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Abstract
Active learning is considered a viable solution to
alleviate the contradiction between the high depen-
dency of deep learning-based segmentation meth-
ods on annotated data and the expensive pixel-
level annotation cost of medical images. How-
ever, most existing methods suffer from unreli-
able uncertainty assessment and the struggle to bal-
ance diversity and informativeness, leading to poor
performance in segmentation tasks. In response,
we propose an efficient Predictive Accuracy-based
Active Learning (PAAL) method for medical im-
age segmentation, first introducing predictive ac-
curacy to define uncertainty. Specifically, PAAL
mainly consists of an Accuracy Predictor (AP)
and a Weighted Polling Strategy (WPS). The for-
mer is an attached learnable module that can ac-
curately predict the segmentation accuracy of un-
labeled samples relative to the target model with
the predicted posterior probability. The latter pro-
vides an efficient hybrid querying scheme by com-
bining predicted accuracy and feature representa-
tion, aiming to ensure the uncertainty and diver-
sity of the acquired samples. Extensive experi-
ment results on multiple datasets demonstrate the
superiority of PAAL. PAAL achieves comparable
accuracy to fully annotated data while reducing
annotation costs by approximately 50% to 80%,
showcasing significant potential in clinical applica-
tions. The code is available at https://github.com/
shijun18/PAAL-MedSeg.

1 Introduction
Recently, supervised deep learning methods have been widely
applied to medical image segmentation tasks, such as de-
lineating organs and lesions [Wang et al., 2022]. Despite
the remarkable potential exhibited by current methods, the
inherent data-hungry nature leads to their superior perfor-
mance being heavily reliant on large-scale annotated data,
posing a major challenge in real-world clinical scenarios, as

Figure 1: Data visualization of different methods. We use the model
from the last active learning cycle to obtain the uncertainty scores,
predicted loss, and predicted accuracy. 750 images chosen from the
ACDC dataset are shown. The red line is the fitted line.

the pixel-wise annotation of medical images is experience-
dependent and labor-intensive [Jiao et al., 2023]. To address
this problem, researchers have devoted considerable efforts to
exploring various data-efficient methods [Feng et al., 2021;
Ren et al., 2021; Jiao et al., 2023; Zhang et al., 2023] to
achieve higher segmentation performance. As an iterative
learning method, Active Learning (AL) can actively select the
most valuable or informative samples for annotation during
the training process, the purpose of which is to use as little
annotated data as possible to achieve optimal model perfor-
mance [Zhan et al., 2022]. As a result, AL is particularly
applicable to medical image segmentation, characterized by
high annotation costs and difficulty.

Existing deep AL methods (pool-based) can be catego-
rized into three branches [Zhan et al., 2022]: uncertainty-
based, diversity-based, and combined strategies. The core
idea of uncertainty-based methods is to query and anno-
tate those samples with high uncertainty. The typical meth-
ods [Li and Guo, 2013; Joshi et al., 2009; Brinker, 2003;
Wang and Shang, 2014; Kampffmeyer et al., 2016] utilize the
predicted posterior probability of the target model to measure
uncertainty. However, the overconfidence of deep neural net-
works often leads to unreliable uncertainty assessments [Zhan
et al., 2022]. As shown in Figure 1(a), the uncertainty scores
arising from the Maximum Entropy approach [Li and Guo,
2013] fail to reflect the segmentation accuracy of the current
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model on unlabeled samples. Some studies [Li and Yin, 2020;
Yang et al., 2017; Kim et al., 2023] adopt the bootstrapping
strategy to enhance the uncertainty assessment, by leveraging
the disagreement of the online committee. AB-UNet [Saidu
and Csató, 2021] exploits the Dropout mechanism to emulate
a Bayesian network and compute uncertainty according to the
Monte Carlo average of multiple forward passes. Despite the
performance gain, these methods suffer from significantly in-
creased computational costs, unsuitable for deeper networks
and larger datasets. Besides, LPL [Yoo and Kweon, 2019]
first proposes a task-agnostic loss prediction strategy to di-
rectly predict the loss as the uncertainty of unlabeled samples
relative to the target model. However, LPL introduces a joint
optimization problem and completely ignores the importance
of the predicted posterior probability for uncertainty assess-
ment, resulting in limited performance. Figure 1(b) illustrates
that the segmentation loss predicted by the LPL method is
highly inconsistent with the actual loss.

