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Abstract
This paper discusses the revenue management
(RM) problem to maximize revenue by pricing
items or services. One challenge in this problem
is that the demand distribution is unknown and
varies over time in real applications such as air-
line and retail industries. In particular, the time-
varying demand has not been well studied under
scenarios of unknown demand due to the diffi-
culty of jointly managing the remaining inventory
and estimating the demand. To tackle this chal-
lenge, we first introduce an episodic generaliza-
tion of the RM problem motivated by typical ap-
plication scenarios. We then propose a computa-
tionally efficient algorithm based on posterior sam-
pling, which effectively optimizes prices by solv-
ing linear programming. We derive a Bayesian re-
gret upper bound of this algorithm for general mod-
els where demand parameters can be correlated be-
tween time periods, while also deriving a regret
lower bound for generic algorithms. Our empirical
study shows that the proposed algorithm performs
better than other benchmark algorithms and com-
parably to the optimal policy in hindsight. We also
propose a heuristic modification of the proposed al-
gorithm, which further efficiently learns the pric-
ing policy in the experiments. An extended ver-
sion of this paper with appendixes is available at:
http://arxiv.org/abs/2405.04910.

1 Introduction and Motivation
Maximizing revenue by pricing items or services is a key
problem in many industries such as airline and retail indus-
tries. This kind of problem is known as a price-based rev-
enue management (RM) problem, which has been extensively
studied in operations research and management science. To
determine optimal prices, it is essential to capture the relation
between the selling price and demand, which is called a de-
mand curve. However, in the real world, such a curve is not
only unavailable to a seller in advance, but is also stochastic.

∗He is currently affiliated with the University of Tokyo.

Thus, maximizing revenue in real-world businesses requires
the seller to deal with both unknown and stochastic demand.

Another challenge in the RM problem is that demand may
depend not only on the offered price but also on the time.
Such a dynamic nature of the demand can particularly appear
in applications where sold items or services have some dead-
lines [Gallego and Van Ryzin, 1997; Su, 2007]. For example,
more business trippers reserve airplane seats as the departure
date approaches as their schedules become clearer [Lazarev,
2013; Williams, 2020].

Despite its potential importance of addressing such dy-
namic demand, most studies on RM problems with unknown
demand have focused on the stationary demand whose distri-
bution solely depends on the price. This discrepancy might
come from the typical formulation of the problem, where a
seller experiences a single selling season. In such a scenario,
the seller can observe the actual demand for each time pe-
riod only once, and thus it is impossible to correctly estimate
the future demand from the observed one. One could miti-
gate this limitation if some model on the time dependency of
the demand is assumed. Still, it is not realistic to construct
a model that precisely predicts future demands since the de-
mand often drastically changes especially around the end or
start of selling seasons. Su [2007] discusses this dynamic de-
mand changes in the fashion and travel industries.

A clue to address this difficulty from the practical view-
point is that a seller often has multiple seasons to sell items
or services with an independent amount of inventories. In
the case of the hotel industry, for example, the demands for
rooms of the same day of the week almost do not vary among
weeks unless there is a special event near the hotel [Ban-
dalouski et al., 2021]. Thus, the seller can learn demand for
rooms by pricing them across multiple weeks.

In consideration of such applications, we introduce a gen-
eralization of the RM problem, which we call an episodic
price-based revenue management problem. In this problem,
we consider the setting where selling seasons (or episodes)
are repeated multiple times as follows. At the beginning of
each selling season, a seller is given a fixed amount of inven-
tory, which is not replenished during the season. At each time
period of a season, the seller prices the item and the number
of sold items is determined according to the demand whose
distribution depends on the price and time period but is inde-
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pendent of the season.
In this episodic setting, we can learn the demand distribu-

tion depending on both the price and time period if we have
infinitely many seasons. Our goal is to design a policy that
efficiently explores the demand of each time period while ex-
ploiting the current knowledge to optimize the revenue in a fi-
nite number of seasons. Such exploration-exploitation trade-
off is much more complicated under the limited inventory
with time-varying demand since the desired prices between
different time periods affect each other through the inventory
constraint and the prior model on the time-varying demand.

1.1 Our Contributions
For the proposed generalization of RM problems, we de-
velop two algorithms that combine the pricing based on
linear programming (LP) with the technique of posterior
sampling called Thompson sampling [Thompson, 1933] in
online-learning. This combination successfully leads to bal-
ancing the exploration-exploitation trade-off with inventory
constraint to efficiently achieve high performance.

