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Abstract
Estimating the conditional average treatment ef-
fects (CATE) is very important in causal infer-
ence and has a wide range of applications across
many fields. In the estimation process of CATE,
the unconfoundedness assumption is typically re-
quired to ensure the identifiability of the regres-
sion problems. When estimating CATE using high-
dimensional data, there have been many variable
selection methods and neural network approaches
based on representation learning, while these meth-
ods do not provide a way to verify whether the
subset of variables after dimensionality reduction
or the learned representations still satisfy the un-
confoundedness assumption during the estimation
process, which can lead to ineffective estimates of
the treatment effects. Additionally, these methods
typically use data from only the treatment or con-
trol group when estimating the regression functions
for each group. This paper proposes a novel neu-
ral network approach named CrossNet to learn a
sufficient representation for the features, based on
which we then estimate the CATE, where cross in-
dicates that in estimating the regression functions,
we used data from their own group as well as cross-
utilized data from another group. Numerical simu-
lations and empirical results demonstrate that our
method outperforms the competitive approaches.

1 Introduction
Estimating the CATE, also known as individual treatment ef-
fects (ITE) or heterogeneous treatment effects (HTE), is of
great importance in causal inference and is widely applied in
numerous fields [LaLonde, 1986; Athey and Imbens, 2016;
Mooij et al., 2016; Yao et al., 2021]. In the medical field,
the estimation of CATE can be applied to precision medicine,
achieving personalized matching of treatment plans. In
the socio-economic domain, the setting of policies and pre-
assessment of their effects also rely on the estimation of treat-
ment effects. In the field of advertising recommendations,
making accurate recommendations of different ads to differ-

ent groups can effectively save costs and enhance the effec-
tiveness of the advertising. All these depend on the accurate
estimation of CATE.

The estimation of the CATE is typically divided into ran-
domized experimental studies [Whitmore, 2005; Rosenbaum,
2007] and observational data studies, with the distinction be-
ing whether the allocation of interventions is completely ran-
dom. Due to the constraints of real-world settings and spe-
cific problems, we are often unable to conduct randomized
experimental studies. For example, when analyzing the im-
pact of smoking on lung cancer, we cannot ethically require
some participants to smoke over an extended period. On
the other hand, randomized experiments also come with high
costs. Therefore, most researches are based on observational
data, and this article is no exception. Most of the literature
on research based on observational data operates under the
assumption of unconfoundedness:

Assumption 1 (Unconfoundedness). Given the observed
variables, the treatment variable is independent with the po-
tential outcomes: Y (1), Y (0) ⊥ T | x.

The meaning of this assumption is that the features we can
collect contain all the information that could simultaneously
affect both the treatment variable and the outcome variable,
thereby creating a situation similar to a randomized experi-
ment, where the allocation of interventions is completely ran-
dom given these features. On the other hand, since we can
only observe one of the two potential outcomes, we can not
directly identify the CATE from the observational data un-
less the assumption of unconfoundedness holds. As we col-
lect more data and the dimensionality of features increases,
it becomes easier for the unconfoundedness assumption to
be satisfied [Rolling and Yang, 2014]. However, when es-
timating CATE using high-dimensional data, many studies
perform variable selection [VanderWeele, 2019] or represen-
tation learning [Shalit et al., 2017; Shi et al., 2019; Hassan-
pour and Greiner, 2019a; Hassanpour and Greiner, 2019b;
Zhang et al., 2021; Chauhan et al., 2023] on the original
data, and the resulting estimates of the treatment effect are
based on the selected subset of variables or learned repre-
sentations as shown in Figure 1 (a). These methods do not
verify whether the representations or the selected subset of
variables still meet the unconfoundedness assumption, nor do
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(a) General network structure

(b) Our network structure

Figure 1: Φ is a learned representation. h1 and h0 are two hypothesis or predictive functions for y based on Φ in treated and control group
respectively. l(·) is a loss function, where we use mean squared error loss. Disc(·) means the discrepancy. x1, y1 and x0, y0 are the covariates
and responses corresponding to treated group sample and control group sample respectively.

they make additional assumptions, that is, we are unable to
confirm whether Y (1), Y (0) ⊥ T | Φ(x) holds or not. If the
unconfoundedness assumption no longer holds, the estimates
of treatment effects based on Φ(x) are also no longer valid.
Therefore, we propose a new type of neural network struc-
ture that, by imposing specific regularization terms, to ensure
the learned representations still satisfy the unconfoundedness
assumption, thus making the final treatment effect estimates
accurate and valid.