Diversity-based approaches aim to query samples that pro-
vide varied information for annotation, and most of them use
two clustering methods: KMeans [Bodó et al., 2011] and
CoreSet [Sener and Savarese, 2018]. KMeans-based meth-
ods perform unsupervised clustering on unlabeled samples
according to the intermediate features of the target model
and then select those samples closest to each centroid while
CoreSet-based approaches construct a representative subset
as a proxy for the entire dataset. These methods can boost
the sample diversity but tend to overlook the informative-
ness of the acquired samples. Consequently, they are often
deemed complementary to uncertainty-based methods, giving
rise to a series of combined querying strategies. For instance,
Exploration-Exploitation [Yin et al., 2017] builds upon the
Maximum Entropy strategy and integrates a determinantal
point process to select the most uncertain and diverse sam-
ples. BADGE [Ash et al., 2019] proposes a two-stage query-
ing approach. The first stage forms a coarse candidate set
based on gradient embedding, while the second stage refines
the candidate set through KMeans++ clustering. Other com-
bined strategies [Zhou et al., 2017; Shui et al., 2020] are also
designed to uphold both the informativeness and diversity of
the selected samples, yet their high complexity entails another
engineering cost. Therefore, the primary challenge faced by
AL methods in medical image segmentation is: how to more
accurately and cost-effectively assess uncertainty while main-
taining a balance in the diversity of the selected samples.

To address these challenges, our initial focus is optimiz-
ing uncertainty assessment to overcome the shortcomings of
existing methods in terms of accuracy and computational ef-
ficiency. Inspired by LPL [Yoo and Kweon, 2019], we design
a predictive accuracy-driven uncertainty assessment method.
The motivation behind it is: if it is possible to predict the loss
of a sample point, then why not predict its accuracy relative to
the target model? Our preliminary experiments have demon-
strated the feasibility of the accuracy prediction, as shown in
Figure 1(c). The predicted accuracy of our proposed method
exhibits good consistency with the actual accuracy. To this
end, we propose a Predictive Accuracy-based Active Learn-
ing (PAAL) method for medical image segmentation, first in-
troducing the concept of accuracy prediction. The core idea

of PAAL is to use a trained lightweight network to predict the
segmentation accuracy of the target model on unlabeled sam-
ples, and then guide a diversity-based querying strategy to
ensure both uncertainty and diversity of the selected samples.

Specifically, our PAAL mainly consists of an Accuracy
Predictor (AP) and a Weighted Polling Strategy (WPS). The
AP is a simple neural network that takes the image and the
corresponding model predictions as input, aiming to min-
imize the difference between the predicted and real accu-
racy. Notably, we design an end-to-end framework to support
the simultaneous training of the segmentation model and the
attached AP while decoupling their optimization processes.
Compared to LPL, our proposed method avoids the joint op-
timization problem and can leverage the posterior probability
to guide the accuracy prediction. Based on this, we design
WPS to balance the uncertainty and diversity of the queried
samples. After the unsupervised clustering, WPS converts
the predicted accuracy of each sample into query weight and
cyclically queries the sample with the highest weight in each
cluster until iteration ends. Moreover, we propose an Incre-
mental Querying (IQ) mechanism to ensure training stabil-
ity and facilitate achieving higher performance under a fixed
budget. In summary, our contributions mainly include:

• We first propose the concept of Accuracy Predictor (AP)
and design a novel active learning method (PAAL) for
medical image segmentation. By using the posterior
probability as a guide, the attached AP achieves a high
consistency between the predicted and actual accuracy,
enabling a more accurate measurement of uncertainty.

• We propose a hybrid Weighted Polling Strategy (WPS)
to balance the uncertainty and diversity of the acquired
samples. Compared to existing methods, our method re-
alizes higher accuracy and more diversified sample dis-
tribution, effectively mitigating the issue of imbalanced
inter-class annotation.

