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Abstract
Personalized federated learning (PFL) is designed
for scenarios with non-independent and identi-
cally distributed (non-IID) client data. Existing
model mixup-based methods, one of the main ap-
proaches of PFL, can only extract either global or
personalized features during training, thereby lim-
iting effective knowledge sharing among clients.
To address this limitation, we propose the Dual
Calibration-based PFL (DC-PFL). It divides lo-
cal models into a heterogeneous feature extrac-
tor and a homogeneous classifier. The FL server
utilizes mean and covariance representations from
clients’ feature extractors to train a global gener-
alized classifier, facilitating information exchange
while preserving privacy. To enhance person-
alization and convergence, we design a feature
extractor-level calibration method with an auxil-
iary loss for local models to refine feature ex-
tractors using global knowledge. Furthermore,
DC-PFL refines the global classifier through the
global classifier-level calibration, utilizing sample
representations derived from an approximate Gaus-
sian distribution model specific to each class. This
method precludes the need to transmit original data
representations, further enhancing privacy preser-
vation. Extensive experiments on widely used
benchmark datasets demonstrate that DC-PFL out-
performs eight state-of-the-art methods, surpassing
the best-performing baseline by 1.22% and 9.22%
in terms of accuracy on datasets CIFAR-10 and
CIFAR-100, respectively.

1 Introduction
As societies become increasingly concerned about data pri-
vacy protection when build artificial intelligence (AI) appli-
cations, federated learning (FL) [Zhuang et al., 2023; Liu et
al., 2024] has emerged as a promising solution. It allows mul-
tiple data owners (a.k.a., FL clients) to collaboratively train
models without exposing potentially sensitive local data. In
a typical FL system, a central FL server coordinates multiple
FL clients to perform collaborative model training. During
each communication round, the server broadcasts the current

global FL model to participating clients. Each client performs
further training on this model using its private local data. The
locally trained models are then uploaded to the FL server,
which aggregates them to produce an updated global model.
This iterative process continues until the FL model converges.

In practice, FL faces various types of heterogeneity issues
which makes the aforementioned traditional FL paradigm un-
suitable [Tan et al., 2024]. To address these challenges, the
field of personalized federated learning (PFL) [Tan et al.,
2022a] has emerged. The goal of PFL is to achieve collab-
orative learning and training reasonable personalized models
for clients participated. Model mixup-based PFL methods
[Jang et al., 2022; Liang et al., 2020; Collins et al., 2021;
Yi et al., 2023] have gained significant research attention due
to their ability to strike a balance between acceptable compu-
tational overhead and model performance without reliance on
public datasets. They typically decompose the local models
of clients into two distinct components: 1) a feature extrac-
tor, and 2) a classifier. The feature extractor transforms raw
input data into latent space representations, while the classi-
fier translates these representations into categorical vectors.
During FL model training, the input into the feature extrac-
tor consists of both the global and the local feature informa-
tion. Existing model mixup-based PFL methods can only ex-
tract either global feature information [Pillutla et al., 2022;
Oh et al., 2022; Chen et al., 2021; Collins et al., 2021] or lo-
cal feature information [Liu et al., 2022; Jang et al., 2022;
Yi et al., 2023]. This limits effective knowledge sharing
among clients, which negatively impact the performance of
resulting PFL models.

To deal with this issue, we propose the Dual Calibration-
based Personalised Federated Learning (DC-PFL) approach.
Under DC-PFL, clients’ local models are decomposed into
a heterogeneous feature extractor and a homogeneous clas-
sifier. Throughout the training process, the FL server uti-
lizes mean and covariance representations extracted from
clients’ feature extractors to train a global generalized classi-
fier shared across all the clients. This updated global classifier
captures knowledge spanning all classes and clients, enabling
knowledge exchange among diverse client models through a
shared generalized global prediction classifier. These two op-
erations facilitate the collaborative learning of DC-PFL.

To enhance the personalization of each client’s model and
improve model convergence, DC-PFL is incorporated with
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a feature extractor-level calibration to train the personalised
feature extractor by leveraging an auxiliary loss. This loss
guides local models to refine their personalised feature extrac-
tors by effectively leveraging global knowledge. Moreover,
DC-PFL performs global classifier-level calibration, which
fine-tunes the global classifier using virtual representations
and their corresponding labels. These virtual samples are de-
rived from an approximate Gaussian distribution model tai-
lored to each class, constructed using the mean and covari-
ance class-specific representations. Importantly, this calibra-
tion step precludes the need to transmit original data repre-
sentations, effectively addressing privacy concerns.