On the other hand, most of the neural network approaches
are conducted under the T-learner framework, which involves
estimating a separate regression function for the treated group
and the control group respectively, and then obtaining a plug-
in estimator by taking the difference between the two regres-
sion functions. However, as shown in Figure 1 (a), in training
the regression functions for the treatment and control groups,
they typically use data from their respective groups, that is,
the treated group’s hypothesis function is estimated using
data from the treated group, and the control group’s hypoth-
esis function is estimated using data from the control group,
which can lead to an underutilization of data. Actually, the
goal is to estimate the treatment effect, not to achieve highly
accurate estimates of the two hypothesis functions. Due to
selection bias, having precise estimates for the two hypothe-
sis functions does not always lead to an accurate estimate of
the treatment effect. If we train the models using data from
each group independently, we will lose the cross-information
between groups. This results in the regression function of the
treatment group not being well-suited for the data of the con-
trol group, and vice versa. [Künzel et al., 2019] proposed
X-leaner, where they use data from another group to evaluate
the hypothesis functions and then take average of the treat-

ment effect under treated and control groups. However, they
do not apply the data from another group into the training
process in fact. The method we propose makes use of the full
sample information when training the hypothesis functions.
Through the design of the objective function, the treatment
and control group data play different roles, aiming to achieve
different optimization effects. The main contributions in this
paper are as follows:

• We define a sufficient representation in causal inference,
which not only has strong predictive power for potential
outcomes, but also needs to satisfy the unconfounded-
ness assumption. We propose a novel objective function
that enables us to learn the sufficient representations.

• During the training of the hypothesis functions, we use
data from their own group as well as cross-utilize data
from another group, allowing the two learned hypothe-
sis functions to have good predictive capability for the
counterfactual outcomes, thereby obtaining a more ac-
curate estimate of the treatment effect.

• The regularization terms in our method take into account
the information of the conditional distributions of coun-
terfactual outcomes, which reduces the selection bias ef-
fectively and is more in line with the intuition of causal
inference.

The rest of this paper is organized as follows. In Section 2,
we discuss related works. Our proposed approach is repre-
sented in Section 3. In Section 4, we conduct Monte Carlo
simulation and experiments. Finally, we give a conclusion in
Section 5.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4895



2 Related Work

[Künzel et al., 2019] proposed the concept of metalearners for
estimating CATE, which decomposes the problem of estimat-
ing CATE into multiple sub-problems, each of which can be
addressed using any supervised or regression machine learn-
ing method. [Künzel et al., 2019] was the first to combine
metalearners with CATE, categorizing the previous methods
into two types. The first type is S-Learner, where “S” de-
notes single. We can model the treatment variable together
with other covariates using a single model, where only one
estimator for µ(x, t) = E[Y |X = x, T = t] is obtained.
Then, the estimate for CATE can be written as τ̂S(x) =
µ̂(x, 1)−µ̂(x, 0). Under this framework, [Hill, 2011], [Green
and Kern, 2012] conducted research with Bayesian Additive
Regression Trees (BARTs) as the baseline model. [Athey and
Imbens, 2016] explored this further using tree-based models
as the benchmark. The biggest shortcoming of the S-learner
is that it does not take into account the interaction between
covariates and the treatment variable, that is, it does not al-
low for the hypothesis functions of the treatment and control
groups to have different forms.