The first algorithm, TS-episodic, determines the schedule
of prices during a season at the beginning of each season,
which is computationally efficient while having a reasonable
theoretical guarantee. The second algorithm, TS-dynamic, is
a heuristic modification of TS-episodic, which dynamically
updates the pricing at each time period of a season. This mod-
ification can quickly reflect the observed data in the prices
and enables robustness to stochastic demand. We numeri-
cally demonstrate that the proposed algorithms become close
to the oracle policy that is optimal in hindsight as the number
of seasons increases, and this convergence is particularly fast
under TS-dynamic.

On the theoretical contributions, we derive both upper
and lower bounds on Bayesian regret. We first derive an
upper bound on the Bayesian regret for TS-episodic of
O(T

√
SK log(K) + S

√
T ), where S is the number of

episodes, T is the selling horizon (the number of time peri-
ods) of each episode, and K is the number of feasible prices.
We also derive a Bayesian regret lower bound for generic al-
gorithms of Ω(T

√
SK). The regret upper bound is sublinear

in the total number ST of time steps when S and T jointly
increase. In particular, the first term O(T

√
SK) matches

the lower bound up to a logarithmic factor and is unavoid-
able. The second term is linear in S, which can be regarded
as a cost for computational efficiency coming from the fact
that the optimal pricing needs a dynamic programming with
a very large table even if the seller completely knows the de-
mand distributions. This kind of linear regret often appears
in the settings where the problem involves a complicated op-
timization problem (see the discussion below Theorem 1).

1.2 Literature Review and Distinctions
The literature on RM problems primarily focuses on cases
with known demand information. In such settings, RM
problems with dynamic demand are well investigated [Gal-
lego and Van Ryzin, 1994; Gallego and Van Ryzin, 1997;
Zhao and Zheng, 2000; Anjos et al., 2005; Malighetti et
al., 2009]. Other topics of price-based RM problems are re-
viewed in Bitran and Caldentey [2003]; Chiang et al. [2007].

RM problems with demand learning are studied later, which
are reviewed in Den Boer [2015]. In addition, there exist
other types of revenue management problems called quantity-
based revenue management. We refer the reader to Strauss et
al. [2018]; Klein et al. [2020] and references therein for re-
cent developments in such RM problems.

The episodic RM problem is related to reinforcement
learning (RL) in a time-inhomogeneous Markov decision pro-
cess (MDP) [Hao and Lattimore, 2022; Moradipari et al.,
2023]. The regret analysis of the RL literature typically re-
lies on an oracle to exactly compute the optimal pricing pol-
icy whereas our algorithms use LP for computational effi-
ciency. This difference requires us to carefully evaluate the
gap between the optimal pricing schedule and the approxi-
mated schedule by LP as will be discussed in Section 3.

For other episodic settings, den Boer and Zwart [2015] dis-
cuss an episodic RM for unknown stationary demand. In ad-
dition, Chen et al. [2022] consider a related episodic setting
with unknown non-stationary demand. However, their setting
allows inventory shortages (negative inventory) with a small
extra cost,1 meaning that inventory shortage does not drasti-
cally affect the revenue unlike our setting. Furthermore, their
algorithm relies on more restricted demand conditions than
ours, such as a sub-Gaussian demand distribution.

The most closely related work is Ferreira et al. [2018],
which focuses on a generalization of a RM problem with un-
known stationary demand. They provide algorithms based on
Thompson sampling that balance the exploration-exploitation
trade-off under inventory constraints. They derive upper
bounds of Bayesian regret for their algorithms and demon-
strate their outstanding performance in numerical experi-
ments. However, their algorithms heavily rely on the sta-
tionary demand setting, and extending them to non-stationary
settings is highly non-trivial.

2 Problem Setting
In this section, we formulate the episodic RM problem and
propose algorithms with posterior sampling.

2.1 Revenue Management Process
We consider the setting where a seller deals in a single item
and repeats selling seasons S times. Each selling season, in-
dexed by s ∈ [S] = {1, 2, . . . , S}, consists of T ∈ Z time
periods. At the beginning of each selling season, the seller
has n0 units of initial inventory, which is not replenished dur-
ing the selling season. The inventory at the end of period t is
denoted by nt;s, and n0;s = n0. Each time period t ∈ [T ] of
the s-th season consists of the following procedures:

(i) The seller chooses a price Pt;s from the set of K + 1
prices P ∪ {p∞}. Here, P = {pk}k∈[K] ∈ [0,∞)K is a
set of feasible prices and p∞ is a “shut-off” price, which is
commonly used in dynamic pricing literature. Under the shut-
off price p∞, the demand is zero and no revenue is obtained
with probability one.