Through DC-PFL, clients benefit from personalized het-
erogeneous local models tailored to their unique data distri-
butions, system resources, and model structures. The cen-
tral FL server facilitates the dissemination of global knowl-
edge among clients, leading to enhanced model performance.
In addition, the virtual representations and auxiliary loss
for feature extractors enable accurate model training, while
minimizing the risk of privacy exposure. Extensive experi-
ments on two widely used benchmark datasets demonstrate
that DC-PFL is significantly more advantageous compared
to eight state-of-the-art approaches, outperforming the best-
performing baseline by 1.22% and 9.22% on average in terms
of accuracy on CIFAR-10 and CIFAR-100, respectively.

2 Related Work
This paper explores PFL with the model heterogeneity [Yi et
al., 2023]. This domain has seen advancements along three
main lines of work: 1) knowledge distillation-based PFL, 2)
mutual learning-based PFL, and 3) model mixup-based PFL.

Knowledge Distillation-based PFL: Some knowledge
distillation-based PFL approaches generally rely on pub-
lic datasets for knowledge integration [Itahara et al., 2021;
Sattler et al., 2021b; Makhija et al., 2022; Chang et al., 2019;
Lin et al., 2020; Huang et al., 2022a; Li and Wang, 2019;
Huang et al., 2022b; Sattler et al., 2021a; Li et al., 2021;
Cho et al., 2022; Yu et al., 2022; Cheng et al., 2021]. How-
ever, finding suitable public datasets with similar distributions
to local private data is not always guaranteed, limiting prac-
tical applicability. Alternatively, some methods operate in-
dependently of public datasets. For instance, [Zhang et al.,
2022; Zhu et al., 2021] introduce a generator to produce pub-
lic shared datasets or local representations. Nonetheless, the
time-intensive iterative training for the generator reduces the
overall computation efficiency of FL.

Mutual Learning-based PFL: In [Shen et al., 2020;
Wu et al., 2022], each client needs to train a large heteroge-
neous model and a small homogeneous model simultaneously
through mutual learning. The large model undergoes only lo-
cal training, whereas the small model is sent to the FL server
for aggregation. However, training a small homogeneous
model on top of the heterogeneous large model increases the
local computation costs for FL clients, which can be a signif-
icant burden for resource-constrained devices. While the mu-
tual learning strategy facilitates information exchange among
large heterogeneous models, the additional computation and
communication overheads negatively impact the efficiency

and scalability of such PFL approaches.
Model Mixup-based PFL: In [Pillutla et al., 2022; Collins

et al., 2021; Oh et al., 2022; Chen et al., 2021], a homo-
geneous feature extractor is shared across all FL clients for
server aggregation to improve generalization, while the clas-
sifier is heterogeneous for personalized classification tasks.
However, a limitation is the larger parameter volume of
the feature extractor than the classifier, restricting achiev-
able model heterogeneity. In contrast, [Jang et al., 2022;
Liu et al., 2022; Yi et al., 2023; Liang et al., 2020] use het-
erogeneous feature extractors and homogeneous classifiers,
enabling higher degrees of model heterogeneity.

Our DC-PFL falls under the model mixup-based PFL cate-
gory with heterogeneous feature extractors and homogeneous
classifiers. However, different from existing methods, which
only focus on either global feature information extraction
or local feature information extraction, DC-PFL leverages
the dual calibration to facilitate effective knowledge sharing
among clients while enhancing the personalisation of each
client’s model, improving the performance of the resulting
PFL models.

3 Preliminaries
An Overview of Federated Learning: In the FL system
of interest, there are K FL clients and a central FL server.
Each client k ∈ [K] possesses a private dataset Dk =

{(xi, yi)}|Dk|
i=1 , and the combined dataset is denoted as D =

∪Kk=1Dk. The dataset contains C classes, and each sample in
D is denoted as (x, y) ∈ X × [C], where X denotes the input
space, x represents the input data (e.g., an image) while y is
the corresponding label. Furthermore, we represent the col-
lection of samples with the actual label c ∈ [C] from client k
as Dc

k = {(x, y) ∈ Dk : y = c}.
The FL process operates through communication between

the central server and clients in a round-based manner. In
communication round t, the central server broadcasts the
current global model parameter wt−1 to a selected set of
clients, denoted as St. Upon receiving the global model
wt−1, each selected client k ∈ St performs a local update
to obtain wt

k based on its private data, guided by the follow-
ing objective function: argminwt

k
E(x,y)∼Dk

[L(wt
k; (x, y)],

where L(·) denotes the loss function, contingent on the cur-
rent global model parameters wt−1 and the FL model ag-
gregation algorithm. For example, FedAvg [McMahan et
al., 2017] calculates wt

k by employing SGD [Robbins and
Monro, 1951] on Dk for a certain number of epochs using the
cross-entropy loss. The parameter set is initialized to wt−1.
At the end of round t, each selected client k ∈ St sends its
optimized parameter wt

k to the central server. The global pa-
rameter is then updated by aggregating these diverse parame-
ters, i.e., wt =

∑
k∈St pkw

t
k, where pk = |Dk|∑

k′∈St |Dk′ | . The
aforementioned steps are iterated until the global model con-
verges. The objective of FedAvg is to minimize the average
loss of the final global model w based on all clients’ data:
argminw =

∑
k∈[K]

|Dk|
|D| L(w).