The second type is T-learner, where “T” denotes two. We
can model the treatment group and control group separately,
obtaining estimates for two regression functions µ1(x) =
E[Y (1)|X = x] and µ0(x) = E[Y (0)|X = x]. By fur-
ther subtracting them, we can obtain the estimate τ̂T (x) =
µ̂1(x) − µ̂0(x) for CATE. Under this framework, [Hansen
and Bowers, 2009] and [Wager and Athey, 2018] proposed
causal forest, where they used random forest as the bench-
mark. In recent years, there have also been many methods
based on representation learning and neural networks, which
are also a type of T-learner. [Shalit et al., 2017] proposed
the CFRNet, a neural network architecture that first learns
a representation, and then by imposing a penalty on the in-
tegral probability metric measure of the representation be-
tween the treated and control groups, the model mitigates se-
lection bias through a balanced representation learning. This
work derived a bound for the expected error of the estimator
for CATE given a fixed representation, where the hypothe-
sis functions are defined over this representation. The key
assumption is that this representation is a one-to-one func-
tion, so that the unconfoundedness assumption holds given
this representation. This is a strong condition, as not all net-
work architectures are invertible during the process of rep-
resentation learning. [Shi et al., 2019] proposed Dragonnet
based on the sufficiency of the propensity score for treatment
effect estimation. The neural network architecture learns a
shared representation, which is then used to model the two
hypothesis functions and the propensity scores, ensuring that
this representation simultaneously contains information that
can predict both the outcomes and the treatment variable.
[Hassanpour and Greiner, 2019b] proposed a context-aware
importance sampling re-weighing scheme, built on top of a
representation learning module. In [Shalit et al., 2017], the
weight of the loss is simply based on the sample size, which is
wi = 1/Pr(ti = 1). [Hassanpour and Greiner, 2019a] further
eliminates selection bias by estimating the nominal distribu-
tion of the representation, followed by importance sampling

re-weighting. They use 1 + Pr(ϕi | 1− ti)/Pr(ϕi | ti) as the
loss weight. Another category of neural network approaches
estimates the CATE by learning a disentangled representa-
tion, or disentangled latent factors. [Zhang et al., 2021] pro-
posed a data-driven algorithm TEDVAE to infer latent fac-
tors and disentangled them into three disjoint sets, which
are to predict treatment, outcome, or both. [Hassanpour and
Greiner, 2019b] also divided the information contained in all
the covariates into three non-overlapping parts, characteriz-
ing them by learning three disentangled representations, and
then modeled the treatment and outcome based on these rep-
resentations. [Curth and van der Schaar, 2021], [Chauhan et
al., 2023] further divided the features into five parts, corre-
sponding to treatment t, treated group outcomes µ1, control
group outcomes µ0, both µ1 and µ0, and all of treatment and
outcomes.

[Künzel et al., 2019] proposed the third metaalgorithm: X-
leaner, which first used the T-learner approach to estimate
two hypothesis functions. Then, by cross-utilizing the data,
they substituted data from the other group into the hypoth-
esis function to predict the counterfactual outcomes. By
comparing these predictions with the factual outcomes, we
can obtained the estimates of the individual treatment ef-
fects for all samples, which is D̃1

i = Y 1
i − µ̂0(X

1
i ), D̃

0
i =

µ̂1(X
0
i ) − Y 0

i , where D̃1 is the predicted ITE for treated
group, and D̃0

i is the predicted ITE for control group. Subse-
quently, by regressing these individual effects against the in-
dividuals’ characteristics, we can obtain the estimates of the
treatment effects under treated group (ITT) τ̂1(x) and con-
trol group (ITC) τ̂0(x). Finally, they take a weighted average
of these two estimates, resulting in the estimate for CATE
τ̂X(x) = g(x) · τ̂1(x) + (1 − g(x)) · τ̂0(x). This method
also cross-utilizes the data from different groups, but does
not participate in the training process of their respective hy-
pothesis functions, that is, the estimation of µ1(x) and µ0(x).
In fact, when the unconfoundedness assumption is satisfied,
τ̂0(x) and τ̂1(x) should be equal, which we will mention in
the next section. [Künzel et al., 2019] averages τ̂0(x) and
τ̂1(x) using weights, while our approach encourages equality
between them through a regularization term. This allows the
data from different groups to participate in the training pro-
cess of each other’s hypothesis functions, since the estimation
for τ̂0(x) and τ̂1(x) requires data from both treated and con-
trol groups. Our method fully utilizes the information from
all the data and ensures that the unconfoundedness assump-
tion is met given the learned representation.