1To be more specific, Chen et al. [2022] consider the setting
where the cost is incurred depending on the possibly negative re-
maining inventory at the end of the episode, and this cost is Lipschitz
continuous in the remaining inventory.
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(ii) The seller observes random demand Dt;s ≥ 0 that is
independent of the past prices and demands. The distribution
under the offered price pk is denoted by Dt,k(θ), where θ ∈ Θ
is a parameter unknown to the seller.

(iii) The inventory is consumed according to the ob-
served demand Dt;s to yield revenue. The seller can con-
sume at most nt−1;s units of the inventory and the in-
ventory at the end of the current time period is expressed
as nt;s = max(nt−1;s − Dt;s, 0), which yields revenue
Pt;s min(Dt;s, nt−1;s).
Remark 1. This formulation considers the case where there
are units of only one item to sell, whereas Ferreira et
al. [2018] consider the case of multiple items. We focus on
the case of a single item just to highlight the difficulty of the
dynamic demand although the extension to the case of multi-
ple items is straightforward as discussed in Appendix F.

We adapt a Bayesian approach in our demand model.
We assume that a demand parameter θ ∈ Θ follows some
given prior distribution f . For any t ∈ [T ] and s ∈ [S],
the posterior distribution is determined by the history Hs

t−1
of offered prices and observed demands up to the current
time period of the season, which is expressed as Hs

t−1 =
{(Pτ ;σ, Dτ ;σ)}τ∈[T ],σ∈[s−1] ∪ {(Pτ ;s, Dτ ;s)}τ∈[t−1]. Given
a history Hs

t−1, the posterior distribution is then expressed as
f(θ|Hs

t−1) ∝ P(Hs
t−1|θ)f(θ), where P(Hs

t−1|θ) is the like-
lihood function.

Note that we impose no assumption on the demand model
{Dt,k(θ)}t∈[T ],k∈[K],θ∈Θ and the prior distribution f(θ) as
far as f is a well-defined probability distribution (that is, an
improper prior in the Bayesian statistics is not used). In par-
ticular, we allow models where the demands among differ-
ent prices and time periods are correlated. This is a spe-
cial strength of our framework capturing wide models, while
causing technical difficulties since the estimator or the pos-
terior distribution of the demand at each price and time pe-
riod might complicatedly depend on the past observations.
We introduce two examples of demand models below, both
of which are used in the numerical analysis in Section 4.
Example 1 (Poisson Demand with Independent Gamma
Priors). This is a simple model of the demand distributions,
in which the demand distribution Dt,k(θ) is expressed as
Dt,k(θ) = Poi(·|λt,k) for k ∈ [K] and time t ∈ [T ], where
Poi(·|λ) is a Poisson distribution with intensity λ ∈ R+. The
intensity parameters {λt,k}t∈[T ],k∈[K] are assumed to be in-
dependently and identically distributed by gamma distribu-
tions Ga(α, β) with shape α > 0 and scale β > 0. Since
gamma distributions are conjugate to Poisson distributions,
the posterior distribution remains a gamma distribution that
can be easily computed. Still, this model requires estimation
of KT parameters θ = {λt,k}k∈[K],t∈[T ] independent of each
other and is not always sample-efficient in realistic settings.
Example 2 (Poisson Demand with Gaussian Process
Prior). In this model, Dt,k(θ) = Poi(·|λt,k) is as-
sumed as in the first example, but the intensity parame-
ters {λt,k}t∈[T ],k∈[K] are modeled using a Gaussian process.
To be more specific, this model assumes that the intensity
parameter is expressed as λt,k = exp(g(t, pk)) > 0 for
g(t, p) : [T ] × P → R following a Gaussian process with

some mean function µ(·) : [T ]×P → R and kernel function
K(·, ·) : ([T ]× P)× ([T ]× P) → R. Under this model, the
posterior distribution of {λt,k}t∈[T ],k∈[K] has no closed form
but it can be approximated by, e.g., Laplace approximation
and Markov chain Monte Carlo method (see Appendix H.2
and Rasmussen and Williams [2005] for further details).

2.2 Proposed Algorithms
For the problem we stated so far, we propose two algorithms,
TS-episodic and TS-dynamic. These algorithms use a mean
demand function for a demand parameter θ ∈ Θ, which is
defined as

λt,k(θ) = E [Dt;s|Pt;s = pk, θ] .