In traditional FL settings, all clients’ local models must
have the same structures, necessitating homogeneity, due to
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Figure 1: The workflow of DC-PFL. The colored arrows with num-
bers are the main steps of DC-PFL in each training round: 1) local
model training & calibration, 2) class feature representation calcula-
tion, 3) global classifier training, and 4) global classifier calibration.

the requirement of averaging the received local models.
Problem Definition: This paper studies PFL across K

clients, each having heterogeneous local models, but all in-
volved in the same supervised classification tasks. We de-
compose the local model (which in this paper pertains to the
classification model) of each client into a personalized and
heterogeneous feature extractor alongside a global and ho-
mogeneous classifier. For a given sample (x, y) ∈ Dk, the
feature extractor fθk

: X → Z is governed by parameter θk,
transforming input image x into feature space Z , denoted as
feature vector z = fθk

(x) ∈ Rd. Subsequently, the classi-
fier gφ : Z → RC , with parameters φ, generates a proba-
bility distribution gφ(z) that functions as the prediction for
the provided input image x. Consequently, the parameter of
the local classification model of client k can be denoted as
wk = (θk,φ). The central server solely possesses the homo-
geneous classifier gφ. The primary objective is to minimize
the sum of the losses of the local heterogeneous classification
models of all K clients, which can be defined as:

argmin
wk,k∈[K]

=
∑

k∈[K]

L(wk). (1)

4 The Proposed DC-PFL Approach
Figure 1 illustrates the workflow of DC-PFL during each
training round t, which involves four main steps: 1) Local
Model Training and Calibration, 2) Class Feature Representa-
tion Calculation, 3) Global Classifier Training, and 4) Global
Classifier Calibration.

These steps are executed iteratively until the local clas-
sification models of all clients converge, ensuring that ev-
ery client’s local knowledge is integrated effectively into the
global model. Once the FL process concludes, the person-
alized heterogeneous local models are ready for inference,
enabling efficient and accurate predictions on diverse client
datasets. In the following sections, we introduce each of these
four steps in detail, elaborating on their significance and con-
tributions to the overall DC-PFL approach.

4.1 Local Model Training & Calibration
Similar to the conventional FL training process, in each train-
ing round t, after receiving the global classifier φt from the
central server, each client k ∈ St updates its local classifica-
tion model wt−1

k = (θt−1
k ,φt−1) to ŵt

k = (θ̂
t

k, φ̂
t), where

θ̂
t

k ← θt−1
k and φ̂t ← φt−1. Then, client k proceeds to

calculate the supervised loss based on its local data Dk as:

Lsup(ŵ
t
k;Dk) =

1

|Dk|
∑

(x,y)∈Dk

LCE(gφ̂t(f
θ̂
t
k
(x)), y),

(2)
where LCE(·) is the cross-entropy loss function.

In addition to the supervised loss, we incorporate an auxil-
iary loss for client k to facilitate the learning of its local clas-
sification model, which is referred to as the feature extractor-
level calibration. This process involves the central server
broadcasting not only the global classifier φt but also the
global mean µt

c of all images belonging to the same class
c ∈ [C] to the selected clients in the current iteration denoted
as St. Subsequently, client k computes the auxiliary loss as:

Lkd(ŵ
t
k;Dk) =

1

|Dk|
∑

(x,y)∈Dk

||f
θ̂
t
k
(x)− µt

y||2, (3)

where || · ||2 is the Euclidean norm.
The auxiliary loss in Eq. (3) serves the purpose of encour-

aging the features extracted by θ̂
t

k from data belonging to a
specific class to resemble the given global representations,
thereby facilitating the training of local feature extractor θ̂

t

k.
The local loss of client k is then formulated as the combi-

nation of two components: the supervised loss defined in Eq.
(2) and the auxiliary loss defined in Eq. (3). The resulting
local loss function with hyper-parameter λ is expressed:

L(ŵt
k;Dk) = Lsup(ŵ

t
k;Dk) + λLkd(ŵ

t
k;Dk). (4)

After formulating the local total loss, client k proceeds
with local training and updates its local model parameters
ŵt

k = (θ̂
t

k, φ̂
t) to wt

k = (θt
k,φ

t) using gradient descent:

wt
k ← ŵt

k − η∇L(ŵt
k;Dk), (5)

where η denotes the learning rate.
By incorporating the auxiliary loss along with the super-

vised loss and performing local training with appropriate pa-
rameter updates, each client k actively contributes to the over-
all federated learning process while also benefiting from the
shared global knowledge. This cooperative learning approach
helps in achieving superior performance and convergence of
the heterogeneous local models.