[Curth and van der Schaar, 2021] summarizes lots of
nonparametric statistical methods and machine learning ap-
proaches, from theoretical research to experiment, and sup-
plements the field of CATE with meta-learners. The au-
thor collectively refers to the aforementioned S-learner and
T-learner as one-step methods. That is, they estimate the con-
ditional expectation only once and then use a plug-in method
to estimate the CATE. The author defines a two-step method,
which first involves estimating the nuisance parameters η =
(µ0(x), µ1(x), π(x)) to obtain η̂, then regressing the pseudo-
response variable Ỹ ˆeta, which depends on the nuisance pa-
rameters, on x. Here we consider the pseudo-response vari-
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able that satisfies EP[Ỹη | X = x] = τ(x). Based on this
idea, [Curth and van der Schaar, 2021] proposed the RA-
learner, which has similarities to X-learner [Künzel et al.,
2019]. At the same time, the author introduces the PW-
learner, based on the Inverse Probability Weighting method
(IPW). Lastly, the two-step method also includes the DR-
learner, proposed by [Kennedy, 2020], which is an extension
based on the idea of doubly robust and adaptive Inverse Prob-
ability of Treatment Weighting [Robins and Rotnitzky, 1995].
Our approach falls under the one-step approach, where we
only need to estimate µ1 and µ0 and then obtain the final es-
timate by taking the difference. Unlike previous methods, we
apply specific regularization terms to ensure that the training
process makes full use of the data and that the learned repre-
sentation satisfies the unconfoundedness assumption.

3 Method
We conduct our research based on the Rubin-Neyman poten-
tial outcomes framework [Rubin, 2005]. Denote µ1(x) =
E(Y (1)|X = x) and µ0(x) = E(Y (0)|X = x), where Y (1)
and Y (0) are two potential outcomes corresponding to the in-
dividual under treatment or control, while we can only ob-
serve one of them. Let t ∈ {0, 1} be a binary treatment
variable, then the response we can observe for the i-th unit
is Yi(ti). Our goal is to estimate CATE, which denoted as
τ(x) := E(Y (1) − Y (0)|x) = µ1(x) − µ0(x). τ(x) is the
individualized treatment effect, which depends on the charac-
teristics x. Since we can only observe one of the two poten-
tial outcomes for each unit, to ensure identifiability of this
problem, we need to impose strong ignorability condition,
which is Assumption 1, along with the overlapping condition
0 < Pr(t = 1 | x) < 1 for all x. Strong ignorability con-
dition is commonly employed in works that are based on ob-
servational data. As the dimensionality of collectable features
increases, this condition tends to be more easily satisfied. Be-
yond this, we do not make any additional assumptions.

3.1 Crossnet
Similar to most neural network approaches, we first learn
a representation Φ(x) from the original features, and then,
based on this representation, we train two separate hypothesis
functions h1(Φ(x)) and h0(Φ(x)) for the treated and control
groups, respectively to estimate µ1(x) and µ0(x). Note that
the unconfoundedness assumption is imposed on the original
covariates x not the representation Φ(x), which means that
we cannot directly learn two hypothesis functions given any
arbitrary representation. If Φ(·) is a invertible map [Shalit et
al., 2017], we have that

τ(x) = E(Y (1)− Y (0) | X = x)

= E(Y (1)− Y (0) | X = Φ−1(Φ(x)))

= E(Y (1)− Y (0) | Φ(X) = Φ(x)). (1)

Thus, learning two predictive functions for Y (1) and Y (0)
based on Φ(x) is reasonable and sufficient. However, when
training the model in practice, it is not guaranteed that the
learned representation is invertible, meaning a one-to-one
mapping, or enforcing the condition of an invertible repre-
sentation might significantly reduce the model’s performance

and effectiveness. Therefore, we cannot ensure that the pre-
dictive functions estimated based on the representation are
reasonable and effective. Another viable approach is to im-
pose the unconfoundedness assumption on the learned repre-
sentation itself, i.e., condition Y (1), Y (0) ⊥ T | Φ(X). This
ensures that the predictive functions trained based on the rep-
resentation are also reasonable and effective. However, since
the representation is a result of the network’s learning pro-
cess and possesses randomness, we cannot directly impose
the condition on this stochastic representation. In this paper,
we propose to learn a sufficient representation for x, which
satisfies the unconfoundedness assumption, and is sufficient
for explaining the outcomes. First we give the definition of
sufficient representation in the estimation of CATE.