With this mean demand function, the proposed algorithms
solve the linear optimization problem LP(θ, t, n) over
{xτ,k}t≤τ≤T, k∈[K] ∈ [0, 1](T−t+1)K , defined as follows:

maximize:
T∑

τ=t

K∑
k=1

xτ,kλτ,k(θ)pk

subject to:
T∑

τ=t

K∑
k=1

xτ,kλτ,k(θ) ≤ n,

K∑
k=1

xτ,k ≤ 1, ∀τ ∈ {t, t+ 1, . . . , T}. (1)

In this problem, xτ,k intuitively corresponds to the probabil-
ity of choosing price pk at time period τ . This optimization
problem corresponds to a kind of LP relaxation of the revenue
optimization problem in our setting. To be more specific, if
the domain of {xτ,k}t≤τ≤T, k∈[K] is restricted to be binary
and Dt,k is deterministic then (1) gives the optimal pricing
policy under a parameter θ when the inventory is n at time
period t. We use {xτ,k(θ)}t≤τ≤T,k∈[K] to denote the optimal
solution of LP(θ, t, n).

Although relying on linear programming instead of dy-
namic programming may result in a suboptimal algorithm, LP
is commonly used particularly in bandit with knapsack prob-
lems for both stationary and non-stationary settings (see, for
example, Badanidiyuru et al. [2013]; Immorlica et al. [2022];
Liu et al. [2022]).

The first algorithm, TS-episodic, is given in Algorithm 1.
At the beginning of the selling season, this algorithm ran-
domly samples a demand parameter θs from its posterior dis-
tribution. Then, the algorithm solves the LP(θs, 1, n0) to ob-
tain a solution {xτ,k(θs)}τ∈[T ],k∈[K]. At every time period t,
TS-episodic randomly chooses the prices according to this
solution computed at the beginning of the season.

The second algorithm, TS-dynamic, samples a parameter
θt;s and solves LP(θt;s, t, nt−1;s) at every time period. The
algorithm then determines the price according to xt,k(θt;s).
These procedures enable us to immediately exploit the de-
mand observation at each time period.

TS-episodic has a simpler structure than TS-dynamic
since TS-episodic samples a demand parameter and solves
the LP only once at the beginning of each episode, whose
solution is used throughout the season. Still, due to the ran-
domness of the offered price and the demand, the remaining
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Algorithm 1: TS-episodic
1 for s = 1, . . . , S do
2 Sample a demand parameter θs ∈ Θ from the

posterior distribution f(·|Hs
0) of θ.

3 Solve LP(θs, 1, n0).
4 for t = 1, . . . , T do
5 Offer price Pt;s = pk with probability xk,t(θs)

and Pt;s = p∞ with probability
1−

∑K
k=1 xt,k(θs).

6 Observe realized demand Dt;s and update the
history as Hs

t = Hs
t−1 ∪ {Pt;s, Dt;s}.

Algorithm 2: TS-dynamic
1 for s = 1, . . . , S do
2 for t = 1, . . . , T do
3 Sample a demand parameter θt;s ∈ Θ from the

posterior distribution f(·|Hs
t−1) of θ.

4 Solve LP(θt;s, t, nt−1;s).
5 Offer price Pt;s = pk with probability

xk,t(θt;s) and Pt;s = p∞ with probability
1−

∑K
k=1 xt,k(θt;s).

6 Observe realized demand Dt;s and update the
history Hs

t = Hs
t−1 ∪ {Pt;s, Dt;s}.

inventory sometimes becomes unstable, which might cause
discrepancy from the optimal pricing policy. TS-dynamic,
on the other hand, samples the demand parameter and solves
the LP based on the current inventory at each time period. It
thus can dynamically control the inventory during a selling
season, and can immediately exploit the demand information
soon after the observation. These properties possibly enable
TS-dynamic to learn demand faster than TS-episodic and to
have better performance at the cost of the computational time
about T times larger than that of TS-episodic.

The proposed algorithms balance the exploration-
exploitation trade-off through the randomness of the samples
from the posterior distribution with pricing by LP. In partic-
ular, the important characteristic of the proposed algorithms
is that the future demand is taken into account through the
LP when determining the price for the current time period.
Although pricing by LP is also considered in Ferreira et
al. [2018], it assigns the inventory uniformly into each time
period, which results in no more optimal revenue under
the time-varying demand. This difference is drastically
reflected in the performances of the proposed algorithms and
benchmarks as shown in Section 4.

3 Regret Analysis
In this section, we first analyze the Bayesian regret of TS-
episodic and then derive a Bayesian regret lower bound for
generic algorithms. The problem-dependent regret is the dif-
ference between the total expected revenue obtained by the
algorithm and that by the optimal policy π∗(θ) in hindsight,

which is defined as follows.