4.2 Class Feature Representation Calculation
After updating their local classification models, each client k
generates features zt

k,i = fθt
k
(xi) for each image xi within

its local dataset. Subsequently, the client computes the local
mean µt

c,k and covariance Σt
c,k for each class c ∈ [C]:

µt
c,k =

1

|Dc
k|

∑
(xi,yi)∈Dc

k

zt
k,i, (6)
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Σt
c,k =

1

|Dc
k| − 1

∑
(xi,yi)∈Dc

k

(zt
k,i − µt

c,k)(z
t
k,i − µt

c,k)
T , (7)

where Dc
k is the set of samples on client k that share the com-

mon ground-truth label c. The local mean µt
c,k represents

the average feature representation of class c within the local
dataset of client k, while the local covariance Σt

c,k quanti-
fies the dispersion of the features around the mean for that
class. Client k then uploads the class-wise representations
{(µt

c,k,Σ
t
c,k)}c∈[C], along with their corresponding labels c

to the central server. This information sharing facilitates ef-
fective global classifier calibration by the central server.

As highlighted in [Tan et al., 2022b], the representations
refer to high-level features extracted from the data. There-
fore, inferring the original data from solely the extracted rep-
resentations, without access to the parameters of the fea-
ture extractors, becomes challenging. In DC-PFL, client
k only uploads class-wise representation means and covari-
ances {(µt

c,k,Σ
t
c,k)}c∈[C], significantly reducing the risk of

privacy leakage even further. This privacy-preserving feature
sharing enhances the overall security and confidentiality of
the FL process, making it suitable for sensitive or private data
scenarios.

4.3 Global Classifier Training
The central server incorporates all the uploaded class-wise
representation means and covariances {(µt

c,k,Σ
t
c,k)}c∈[C] re-

ceived from each selected client at round t into the global
classifier gφt to make predictions. The parameter φt of the
global classifier is then updated via gradient descent as:

φ̂t+1 ← φt − ηφ∇Lφ(φ
t; {(µt

c,k, c)}). (8)

ηφ is the learning rate. Lφ(φ
t; {(µt

c,k, c)}) is defined as:

Lφ(φ
t; {(µt

c,k, c)}) =
∑

c∈[Ck]

1

|Ck|
LCE(gφt(µt

c,k), c). (9)

Here, Ck denotes the number of classes on client k. The loss
function Lφ(φ

t; {(µt
c,k, c)}) is defined as the cross-entropy

loss, calculated over all the classes available on client k.
The global classifier leverages the class-wise representation
means from different clients to update its parameters, en-
abling it to gain a comprehensive understanding of all classes,
leading to enhanced generalization capabilities compared to
local classifiers with limited class-specific knowledge.

To improve global classifier training effectiveness, we pro-
pose a mechanism where the server trains the global classifier
based on the class-wise representation means and covariances
from each client. Once all participating clients’ class-wise
representation means and covariances are used to train the
global classifier, it is updated in the current communication
round. This process allows the global classifier to effectively
learn from diverse client data without directly accessing raw
data, maintaining privacy and security during the FL process.

4.4 Global Classifier Calibration
To thoroughly train the global classifier and leverage the
uploaded class-wise representation mean and covariance
{(µt

c,k,Σ
t
c,k)}c∈[C] from each client k, we incorporate a

mechanism that utilizes virtual samples generated from an
approximated Gaussian mixture model [Luo et al., 2021].

After receiving the class-wise representation means and
covariances from St, the updated global classifier calculates
the global mean µt

c and covariance Σt
c for each class c as:

µt
c =

1∑
k∈St |Dc

k|
∑
k∈St

|Dc
k|µt

c,k. (10)

To calculate the global covariance Σt
c, we first obtain (|Dc

k|−
1)Σt

c,k =
∑

(xi,yi)∈Dc
k
zt
k,i(z

t
k,i)

T − |Dc
k|µt

c,k(µ
t
c,k)

T . Let
Dc =

∑
k∈St Dc

k. Then,

Σt
c

=
1

|Dc| − 1

∑
k∈St

∑
(xi,yi)∈Dc

k

zt
k,i(z

t
k,i)

T − |Dc|
|Dc| − 1

µt
c,k(µ

t
c,k)

T

=
∑
k∈St

|Dc
k|

|Dc| − 1
Σt

c,k +
∑
k∈St

|Dc
k|

|Dc| − 1
µt

c,k(µ
t
c,k)

T

− |Dc|
|Dc| − 1

µt
c(µ

t
c)

T .