Definition 1 (Sufficient representation). Let Φ : X → R be a
representation function, where R is the representation space.
If Φ(x) is a sufficient representation for x, Φ(x) should sat-
isfy that

i) Y (1), Y (0) ⊥ T | Φ(x),
ii) E[Y (1)|X = x] ⊥ Y | Φ(x) and E[Y (0)|X = x] ⊥

Y | Φ(x).
In the above definition, i) means that the representation
should satisfy the unconfoundedness assumption, so that the
regression of Y upon Φ(x) is reasonable for treatment effects.
ii) means that the representation is sufficient for predicting the
potential outcomes. Most of the aforementioned works only
consider the second condition, that is the explanatory ability
for the outcomes. Since T is binary, we can rewrite i) as

Pr(Y (1)|T = 1,Φ(x)) = Pr(Y (1)|T = 0,Φ(x)),

Pr(Y (0)|T = 0,Φ(x)) = Pr(Y (0)|T = 1,Φ(x)), (2)

where Pr(·) is the probability density function. This condition
means that the distribution of two potential outcomes condi-
tional on Φ(x) is the same across different groups. Therefore,
we can learn the representation Φ(·) by encouraging the es-
timated conditional distribution for Y (1)|Φ(x), Y (0)|Φ(x)
under treated group and control group to be consistent. Let
x1, y1 and x0, y0 be the covariates and responses correspond-
ing to treated group sample and control group sample respec-
tively. As shown in Figure 1 (b), after obtaining the esti-
mated hypothesis functions h1(·) and h0(·) for treated and
control group, we can input another group of data into the hy-
pothesis function to obtain the estimated counterfactual out-
comes for all individuals in that group, that is h1(Φ(x

0)) and
h0(Φ(x

1)). Then we can calculate the empirical conditional
distribution yba|Φ(xa), where a denotes the group that this in-
dividual actually belongs to, and b is the group, for which we
calculate the potential outcome. Specifically,

y00 = y0, y01 = h0(Φ(x
1)),

y11 = y1, y10 = h1(Φ(x
0)). (3)

Then, we can calculate the discrepancy between the condi-
tional distributions yb0|Φ(x0) and yb1|Φ(x1), for b = 0, 1, de-
noted as Disc(p(yb0|Φ(x0)), p(yb1|Φ(x1))). Denote l(·) as a
loss function, where we use mean squared error. Then, the
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optimization problem we propose is

min
Φ,h1,h0

l(h1(Φ(x
1)), y1) + l(h0(Φ(x

0)), y0)

+ λ · Disc(p(y00 |Φ(x0)), p(y01 |Φ(x1)))

+ λ · Disc(p(y10 |Φ(x0)), p(y11 |Φ(x1))), (4)

where we can choose to use different discrepancy measure
such as the integral probability metric (IPM), KL divergence,
conditional MMD based on the nature of the data we en-
counter. In this paper, we use the statistic proposed by [Yu
et al., 2021], which measures the divergence from p1(y|x)
to p2(y|x), without estimating the distribution. Denote that
Sn
+ = {A ∈ Rn×n | A = AT , A ≽ 0}, then the Bregman

matrix divergence [Kulis et al., 2009] from the matrix A to
the matrix B is defined as

Dφ(A∥B) = φ(A)− φ(B)− tr
(
(∇φ(B))T (A−B)

)
,
(5)

where φ(·) is a strictly convex, differentiable function, that
maps matrices to the extended real numbers. The divergence
from p1(y | x) to p2(y | x) defined in [Yu et al., 2021] is

