously learned correct informa-
tion from the training data. This allows us to effectively re-
move the influence of unlearning data, and ensure the model’s
predictions from being influenced by noisy information.

4 Experiments
In this section, we conduct experiments on three learning
paradigms: SL, PLL, and NLL, to evaluate the performance
of the proposed approach, UDRU. The experiments mainly
focus on evaluating unlearning approaches in terms of effi-
ciency in unlearning, the ability of preserving performance,
and time consumption. We implement our experiments us-
ing PyTorch on NVIDIA RTX 4090. Our code is released at
https://github.com/Ehwartz/udru.

4.1 Experimental Settings
Datasets & Pre-processing. We conduct experimental
studies on three widely-used datasets: MNIST, Fashion-
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Dataset Approach Original unlearning data↓ remaining data↑
20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

MNIST

Retrain

97.33

0.00 0.00 0.00 0.00 0.00 96.92 96.11 96.89 96.99 95.20
Amnesiac ML 2.94 1.15 0.43 0.28 0.07 36.08 14.18 8.49 3.20 1.72

K-priors 94.90 93.95 90.61 92.12 89.95 92.33 93.10 93.63 94.18 93.46
UDRU 0.58 0.56 0.59 0.54 0.56 96.95 96.70 96.34 95.72 96.00

Fashion
Retrain

91.37
0.00 0.00 0.00 0.00 0.00 90.25 90.86 90.75 90.20 90.90

K-priors 93.76 92.52 92.44 87.91 87.47 87.73 87.30 87.33 87.51 86.53
UDRU 0.92 1.26 1.38 1.38 1.43 91.82 91.59 91.68 91.99 91.30

Table 3: Experimental results on 2 datasets over the multi-class classification in NLL. Value shows accuracy (in %). The best performance is
shown in boldface.

Approach SL PLL NLL

MNIST Fashion CIFAR10 MNIST Fashion CIFAR10 MNIST Fashion CIFAR10

Retrain 293.79 947.48 7537.11 301.66 980.72 7668.40 306.83 948.71 7739.66
K-priors 0.83 2.73 434.80 0.85 2.84 437.59 0.87 2.77 455.86
UDRU 0.68 2.26 388.43 0.71 2.29 402.49 0.69 2.39 393.18

Table 4: Execution time (s) comparison among the data unlearning approaches on SL, PLL, and NLL over 3 datasets. Lower is better, and
the best performance is shown in boldface.

MNIST (Fashion), and CIFAR10. The MNIST dataset com-
prises handwritten digits distributed across 10 classes, while
the Fashion dataset includes standardized images of fashion
items with 10 classes. The CIFAR10 dataset consists of color
images grouped into 10 classes. The partial rate of PLL is set
as 0.2, and the noise rate of NLL is 0.2. MNIST and Fashion
datasets are utilized for studying the unlearning performance
of all approaches in PLL and NLL.

Baselines. We select retrain [Bourtoule et al., 2021], Am-
nesiac ML [Graves et al., 2021] and K-priors [Khan and Swa-
roop, 2021] as comparison approaches. Retrain, Amnesiac
ML and K-priors belong to strategies representing the most
basic unlearning strategy, updating parameters by storing gra-
dients during training, and a knowledge adaption strategy, re-
spectively. In the training process, we store gradients for each
instance in datasets to apply Amnesiac ML by updating pa-
rameters with accumulated gradients. The implementation of
K-priors depends on a loss function, which allows us to apply
it for experiments by changing suitable loss functions accord-
ing to different learning paradigms. It is worth noting that
Amnesiac ML cannot handle the cases involving Fashion and
CIFAR10 due to constraints in storing gradients and hidden
layers of CNN and ResNet50 for all training data.

Setup. For machine unlearning tasks, we need to obtain pa-
rameters (θ∗) of the trained model before using the unlearn-
ing approaches to experiment. Therefore, we should train
models for different learning paradigms firstly. The selec-
tion of appropriate classification models is based on the scales
of the datasets and the difficulty of identification. Specifi-
cally, MLP, CNN, and ResNet50 are used to identify MNIST,
Fashion and CIFAR10, respectively. For the selection of loss
functions, Cross-Entropy loss is used to SL, and Classifier-

Consistent Loss [Feng et al., 2020] and Generalized Cross
Entropy Loss [Zhang and Sabuncu, 2018] are used to train
models in PLL and NLL, respectively. We train models using
SGD with a learning rate of 10−4 and a weight decay of 10−3.
The batch size and epoch are set as 64 and 256, respectively.
Subsequently, we introduce the settings for machine unlearn-
ing in three learning paradigms. Batch size for Fashion and
CIFAR10 is set as 64, while we do not divide MNIST into
batches. Learning rate for three datasets is set as 10−4, δ in
UDRU is set as 1 for MNIST and Fashion, and 10−2 for CI-
FAR10.

4.2 Empirical Results
As shown in Table 1-3, the unlearning data for each dataset
shares the same label, where this label is randomly selected
from the label space. In our systematic sampling, we con-
sider 20%, 40%, 60%, 80%, and 100% of the data belonging
to the selected label from the training dataset for unlearning.
In the tables, ”Original” denotes the accuracy of the original
training dataset. “Unlearning data” in the tables shows the
accuracy of the models on the unlearning data after removing
that data, while “remaining data” represents the accuracy of
these unlearned models on the remaining data except the data
in the same label as the unlearning data. ↓ indicates that the
accuracy of approaches is smaller for the unlearning data, in-
dicating better performance. ↑ displays that the accuracy of
approaches is higher for the remaining data, the performance
is better. The experiments for convergence and the selection
of δ are shown in Appendix C.