(11)
With the calculated global mean µt

c and global covari-
ance Σt

c, we produce a collection Gc of virtual features as-
sociated with the true class c using the Gaussian distribution
N (µt

c,Σ
t
c). Such production of virtual features allows us to

model the distribution of data more comprehensively. To en-
sure that the virtual features reflect the inter-class distribution,
the count of virtual features allocated to each class c, denoted
as |Gc|, is determined based on the fraction Dc∑

c∈[C] D
c .

Algorithm 1 DC-PFL

INPUT: The number of rounds T ; the total number of clients K;
the number of clients selected in each training round S; the learning
rate η for local models; the learning rate ηφ for the global classifier;
the number of selected virtual features |Gc| for class c; the
hyperparameter λ balancing the supervised loss and auxiliary loss
Randomly initialize {w0

k}k∈[K] and φ0

ServerExecute
1: for t = 2 to T do
2: St ← the set of S randomly selected clients
3: for client k ∈ St do
4: {(µt

c,k,Σ
t
c,k)}c∈[C] ← ClientExecute(k, {µt

c}c∈[C], φt)

5: Update φt to φ̂t+1 according to Eq. (8)
6: end for
7: Calculate the global mean µt

c and covariance Σt
c for each

class c ∈ [C] according to Eq. (10) and (11)
8: Draw virtual representations Gc for each class c ∈ [C]
9: Get φt+1 based on loss defined in Eq. (12)

10: end for
ClientExecute(k, {µt

c}c∈[C],φ
t)

1: Updates the local classification model to ŵt
k = (θ̂

t

k, φ̂
t)

2: Calculate the total local loss according to Eq. (4)
3: Update ŵt

k to wt
k according to Eq. (5)

4: Calculate the local mean µt
c,k and covariance Σt

c,k for each
class c ∈ [C] according to Eq. (6) and (7)

5: Return {(µt
c,k,Σ

t
c,k)}c∈[C]
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DC-PFL then fine-tunes the global classifier using the
virtual representations Gc and their corresponding labels c.
Specifically, the parameter of the global classifier φ̂t+1, ob-
tained in Eq. (8), is retrained to φt+1 with the objective of
minimizing the following calibration loss:

Lcali(φ̂
t+1; {Gc}c∈[C]) =

1∑
c∈[C] |Gc|∑

(z,y)∈Gc

LCE(gφ̂t+1(z), y).
(12)

After obtaining φt+1 for the global classifier, the central
server triggers training round t+1, broadcasting φt+1 as well
as µt+1

c ← µt
c for each class c to the selected clients St+1.

These above four steps are iterated until all local hetero-
geneous models converge. In the first round, as the central
server has not received any local mean and local covariance
representations from the clients, it only broadcasts the global
classifier φt. Additionally, in the first round, the selected
clients only calculate the supervised loss defined in Eq. (2)
and update their local parameters based on the supervised loss
alone. Algorithm 1 summarizes the training procedure for the
proposed DC-PFL. This approach allows the FL server to ef-
fectively leverage knowledge from all clients, while preserv-
ing data privacy by only sharing class-wise representations.

5 Convergence Analysis
Consider each communication round t consisting of E lo-
cal training epochs, assuming that the loss function is min-
imized through SGD. Let e represent the local epoch, where
e ∈ { 12 , 1, . . . , E}. In this context, e = 1

2 corresponds to
the epoch between the conclusion of FL server aggregation
in round (t − 1), and the initiation of the first epoch of local
training in round t. Upon completing E epochs of local train-
ing in round t, FL client k’s local model can be denoted as
(θE,t

k ,φE,t). Moving on to communication round (t + 1), k
initializes the local model with the aggregated global model,
denoted as (θ

1
2 ,t+1

k ,φ
1
2 ,t+1).

Assumption 5.1. (Lipschitz Continuity). We assume that the
gradient of the local loss function L(·) exhibits L1-Lipschitz
continuity, and the embedding functions of the local feature
extractor fθ exhibits L2-Lipschitz continuity:∥∥∇L(wt1)−∇L(wt2)

∥∥
2
≤ L1

∥∥wt1 −wt2
∥∥
2
, ∀t1, t2 > 0,

(13)
∥fθt1 − fθt2 ∥ ≤ L2

∥∥θt1 − θt2
∥∥
2
, ∀t1, t2 > 0, (14)

Assumption 5.2. (Unbiased Gradient and Bounded Vari-
ance). We assume the stochastic gradients gt

k = ∇L (wt
k, ξ

t
k)

computed on a batch of data ξk of client k are unbiased esti-
mators of k’ local gradient, which means:

Eξk∼Dk

[
gt
k

]
= ∇L

(
wt

k

)
∀k ∈ [K], (15)

with the variance bounded by σ2,

E
[∥∥gt

k −∇L
(
wt

k

)∥∥2
2

]
≤ σ2, ∀k ∈ [K], σ > 0. (16)

Assumption 5.3. (Gradients’ Bounded Expectation). We as-
sume that the expectation of the stochastic gradient is con-
fined within the bound V :

E
[∥∥gt

k

∥∥2

2

]
≤ V 2, ∀k ∈ [K], V > 0. (17)

Based on the above assumptions, we could get:
Lemma 5.4. After E local training epochs, the loss function
in communication round (t+ 1) is bounded by:

E
[
LE,t+1

]
≤ L

1
2
,t+1 −

E−1∑
e= 1

2

(
ηe −

η2
eL1

2

)∥∥∇Le,t+1
∥∥2

2

+
η2
0L1E

2
σ2.