Definition 1. The problem-dependent regret of an algorithm
π under a demand parameter θ ∈ Θ is

Regret (T, S, θ, π) =
S∑

s=1

T∑
t=1

Eπ∗(θ)
[
Pt;sD̃t;s|θ

]
−

S∑
s=1

T∑
t=1

Eπ
[
Pt;sD̃t;s|θ

]
= SRev∗ (T, θ)− Revπ (T, S, θ) , (2)

where D̃t;s = min{nt−1;s, Dt;s}.

Here, the optimal pricing policy in hindsight π∗(θ) serves
as a chosen competitive algorithm. We then define the
Bayesian regret as the expectation of the problem-dependent
regret with respect to a prior distribution f over θ.

Definition 2. The Bayesian regret of an algorithm π for a
prior f is

BRegret(T, S, f, π) = Eθ[Regret(T, S, θ, π)], (3)

where Eθ[·] denotes the expectation taken for θ following f .

The Bayesian regret is a typical performance measure of
online Bayesian algorithms. See Russo and Van Roy [2014]
for further interpretations of Bayesian regret.

Theorem 1. Assume that 4K ≤ S and there exists d̄ > 0
such that the support of the distribution Dt,k(θ) is finite and
included in [0, d̄] for all θ. Then, the Bayesian regret (3) of
TS-episodic satisfies

BRegret(T, S, f, π) ≤ pM d̄

(
S
√
T + 54T

√
SK log(K)

)
,

where pM = maxk∈[K] pk.

From the upper bound of this theorem, we see that the re-
gret is sublinear in ST when S and T jointly increase. Here
the first term of O(S

√
T ) is linear in S but it can be regarded

as a cost for computational efficiency. Even if we know the
true demand parameter θ, the optimal pricing policy π∗(θ)
requires to compute dynamic programming, which is some-
times costly in practice though it is polynomial time. Further-
more, the optimal pricing policy π∗(θ) essentially depends
on the demand distributions {Dt,k(θ)}t,k themselves rather
than their expectations. On the other hand, the proposed al-
gorithms use the linear programming, which can be computed
efficiently in practice by off-the-shelf solvers, and behave sta-
bly since we only need to estimate the expected demands.

Note that this kind of linear regret often implicitly appears
in the online learning problems involving complicated opti-
mization problems. In such problems, the notion of α-regret
is often introduced instead, which corresponds to the regret
when the optimal algorithm π∗(θ) in (2) is replaced with an
approximate algorithm with approximation ratio of α [Gar-
ber, 2017; Wen et al., 2017]. The regret of O(S

√
T ) corre-

sponds to this gap between the optimal policy π∗(θ) and the
approximation algorithm based on LP(θ, 1, n0) for the true
parameter θ.
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Remark 2. The linear term might be avoidable if we exactly
optimize the pricing schedule by dynamic programming in-
stead of LP and combine techniques in RL literature. They
often consider the regret analysis under exact optimization
of the schedule, which might be applicable if we regard our
problem as an MDP. However, such an analysis is highly
non-trivial since our model allows complex prior distributions
unlike existing studies of RL literature that focus on inde-
pendent or specific prior distributions [Osband and Van Roy,
2017; Lu and Van Roy, 2019; Hao and Lattimore, 2022;
Moradipari et al., 2023].
Key Points in the Proof of Theorem 1. The key challenge
in the analysis of Theorem 1 is that the inventory constraint
affects the offered prices and the total revenue in a very com-
plicated way, through the dynamic programming in the op-
timal policy in hindsight and the LP in the proposed policy.
Due to this challenge, standard regret analysis approaches for
Thompson sampling algorithms, such as the one in Russo and
Van Roy [2014], cannot be directly applied to our problem.
Though the inventory constraint is already considered in Fer-
reira et al. [2018], their argument is limited to the static de-
mand because the best policy is to uniformly assign the in-
ventory to each time period. To address this difficulty with
the inventory constraint, we employ an approach to reduce the
problem into T instances of MAB problems with K arms and
S rounds. These T problems are highly correlated through
the inventory constraint and the posterior distribution, but we
show by a careful analysis that the regret can be decomposed
into that of T independent instances and that arising from the
correlation. We will give more details of the proof in Sec-
tion 3.1 (the formal proof is given in Appendix D).

The following theorem ensures that the second term
O(T

√
SK logK) of the regret upper bound in Theorem 1,

which is linear in T , is essential in the Bayesian regret:
Theorem 2. Assume the same condition as that in Theo-
rem 1 and n0 ≥ d̄. Then, there exists a demand model
{Dt,k(θ)}t∈[T ],k∈[K],θ∈Θ and a prior distribution f0 over Θ
such that the Bayesian regret (3) of any algorithm π satisfies

BRegret(T, S, f0, π) ≥ Ω
(
T
√
SK

)
.