Dφ(p1(y|x)∥p0(y|x)) = Dφ(C
1
xy∥C2

xy)−Dφ(C
1
x∥C2

x),

(6)

where Cxy ∈ Sp+1
+ is the centered correntropy matrix of the

random vector concatenated by x and y. Cx ∈ Sp
+ is the

centered correntropy matrix of the random vector x.
Our objective function is composed of four parts, where the

first two parts are the factual loss, which measures the fitness
of the hypothesis functions to the data of their own group.
Minimizing this loss enables the representation and the hy-
pothesis functions we learn to have good predictive capabil-
ity for the factual outcomes. This loss only uses the factual
outcomes, so the data from the treatment group is used to op-
timize h1(·) through this loss, and the data from the control
group is used to optimize h0(·) through this loss. Most causal
inference methods [Shalit et al., 2017; Shi et al., 2019; Has-
sanpour and Greiner, 2019a; Hassanpour and Greiner, 2019b;
Chauhan et al., 2023] that only use this loss will result in
the training of h1(·) and h0(·) in practice only utilizing data
from their respective groups, without considering the appli-
cability of h1(·) to the control group’s data and the appli-
cability of h0(·) to the treatment group’s data. The regular-
ization terms of our objective function take advantage of the
predicted counterfactual outcomes, which allows data from
different groups to participate in the optimization of h1(·)
and h0(·) through the regularization term. Minimizing this
loss enables the representation we learn to satisfy the uncon-
foundedness assumption and the hypothesis functions to have
good predictive capability for the counterfactual outcomes.
Therefore, the representation learned through our objective
function is sufficient according to Definition 1 intuitively.

On the other hand, many representation learning methods
[Shalit et al., 2017; Hassanpour and Greiner, 2019a], impose
penalties on the discrepancy between the distributions of Φ(·)
in the treated group and control group, eliminating a certain
degree of selection bias by learning a balanced representa-
tion. However, the information in x related to y cannot be

Algorithm 1 CrossNet

1: Input: data (xi, yi, ti), for i = 1, ..., n, the index set D1,
D0, for treated sample and control sample respectively,
tuning parameter λ > 0, loss function l(·), initial rep-
resentation network ΦI(·), initial hypothesis functions
h1,I(·), h0,I(·).

2: while not converged do
3: for each batch do
4: Calculate the factual loss:

L1 =
∑

i=1 l(h1(Φ(xi), yi), for i ∈ D1,
L0 =

∑
j=1 l(h0(Φ(xi), yi), for j ∈ D0.

5: Calculate the counterfactual outcomes:
y10 = h1(Φ(xi)), for i ∈ D0,
y01 = h0(Φ(xi)), for i ∈ D1.

6: Calculate the discrepancy between conditional dis-
tributions under treatment and control:
D0 = Disc(p(y00 |Φ(x0)), p(y01 |Φ(x1))),
D1 = Disc(p(y10 |Φ(x0)), p(y11 |Φ(x1))).

7: Update the weights of network through the gradient
of the loss L1 + L0 + λ · (D1 + D0).

8: end for
9: Check the convergence criterion.

10: end while

represented solely by a balanced representation, or in other
words, this information is not entirely independent of the
treatment variable t. Therefore, some studies [Hassanpour
and Greiner, 2019b; Chauhan et al., 2023; Curth and van der
Schaar, 2021] have suggested learning disentangled represen-
tations, extracting multiple non-overlapping representations
from x to predict y and t separately, along with the penalty on
the discrepancy of representation between the treated group
and control group. This approach requires learning several
non-overlapping representations, which increases the com-
plexity of algorithm optimization. In our framework, we do
not impose any direct restrictions on the representation Φ(·);
instead, we start directly from the prediction perspective of
two potential outcomes and use different losses to ensure that
the representation satisfies sufficiency, thereby enabling the
hypothesis functions to have good predictive ability for both
factual and counterfactual results, solving a certain problem
of selection bias. Now we give the whole procedure for esti-
mating CATE, which is summarized in Algorithm 1.

3.2 Sufficiency

In the previous subsection, we proposed a new objective func-
tion and corresponding algorithm, and intuitively explained
the role of each loss in the objective function and its achieved
effect. Here, we theoretically demonstrate the rationality of
the new method, that is, the representation learned by our
method is sufficient.