(18)

Here, ηe denotes the learning rate at local epoch e.
Lemma 5.5. The loss function of each client k at communi-
cation round (t + 1) after aggregating the model and mean
class representations at the server is bounded by:

E
[
L

1
2
,(t+1)

k

]
≤ LE,t

k +
η2
0L1

2
E2V 2 + 2λη0L2EV. (19)

Theorem 5.6. After communication round t, the loss function
of each client k is bounded by:

E
[
L

1
2
,t+1

k

]
≤ L

1
2
,t

k −
E−1∑
e= 1

2

(
ηe −

η2
eL1

2

)∥∥∇Le,t
∥∥2

2

+
η2
0L1E

2

(
EV 2 + 2λη0L2EV + σ2) .

(20)

Theorem 5.7. (Convergence of DC-PFL). If η0 > ηe > αη0
for e ∈ [1, E − 1], 0 < α < 1, client k’s loss function mono-
tonically decreases in communication round t when

αη0 < ηe <
2α2

∥∥∇Le,t
∥∥− 4αλL2V

(EV 2 + σ2)L1

(
α2 ∥∇Le,t∥22 + 1

) , ∀e ∈ [1, E − 1].

(21)
α is the hyper-parameter controlling learning rate decay.
Theorem 5.8. (Convergence Rate of DC-PFL). Define re-
gret ∆ = L 1

2 ,1 − L∗ and incorporate Assumptions 1-3. Af-
ter T = 2∆

ϵE(2η−η2L1)−η2L1E(EV 2+σ2)−4ληL2EV communi-
cation rounds with ϵ > 0 and learning rate η,

1

TE

T∑
t=1

E−1∑
e= 1

2

∥∥∇Le,t
∥∥2

2
≤ ϵ (22)

holds for each client k.
Detailed proofs of the above lemmas, theorems and corol-

lary can be found in Appendix A.

6 Experimental Evaluation
6.1 Experiment Settings
Datasets. We assess the performance of the proposed
DC-PFL alongside baselines on datasets CIFAR-10 and
CIFAR-1001. To create non-IID versions of these datasets,
we follow the method outlined in [Yi et al., 2023]. Specif-
ically, in CIFAR-10, each client is allocated data from only
2 classes (non-IID: 2/10), while in CIFAR-100, each client
receives data from only 10 classes (non-IID: 10/100).

Furthermore, the data from each client is partitioned into
three distinct subsets: training, evaluation, and testing, with

1https://www.cs.toronto.edu/ kriz/cifar.html

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4986



an 8:1:1 allocation ratio. Notably, each client retains the test-
ing set locally, ensuring that it reflects the distribution of their
specific local training set. The CNN models used are identi-
cal to those outlined in [Yi et al., 2023]. In these models, the
dimensions of the representation layer (i.e., the second-to-last
layer) are consistently set at 500 while the classification layer
(i.e., the last fully-connected layer) is configured as 10 and
100, respectively.

Comparison Baselines. We experimentally compare
DC-PFL with the following eight baseline methods. Local-
T, each client independently trains its local model; FedAvg
[McMahan et al., 2017], a widely recognized FL that
exclusively supports homogeneous local models; FML [Shen
et al., 2020] and FedKD [Wu et al., 2022], the mutual
learning-based methods; LG-FedAvg [Liang et al., 2020]
and FedGH [Yi et al., 2023], the model mixup-based PFL
method; FD [Jeong et al., 2018] and FedProto [Tan et al.,
2022b], the knowledge distillation-based methods.

We optimize FL hyperparameters through an extensive grid
search by adjusting the batch size for local training from {32,
64, 128, 256, 512} and the number of local training epochs
from {1, 10, 30, 50, 100}. We utilize the SGD optimizer with
a fixed learning rate (η) of 0.01 for both local training and
global classifier training. The total number of communication
rounds (T ) is set to 100 on CIFAR-10 and to 500 on CIFAR-
100 to ensure convergence across all algorithms.