Key Points in the Proof of Theorem 2. The main difficulty
in deriving this lower bound arises from the inventory con-
straint, which can vary the optimal price depending on the re-
maining inventory. This prohibits the use of common toolkits
for evaluating lower bounds in multi-armed bandit problems.
To address this challenge, we provide an instance where de-
mand can appear in chosen m =

⌈
n0

d̄

⌉
time periods and no

demand in other time periods. This setting decomposes our
problem into m independent dynamic pricing tasks since the
inventory never runs out. For each of the m tasks, we can then
use techniques for lower bound analysis of MAB problems
(see, for example, Section 15 of Lattimore and Szepesvári
[2020]). These techniques provide potential instances where
any algorithm must incur at least Ω(

√
SK) regret. The ex-

istence of such instances for each of the m tasks allows us
to choose a prior distribution f for which the Bayesian regret
is bounded below for any algorithms. The formal proof of
Theorem 2 is given in Appendix E.2.

3.1 Proof Sketch of Theorem 1
First, we decompose the expected total revenue
Revπ (T, S, θ) into the (virtual) total revenue ignoring
the inventory limit and the lost sales due to the lack of
inventory. To be more specific, we decompose the regret by

BRegret(T, S, f, π)

=
T∑

t=1

S∑
s=1

Eθ

[
Eπ∗(θ)

[
Pt;sD̃t;s

∣∣∣∣θ]− Eπ

[
Pt;sD̃t;s

∣∣∣∣θ]]

=
T∑

t=1

S∑
s=1

Eθ

[
Eπ∗(θ)

[
Pt;sD̃t;s

∣∣∣∣θ]− Eπ

[
Pt;sDt;s

∣∣∣∣θ]]
(A)

+
S∑

s=1

Eθ

[
Eπ

[
T∑

t=1

(
Pt,sDt;s − Pt;sD̃t,s

) ∣∣∣∣∣θ
]]

(B)

. (4)

We refer to the underlined parts (A) and (B) as the revenue-
difference and the lost sales parts, respectively. In the rest
of this section, we will briefly sketch the derivation of upper
bounds for these revenue-difference and lost sales parts. In
what follows, we will use the notation Eπ [·] = Eθ [Eπ [·|θ]].

Evaluation of the Revenue-difference Part
As we will show in Lemma 14 in Appendix C.6, Rev∗ (T, θ)
is bounded above by the optimal value of LP(θ, 1, n0). This
fact allows us to have

(A) ≤
T∑

t=1

Eπ

[
S∑

s=1

K∑
k=1

(xt,k(θ)− xt,k(θs)) pkλt,k(θ)

]
.

However, the right-hand side of this inequality remains dif-
ficult to analyze since the solution of the LP depends on the
inventory allocation across time periods.

To address this difficulty related to the complex inventory
allocation, we introduce a set of upper confidence bounds
{Ut,k;s}t∈[T ],k∈[K],s∈[S] (the definition of Ut,k;s is given in
Appendix B). The upper confidence bound Ut,k;s bounds the
mean demand λt,k(θ) above with high probability. By com-
bining these upper confidence bounds and the regret decom-
position technique of Russo and Van Roy [2014], we have

(A) ≤
T∑

t=1

S∑
s=1

K∑
k=1

(Eπ [pkxt,k(θ) (λt,k(θ)− Ut,k;s)]

+ Eπ [(Ut,k;s − λt,k(θ)) pkxt,k(θs)]) .

For any fixed t ∈ [T ] and k ∈ [K], Ut,k;s will decrease and
converge to λt,k(θ) as the k-th price is offered. Thus, both
(λt,k(θ)− Ut,k;s)xt,k(θ) and (Ut,k;s − λt,k(θ))xt,k(θs) can
vanish as the number of seasons increases, which eventually
results in an upper bound for (A):

(A) ≤ 18pM d̄T
√
SK log(K). (5)

The complete argument to derive this bound is given in the
proof of Lemma 15 in Appendix C.6.
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Evaluation of the Lost Sales Part
The lost sales part in (B) is first bounded by

(B) ≤ pM
∑S

s=1 Eπ

[(∑T
t=1 Dt;s − n0

)+]
, where

x+ = max{x, 0}, and the detailed derivation is in Ap-
pendix D. This expectation is further bounded by

(B) ≤ pM

S∑
s=1

Eπ

( T∑
t=1

Dt;s − Eπ

[
T∑

t=1

Dt;s

∣∣∣∣∣ θ
])+


(B1)