Efficiency in Unlearning. Analyzing the accuracy reported
in Table 1, Table 2, and Table 3, we find that the results
of UDRU in “unlearning data” are consistently close to the
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Approach Label

0 1 2 3 4 5 6 7 8 9 Average

SL

Original 76.01 71.48 64.25 76.36 79.51 65.49 71.52 76.37 76.41 65.91 72.33
Retrain 52.77 53.93 35.90 40.32 32.18 51.65 50.06 41.20 26.21 38.54 42.28

Amnesiac 44.83 45.24 50.85 49.49 54.15 50.04 30.95 50.85 70.14 60.90 50.75
K-priors 62.14 42.26 64.30 69.19 67.76 42.33 62.25 44.97 68.45 50.58 57.42
UDRU 27.36 26.04 61.21 55.77 17.55 16.05 22.06 35.75 16.58 38.18 31.66

PLL

Original 68.65 66.96 65.32 58.19 62.76 64.10 71.26 67.72 86.50 81.73 69.32
Retrain 42.87 43.15 44.19 63.72 50.60 44.07 31.63 28.11 46.28 34.74 42.94

Amnesiac 57.72 45.25 41.33 51.76 70.56 59.42 44.84 36.14 46.70 53.19 50.69
K-priors 47.19 61.20 64.80 64.75 55.69 62.42 30.90 78.95 78.45 23.46 56.78
UDRU 35.84 26.15 19.64 29.62 65.89 37.70 17.34 25.36 70.96 42.08 37.06

NLL

Original 70.52 76.94 89.95 82.21 69.18 61.90 49.61 77.32 80.03 85.01 74.27
Retrain 16.33 23.62 52.31 57.50 36.38 49.55 43.20 48.05 27.98 57.34 41.22

Amnesiac 47.98 70.83 57.65 37.27 65.94 46.62 70.38 55.42 43.80 60.37 55.63
K-priors 69.46 77.87 28.36 67.25 46.29 76.64 57.36 38.74 53.57 77.09 59.26
UDRU 51.66 20.59 25.11 35.14 46.51 30.48 58.64 37.35 44.42 36.93 38.68

Table 5: Comparison of membership inference attack after data removal operation. Value shows percentage of unlearning data that is
identified as training data, where we display the results according to each label. Lower values show better performance of unlearning. The
best performance is shown in boldface.

comparison approaches across all datasets and different un-
learning percentages. This demonstrates the effectiveness
of UDRU in thoroughly unlearning sampled data, which ex-
hibits close performance to the retraining approach. Although
UDRU may not completely erase all unlearning data in some
cases, leading to a slight reduction in performance, these find-
ings provide the potential of UDRU as a robust approach for
efficient unlearning in the SL, PLL, and NLL scenarios.

The Ability of Preserving Performance. In Table 1, Ta-
ble 2, and Table 3, we observe that the accuracy of “remain-
ing data” in UDRU exhibits comparable performance across
the most cases. This proves that UDRU can effectively pre-
serve models’ performance regardless of the number of in-
stances being unlearned. Contrary to Retrain, which strug-
gles to maintain the original performance in larger datasets
because of unbalanced training datasets, and Amnesiac ML,
which completely erodes models’ performance, UDRU main-
tains an impressive accuracy on the remaining data.

Time Consumption. To evaluate the time consumption of
each unlearning approach, we conduct a comparative anal-
ysis of the experiment durations presented in Table 1-3 for
unlearning 20% of the data. The results, as depicted in Ta-
ble 4, indicate that UDRU outperforms other approaches,
which demonstrates a faster unlearning process across vari-
ous datasets. This observation highlights the computational
efficiency of UDRU, positioning it as a compelling choice for
practical applications due to its lower computational cost.

Privacy Protection Against Membership Inference At-
tack. A membership inference attack is a privacy attack that
aims to determine whether a specific data was used during
the process of training a machine learning model [Shokri et
al., 2017]. To evaluate the robustness of different unlearning
approaches, including UDRU, against membership inference

attacks, we conduct experiments using the MNIST dataset.
Our experimental setup involves a white-box attack, where
we concatenate all hidden layers and gradients in an MLP
to train an attacker model. Then, we compare the accuracy
when models are required to unlearn 20% data of each class
separately. The results presented in Table 5 demonstrate that
UDRU can lead to relatively lower precision of the attacker,
which implies the effectiveness of UDRU on unlearning and
thwarting membership inference attacks.

5 Conclusion
In this paper, we propose a novel approach called UDRU to
explore machine unlearning across scenarios ranging from SL
to WSL. Motivated by that untrained model’s predictions fol-
low a uniform distribution, we formulate an unlearning tar-
get for model outputs by minimizing the divergence between
the model’s prediction distribution and a uniform distribution.
This erases the ability of the model to distinguish features
from the training data. Recognizing that real-world applica-
tions often involve weak supervised information, UDRU can
successfully address uncertainty in unlearning by analyzing
possible situations in PLL and NLL. Furthermore, formulat-
ing targets only from outputs of unlearned data that gets rid
of redundant training data, enhancing the flexibility of our
approach, particularly when unlearning large models and big
datasets. With formulated targets, we apply a regularization
to derive an objective function, which converts unlearning
task of classification models into convex regression. This
contributes to faster convergence and reduced computational
cost. Empirical studies show the superiority and robustness of
our approach in unlearning across SL, PLL, and NLL tasks
while preserving model performance. Additionally, UDRU
proves effective against membership inference attacks.
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