Method |K| = 10, |St|
|K| = 100% |K| = 50, |St|

|K| = 20% |K| = 100, |St|
|K| = 10%

CIFAR10 CIFAR100 CIFAR10 CIFAR100 CIFAR10 CIFAR100
Local-T 92.57 59.62 94.74 59.35 91.63 53.19
FedAvg 93.78 61.33 94.98 59.14 92.08 53.36

FML 92.01 59.04 93.95 53.68 89.01 47.74
FedKD 92.84 55.38 93.47 54.47 89.87 49.57

LG-FedAvg 93.02 61.07 94.72 58.25 91.52 52.98
FD 93.11 - - - - -

FedProto 95.42 59.86 94.83 58.63 91.34 53.42
FedGH 95.96 72.00 95.01 59.88 92.15 53.93
DC-PFL 96.31 74.93 95.93 67.45 93.18 60.20
w/o AL 96.08 74.43 95.51 66.10 92.56 60.05
w/o GC 95.97 72.56 95.76 61.66 92.32 54.61

Table 1: Test accuracy (%) comparison in the model homogeneous
FL settings with varied number of clients |K| and client participa-
tion rates |St|

|K| . ”-” means that the corresponding algorithm does not
achieve convergence.

Method CIFAR10 (2/10) CIFAR100 (10/100)
Local-T 92.84 70.84

FML - -
FedKD 78.05 53.45

LG-FedAvg 93.95 70.73
FD 94.47 -

FedProto 94.36 71.01
FedGH 96.08 71.56
DC-PFL 96.16 74.70

Table 2: Test accuracy (%) comparison in the model heterogeneous
FL settings. ”-” means that the corresponding algorithm does not
achieve convergence.

6.2 Results and Discussion
To conduct a comprehensive comparison between the pro-
posed DC-PFL and existing methods, we begin by evaluat-

ing their performance in model homogeneity FL settings and
subsequently transition to model heterogeneity FL settings.

Model Homogeneity FL setting. In line with [Yi et al.,
2023], our experiments encompass three distinct scenarios,
each characterized by varying numbers of clients, denoted as
|K|, and client participation rates |St|

|K| : 1) |K| = 10, |St|
|K| =

100%. 2) |K| = 50, |St|
|K| = 20%. 3) |K| = 100, |St|

|K| = 10%. In
each case, the number of clients participating in the FL train-
ing process per round is held constant to ensure fairness and
enable a comprehensive comparison across diverse settings.
Specifically, the number of participating clients per round is
fixed at |K| × |St|

|K| = 10. The results are shown in Table 1.
Our observations reveal that DC-PFL consistently outper-

forms state-of-the-art methods, including those specifically
designed for model homogeneity FL settings (such as Fe-
dAvg) and methods tailored for model heterogeneity FL set-
tings, encompassing techniques ranging from mutual learn-
ing (FML, FedKD) and model mixup (LG-FedAvg, FedGH)
to knowledge distillation on representations within the same
class (FedProto, FedGH) and knowledge distillation on logits
within the same class (FD). Compared with the best baseline
FedGH, DC-PFL improves the accuracy by 1.22% and 9.22%
on average for CIFAR-10 and CIFAR-100, respectively. This
improvement is particularly remarkable considering that most
algorithms already achieve high accuracy on CIFAR-10. Fur-
thermore, the substantial accuracy enhancement of DC-PFL
on CIFAR-100 underscores its efficacy in addressing the non-
IID issues (i.e., statistical heterogeneity).

Model Heterogeneity FL setting. To comprehensively
compare DC-PFL with existing methods under model het-
erogeneity FL settings, we introduce variability by adjusting
the dimensions of the fully-connected layers and the number
of filters within the convolutional layers of our CNN model.
This approach follows the methodology in [Yi et al., 2023].
We then evenly distribute these models among the clients,
with the possibility of different clients possessing models of
identical structures. The results are summarized in Table 2.

It can be observed that DC-PFL outperforms existing
methods in terms of model accuracy within the model het-
erogeneity FL settings. Notably, compared to the best-
performing baseline, FedGH, DC-PFL exhibits average ac-
curacy improvements of 4.38% for CIFAR-100. These results
unequivocally underscore the effectiveness of DC-PFL.

Ablation study. We devised two ablated versions of
DC-PFL to gain deeper insights into its components: 1)
“w/o AL”: In this ablated version, we exclude the auxiliary
loss from the local training loss. 2) “w/o GC”: This ablated
version omits the global classifier-level calibration (i.e., the
Gaussian generation process). The results of the ablation ex-
periments are presented in Table 1. Notably, DC-PFL out-
performs its ablated variants, highlighting the effectiveness of
the dual calibration design in enhancing model mixup-based
PFL performance. Compared to “w/o GC”, “w/o AL” per-
forms better in most cases. It may indicate that the effec-
tiveness of DC-PFL is largely due to the incorporation of the
global classifier-level calibration.
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Figure 2: Comparison under different numbers of classes.
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Figure 3: Comparison under varying client participation rates.