+pM

S∑
s=1

Eπ

(Eπ

[
T∑

t=1

Dt;s

∣∣∣∣∣ θ
]
− n0

)+


(B2)

,

where the inequality follows from (x + y)+ ≤ x+ + y+.
The underlined part (B1) is bounded above by the condi-
tional variance of

∑T
t=1 Dt;s on θ from the Cauchy-Schwarz

inequality, EX [|X|]2 ≤ EX [X2]. (B1) is then bounded by
an upper bound of the variance d̄

√
T . Then, we have

(B1) ≤ d̄
√
T . (6)

For the underlined part (B2), recall that the solution of
LP(θt, 1, n0) satisfies

∑T
t=1

∑K
k=1 λt,k(θs)xt,k(θs) ≤ n0

due to the inventory constraint. Combining this relation with
Eπ
[∑T

t=1 Dt;s

∣∣∣ θ] =∑K
k=1

∑T
t=1 λt,k(θ)xt,k(θs), we have

(B2) ≤
T∑

t=1

Eπ

[
S∑

s=1

K∑
k=1

(λt,k(θ)− λt,k(θs))
+
xt,k(θs)

]
.

Following a similar argument to that used in the derivation of
(5), we obtain

(B2) ≤ d̄
(
36T

√
SK log(K)

)
. (7)

The detailed derivation of this bound is given in Lemma 13
in Appendix C.5.

From (5), (6) and (7), we can bound (A) and (B) in (4) and
thus have proved Theorem 1.
Remark 3. Proving a theoretical upper bound is more chal-
lenging for TS-dynamic than for TS-episodic. This is
because TS-dynamic repeatedly solves LP and the result-
ing total revenue depends on dynamical changes in remain-
ing inventory. This distinction complicates the regret analy-
sis, which requires a new technique for theoretical analyses.
However, we believe that TS-dynamic could have a theoreti-
cal bound of the Bayesian regret with the same order as that of
TS-episodic due to its using LP and the lower bound in The-
orem 2. The additional evidence of this belief is the empirical
results presented in Section 4, where there is no significant
difference in the performance between the two algorithms.

4 Experiments
In this section, we show numerical results2 on the expected
regret of the proposed algorithms and benchmark ones. Ad-
ditional results are given in Appendix G.

2The code of the experiments is available at: https://github.com/
NECDSresearch2007/RM-TSepisodic-and-dynamic.

Experimental Settings We consider the set of K = 9
prices P = {1, 2, . . . , 9} with a shut-off price p∞. The
selling horizon is set to T = 10. The true demand distri-
bution is set to Poisson distributions with mean demand pa-
rameters λ(t, p) = 50 exp

(
−p+t

5

)
, depending on the time

t and price p. These demand parameters can be viewed as
an exponential-type demand curve [Gallego and Van Ryzin,
1994] with an exponentially decreasing coefficient with time,
which results in the discounted revenue case [Gallego and
Van Ryzin, 1997]. The initial inventory is set to n0 = 1000
and 50, corresponding to the cases where there is enough in-
ventory and where the inventory is quite limited, respectively.
In the former setting, pricing can be made almost indepen-
dently between time periods and the problem becomes easier.

For the prior on the demand distributions in the proposed
algorithms and benchmarks, we used the two models dis-
cussed in Examples 1 and 2, respectively. The details of these
priors are as follows.

Independent Gamma Prior: For Example 1 in Section 2.1,
we set prior gamma distributions with shape α = 10 and
scale β = 1 for all k ∈ [K] and t ∈ [T ].

Gaussian Process (GP) Prior: For Example 2 in Section
2.1, we took the mean function µ as a zero func-
tion and the kernel function as an anisotropic radial
basis function kernel defined as, K ((p, t), (p′, t′)) =
exp

(
−(t− t′)2/σ2

t − (p− p′)2/σ2
p

)
where σt = 3

σp = 2.5.

We consider the number of episodes S = 5000 for the set-
tings with the independent gamma prior (referred to as inde-
pendent prior hereafter) and S = 200 for the GP prior. We
run independent 100 trials for each setting.

Comparison Targets In the considered setting, we can
compute the optimal policy π∗(θ) using the dynamic pro-
gramming in manageable time though not practically effi-
cient. Then, we measure the performance of the algorithms
based on the relative ratio of the cumulative revenue com-
pared with π∗(θ).