Theorem 1. Let Φ : X → R be a representation function
and there exists a sufficient representation in R. Let h1(·)
and h0(·) be two hypothesis functions that maps R to Y . If
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(Φ0(·), h0
1(·), h0

0(·)) is a solution to

min
Φ,h1,h0

E[l(h1(Φ(x)), y(1))|t = 1]

+E[l(h0(Φ(x)), y(0))|t = 0]

+λ ·D(p(Y (1)|T = 1,Φ(x))∥p(Y (1)|T = 0,Φ(x)))

+λ ·D(p(Y (0)|T = 1,Φ(x))∥p(Y (0)|T = 0,Φ(x))).
(7)

Then Φ0(x) is a sufficient representation of x for estimating
CATE.

This theorem indicates that if there exists a sufficient repre-
sentation of x in the process of estimation for CATE, then the
solution obtained by solving the problem (7) is a sufficient
representation. Based on this sufficient representation, sub-
sequent estimation and inference are reliable. The objective
function we actually optimize is the empirical form of (7).

4 Experiments
We apply our approach on three datasets: i) synthetic
datasets, where the covariates and outcomes are all simulated
so that we know the true CATE; ii) semi-synthetic datasets,
Infant Health and Development Program (IHDP), where the
covariates are real and the outcomes are simulated, hence we
also know the true CATE; iii) real datasets, Jobs, where the
covariates and the outcomes are all real, so we do not know
the true CATE.

4.1 Baseline
We compare our approach with six another approaches based
on neural networks:

• TNet: The simplest network to train two hypothesis
functions without using the common representation.

• TARNet, CFRNet: The two hypothesis functions are
trained based on the common (balanced) representation,
proposed by [Shalit et al., 2017].

• Dragonnet: The two hypothesis functions and the
propensity score are trained based on the common rep-
resentation, proposed by [Shi et al., 2019].

• DR-CFR: Learning three representations for predicting
outcomes and treatment variable, proposed by [Hassan-
pour and Greiner, 2019b].

• SNet: Learning five representations for predicting out-
comes and treatment variable, proposed by [Curth and
van der Schaar, 2021].

We use the same network architecture in our approach with
TARNet and CFRNet, since these three methods all train one
representation along with two hypothesis functions. We try
to ensure that the model complexity is consistent across dif-
ferent methods to facilitate a fair comparison.

4.2 Synthetic Dataset
We adopt the same simulation settings as those used in [Has-
sanpour and Greiner, 2019b] and [Curth and van der Schaar,
2021]. We conduct the simulation on two settings. In both
settings, we set the dimension of covariates x to be d = 25,

and X follows a multivariate normal distributions indepen-
dently among each other, constructed by three disjoint parts
Xc, Xo, Xt with dimension dc, do and dt, where Xc are
confounders affecting both outcomes and treatment variable,
Xo are covariates only affecting the outcomes, Xt are covari-
ates only affecting the treatment variable. Denote π(x) as the
propensity score. The two simulation settings are:

i) µ0(x) = µ1(x) = 1⊤X2
CO, where Xco = [Xc, Xo],

π(x) = expit
(
ξ
(

1
dc
1⊤X2

c − ω
))

, where ξ determines
the extent of the selection bias, which is set to be 3.
We set ω = median

(
1
dc
1⊤X2

c

)
to center propensity

scores. We set dc = do = 5.

ii) We use the same setting as i), except for µ1(x) =
µ0(x)+1⊤X2

τ with another 5 additional covariates Xτ .

For each simulation setting, we conducted experiments with
different sample sizes, n = 500, 1000, 2000, 5000. Each ex-
periment was repeated 10 times to calculate the Precision in
the Estimation of Heterogeneous Effects (PEHE) on the test
set with size 1000, and the average was taken, where the

PEHE is defined as PEHE =
√

1
N

∑N
i=1 (êi − ei)

2, where
êi = ŷ1i − ŷ0i and ei = y1i − y0i . The results are shown in
Figure 2, from which, we can see that our approach outper-

Figure 2: PEHE of all approaches for two simulation settings at dif-
ferent sample size.

forms other competitive methods in both small sample and
large sample scenarios across both two simulation settings.