Robustness to non-IIDness. We compare DC-PFL with
existing model-heterogeneous baselines, namely FedProto,
LG-FedAvg, and FedGH, on both datasets, incorporating
varying degrees of non-IID data distributions. Specifically,
we set the number of clients |K| to 10, and client participa-
tion rates |St|

|K| to 100%. For the CIFAR-10 dataset, each client
is distributed with samples from {2, 4, 6, 8, 10} classes, while
for CIFAR-100, each client is allocated samples from {10, 30,
50, 70, 90, 100} classes, with a higher number of classes indi-
cating a lower degree of non-IIDness. Figure 2 clearly illus-
trates that DC-PFL consistently achieves the highest model
accuracy across various degrees of non-IID data distribution
on both CIFAR-10 and CIFAR-100 datasets. This outstand-
ing performance demonstrates its robustness in handling non-
IID data. Moreover, with an increase in the number of classes
(indicating a more IID dataset), the model accuracy exhibits
a decreasing trend. This aligns with the observation that the
benefits of personalizing local models diminish as data het-
erogeneity decreases, corroborating with [Shen et al., 2020].

Robustness to participation rate. We compare DC-PFL
with existing model-heterogeneous baselines, FedProto, LG-
FedAvg and FedGH on both datasets with varying partici-
pation rates of clients. Specifically, we fix the number of
clients at |K| = 100 and vary the client participation rates
|St|
|K| ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1} for CIFAR-10 (non-IID:
2/10) and CIFAR-100 (non-IID: 10/100). Figure 3 shows that
DC-PFL consistently outperforms existing methods across
all client participation rate settings on both CIFAR-10 and
CIFAR-100. This underscores the robustness of DC-PFL
in handling varying client participation rates. Notably, the
model accuracy tends to decrease as the client participation
rate increases. This observation can be attributed to the fact
that as more clients engage in a communication round, there
is an improvement in generalization, while the task of person-

Method |K| = 10, |K| = 50, |K| = 100
|St|
|K| = 100% |St|

|K| = 20% |St|
|K| = 10%

FedGH 72.00 59.88 63.93
DC-PFL (

∑
|Gc| = 600) 74.33 66.93 58.78

DC-PFL (
∑
|Gc| = 800) 74.56 67.23 60.27

DC-PFL (
∑
|Gc| = 1, 000) 74.93 67.45 60.20

DC-PFL (
∑
|Gc| = 2, 000) 74.34 67.67 59.27

DC-PFL (
∑
|Gc| = 5, 000) 74.50 67.38 59.94

Table 3: Accuracy (%) of the FL models produced by DC-PFL with
different numbers of generated virtual samples on CIFAR-100.

alization becomes more challenging.

Sensitivity to the number of generated virtual samples.
To assess the impact of the number of generated virtual sam-
ples

∑
|Gc|, we vary the number of generated virtual sam-

ples among {600, 800, 1, 000, 2, 000, 5, 000} on the CIFAR-
100 dataset. The results are presented in Table 3. The results
indicate an interesting trend concerning the accuracy with re-
spect to the number of generated virtual samples. Initially, as
this number increases, there is a notable rise in accuracy, fol-
lowed by a subsequent decline. This pattern suggests that a
higher number of generated virtual samples initially enriches
the ability to mimic the true feature distribution, thereby en-
hancing overall performance. However, as the number of gen-
erated virtual samples continues to grow, there is a risk of de-
viating from the true feature distribution, leading to a drop in
performance. Table 3 shows that selecting a total number of
generated virtual samples between 1,000 to 2,000 yields opti-
mal results for DC-PFL. Therefore, we set

∑
|Gc| = 1, 000.

Visualizing Personalization. We extracted representations
for each sample from each FL client in DC-PFL and FedGH.
We then used T-SNE to reduce the dimensionality of the rep-
resentations from 500 to 2 for visualization. More details and
results are in Appendix B.

7 Conclusions

In this paper, we propose a novel method, DC-PFL, to en-
hance model mixup-based PFL. Under DC-PFL, client local
models consist of a heterogeneous feature extractor and a ho-
mogeneous classifier. The FL server utilizes mean and covari-
ance representations from clients’ feature extractors to train a
global generalized classifier to be shared among all clients,
facilitating information exchange while preserving privacy.
An auxiliary loss guides local models to improve feature ex-
tractors by using global knowledge. The global classifier is
fine-tuned with sample representations derived from an ap-
proximate Gaussian distribution model specific to each class.
DC-PFL eliminates the need to transmit original data rep-
resentations, thus enhancing privacy preservation. It enable
FL clients to build personalized heterogeneous local models
tailored to their unique data distributions, system resources,
and model structures. The FL server fosters collaboration
and knowledge sharing, leading to improved model perfor-
mance. Notably, the design of virtual representations and
knowledge distillation ensures robust global model training
while addressing privacy concerns.
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