We compared the performance of the proposed algorithms
with four benchmark algorithms. The first two algorithms
are generalizations of TS-fixed and TS-update in Ferreira et
al. [2018] to our problem, which are denoted by TS-fixed*
and TS-update*, respectively. To measure the gap between
the performance of the optimal policy π∗(θ) and the pol-
icy based on linear relaxation, we also consider two oracle
algorithms, which are denoted by TS-episodic* and TS-
dynamic*. In these algorithms, the true demand parame-
ter is used instead of the one sampled from the posterior.
Then, TS-episodic* and TS-dynamic* are independent of
episodes and Bayesian settings by production. We compute
their regret in an episode over 10000 trials. The details of
these benchmarks are given in Appendix H.1.

Numerical Results Figure 1 provides numeri-
cal results of the relative expected regrets 1 −
Revπ (T, s, θ) / (sRev∗ (T, θ)) for s ∈ [S].

For the case of n0 = 1000 shown in Figures 1 (A2) and
(B2), our proposed algorithms and the benchmark algorithms
show almost the same performance. This is because greedily
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Figure 1: The numerical results for regret of TS-episodic, TS-dynamic, TS-fixed*, and TS updated*, TS-episodic*, and TS-dynamic*.
(A1) and (A2) show the results for the GP prior, and (B1) and (B2) show the results for the independent prior. (A1) and (B1) show the results
for n0 = 50, and (A2) and (B2) show those for n0 = 1000. The lines represent the averages of the regret and the shaded regions indicate
the standard errors across independent 100 trials. The standard errors for TS-episodic* and TS-dynamic* are omitted here and given in
Appendix H.1.

optimizing the price at each round leads to the optimal pol-
icy and all the algorithms can learn efficient pricing without
considering the inventory allocation across time periods.

Figures 1 (A1) and (B1) show the results for the case of
n0 = 50. They demonstrate that the proposed algorithms can
successfully learn an efficient pricing policy to maximize to-
tal revenue over the selling season unlike the benchmark algo-
rithms. In particular, TS-dynamic learns an efficient pricing
policy faster than TS-episodic and shows better performance
as expected.

The results for TS-episodic* and TS-dynamic* in Fig-
ure 1 for n0 = 50 show that their expected regret does not
become zero even under the knowledge of the true demand
parameters, which corresponds to the term O(S

√
T ) in the

regret bound in Theorem 1, which is linear in S. This is the
inevitable cost of relying on the linear optimization instead of
dynamic programming.

Remark 4. Whereas TS-dynamic learns an efficient pol-
icy faster than TS-episodic, dynamically recomputing LP
does not always contribute to a better allocation after de-
mand parameters are learnt well. In fact, we give a result
in Appendix G where TS-dynamic* becomes slightly worse
than TS-episodic* in certain settings. In this way, behavior
of the allocation based on LP relaxation with recomputation
becomes complicated even under known parameters, which
makes the analysis of TS-dynamic particularly difficult.

We next discuss the effect of prior distributions. Our pro-
posed algorithms with both the independent prior and the GP
prior achieve almost the same performance level around the
final episode. However, the algorithms with the indepen-
dent prior spend more episodes to learn an efficient pric-
ing policy than the ones with the GP prior. This result
arises from the prior model where the mean demand func-
tion {λt,k(θ)}t∈[T ],k∈[K] must be independently estimated.
In contrast, our algorithms under the GP prior can learn faster
through the kernel function utilizing the dependency of the
demands between time periods.

5 Conclusion
In this paper, we investigated a price-based revenue manage-
ment problem, in which a seller tries to maximize the total
revenue over a finite selling season with finite inventory of
an item. In particular, we considered the episodic scenario
with unknown and time-varying demand with the real-world
applicability in mind. For this problem, we proposed TS-
episodic, which combines the pricing based on linear pro-
gramming relaxation with posterior sampling. We derived
a regret guarantee for TS-episodic and confirmed its effec-
tiveness by numerical simulation. We also proposed TS-
dynamic, which is a heuristic modification of TS-episodic
and dynamically updates the posterior sample and the pricing.
We numerically confirmed this algorithm can further quickly
learn an effective pricing policy.

Finally, we present two relevant future directions. The
first direction is to find an algorithm that can achieve an up-
per bound of the Bayesian regret without the O(S

√
T ) term.

Such an algorithm would need to minimize lost sales as much
as the optimal policy in hindsight does. The other direction is
to find a precise theoretical analysis for TS-dynamic. How-
ever, this direction is challenging due to the difficulty of an-
alyzing the algorithm repeating LP even if the true demand
parameters are known as in TS-dynamic*. Therefore, it may
be possible to analyze the difference of the regret of TS-
dynamic compared with TS-dynamic* instead of that with
the optimal hindsight policy, π∗(θ).
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