4.3 Semi-synthetic Dataset: IHDP
We conduct experiments on the well known dataset IHDP cre-
ated by [Hill, 2011], where the covariates are real and the
outcomes are simulated. The dataset aims to evaluate the
effect of home visit from specialist doctors on the cognitive
test scores of premature infants. There are 747 units (139 in
treated group and 608 in control group) and 25 real covari-
ates, with 6 being continuous and 19 being binary, measur-
ing the features of children and their mothers. We use the
same version as in [Curth and van der Schaar, 2021], that
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METHODS WITHIN-SAMPLE OUT-OF-SAMPLE

TNET 1.303± 0.097 1.311± 0.110
TARNET 1.294± 0.104 1.299± 0.113
CFRNET 1.156± 0.111 1.162± 0.118
DRAGONNET 1.188± 0.104 1.194± 0.112
DR-CFR 1.334± 0.072 1.342± 0.089
SNET 1.354± 0.061 1.366± 0.081
CROSSNET 1.077± 0.064 1.084± 0.068

Table 1: PEHE of all approaches on the IHDP dataset, averaged
across 100 replications along with the standard errors.

METHODS WITHIN-SAMPLE OUT-OF-SAMPLE

TNET 0.131± 0.002 0.173± 0.009
TARNET 0.119± 0.009 0.139± 0.001
CFRNET 0.111± 0.004 0.140± 0.008
DRAGONNET 0.120± 0.009 0.139± 0.006
DR-CFR 0.117± 0.008 0.138± 0.008
SNET 0.128± 0.007 0.149± 0.005
CROSSNET 0.109± 0.003 0.123± 0.004

Table 2: Policy risk of all approaches on the Jobs dataset, averaged
across 10 replications along with the standard errors.

is the setting ”B” described in [Hill, 2011], where the out-
comes are simulated by Y (0) ∼ N(exp ((X +W )βB) , 1)
and Y (1) ∼ N(XβB − ωs

B , 1). βB is the coefficient vec-
tor with each entry being sampled from (0, 0.1, 0.2, 0.3, 0.4)
with probabilities (0.6, 0.1, 0.1, 0.1, 0.1). We use the same
100 replications in [Shalit et al., 2017; Curth and van der
Schaar, 2021]. Since we know the true treatment effect for
all individuals, we use PEHE as the metric to evaluating the
performance within-sample and out-of-sample. The results
are shown in Table 1, from which we can see that our pro-
posed approach has the best performance.

4.4 Real Dataset: Jobs

We also apply our approach to the Job dataset first analyzed
by [LaLonde, 1986]. The study aims to evaluating the effect
of job training on income and employment status. Follow-
ing [Smith and Todd, 2005; Shalit et al., 2017], we also con-
sider the binary classification task for unemployment. This
study contains experimental sample and the PSID compari-
son group. We split the dataset into train/validation/test sets
and repeat 10 times to take average of the results. Since we
do not know the true treatment effect, we can not calculate
PEHE here. We use another metric defined in [Shalit et al.,
2017], called policy risk. For a model f , the policy risk is
R(f) = 1− (E[Y1|πf (x) = 1] · p(πf = 1) + E[Y0|πf (x) =
0] · p(πf = 0)), where πf (x) = 1 if f(x, 1) − f(x, 0) > λ,
and πf (x) = 0 otherwise. The policy risk measures the av-
erage loss in outcome when using the treatment policy esti-
mated by the model. The results are shown in Table 2, and
our approach has the smallest policy risk.

5 Conclusion
In this paper we propose a novel neural network approach
for estimating CATE. We learn a sufficient representation
that satisfies the unconfoundedness assumption by imposing
a penalty on the discrepancy between the conditional distri-
butions of two potential outcomes based on the representation
under treatment and control, making the final treatment effect
estimation more reasonable and effective. Another advantage
of this architecture is that it allows the data from different
groups to participate in the training of the hypothesis func-
tion of the other group, making h1 and h0 more applicable
to the data from the other group, thereby mitigating the is-
sue of selection bias. That is, the training of the hypothesis
function for the treatment group no longer relies solely on
minimizing the factual loss of the treated group; it also takes
into account the ability to obtain better counterfactual pre-
dictions for the control group’s data. This principle applies to
the control group as well, thus we fully utilize the information
from the samples to learn more robust hypothesis functions.
We apply our approach to synthetic dataset, semi-synthetic
dataset, real dataset and achieve good performance on all of
them.
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