• Extensive experimental results prove that PAAL outper-
forms existing methods, achieving accuracy comparable
to fully annotated data while reducing annotation costs
by approximately 50% to 80%.

2 Related Work
2.1 Active Learning
Active Learning (AL) aims to minimize annotation costs and
maximize model performance by selecting the most infor-
mative samples for annotation. In this paper, we discuss
pool-based active learning methods, which access multiple
samples at once. Given an unlabeled sample pool, three
main approaches are utilized: uncertainty-based, diversity-
based, and combined strategies [Zhan et al., 2022]. Among
them, uncertainty-based methods [Li and Guo, 2013; Wang
and Shang, 2014; Yuval, 2011; Kampffmeyer et al., 2016]
typically use the posterior probability predicted by the tar-
get model to define uncertainty. For instance, the Maximum
Entropy approach [Li and Guo, 2013] selects those samples
with the highest prediction entropy. Due to the overconfi-
dence of deep neural networks, the uncertainty estimation of
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such methods is often unreliable. Some studies optimize un-
certainty assessment by adopting the bootstrapping strategy
[Beluch et al., 2018] or simulating the Bayesian system [Gal
et al., 2017; Kendall and Gal, 2017] while introducing higher
engineering costs. Diversity-based methods use the interme-
diate features of the network for unsupervised clustering of
samples. These methods can identify the most representa-
tive sample points but ignore the informativeness of the se-
lected samples and are thus often considered complementary
to uncertainty-based methods. The combined strategies [Yin
et al., 2017; Ash et al., 2019] desire to balance the diversity
and uncertainty of the acquired samples and have become the
major research direction of AL.

2.2 AL for Medical Image Segmentation
Early AL methods are primarily used for image classifica-
tion. Recently, many researchers have explored the applica-
tions of AL methods in medical image segmentation. Due
to the differences in network output, most uncertainty-based
methods require specific adjustments for segmentation tasks.
In contrast, diversity-based methods apply to any task and
network since they depend on intermediate features rather
than the task-specific output. BioSegment [Rombaut et al.,
2022] develops a framework that extends typical AL meth-
ods to medical image segmentation tasks. In particular, Li et
al. [Li and Yin, 2020] combine the uncertainty assessment
based on bootstrapping strategy with similarity representa-
tion, proposing a multi-stage combined query strategy. AB-
UNet [Saidu and Csató, 2021] adds multiple Dropout layers
into the segmentation network to simulate a Bayesian net-
work. It calculates sample uncertainty by obtaining Monte
Carlo averages of multiple forward passes. Besides, some
studies [Cai et al., 2021; Saidu and Csató, 2019] introduce the
concept of super-pixel, which decomposes annotation query
from image-level to region-level, attempting to control anno-
tation costs more finely. Other works [Blanch et al., 2017;
Zhao et al., 2021] unite the advantages of AL and semi-
supervised learning, using high-confidence pseudo-labels to
enhance model performance.

3 Methodology
A more accurate uncertainty assessment leads to better per-
formance of AL [Zhan et al., 2022]. As a result, most ex-
isting methods for medical image segmentation explore solu-
tions to enhance uncertainty assessment, such as using a boot-
strapping strategy [Li and Yin, 2020] or Bayesian network
[Saidu and Csató, 2021]. However, these methods exhibit
limited performance while significantly increasing computa-
tional complexity. The underlying reason is that uncertainty
estimation based on the posterior probability can be nega-
tively affected by the overconfidence of the network, as seg-
mentation predictions often contain considerable noise, es-
pecially during the early stages of training. LPL [Yoo and
Kweon, 2019] suggests utilizing neural networks to model
the mapping between the hidden features of images and actual
loss. While LPL has shown performance gains in classifica-
tion tasks, it fails to accurately predict the dense prediction
loss based solely on image features and introduces a con-
vergence issue of multi-objective optimization. Inspired by

this, we propose a Predictive Accuracy-based Active Learn-
ing (PAAL) method as an alternative learnable uncertainty
assessment solution, desiring to overcome the limitations of
LPL via simple yet effective designs, as shown in Figure 2.

3.1 Problem Definition
Given an arbitrary medical image segmentation task, let D,
Du, Dl, and B to represent the entire dataset, the unlabeled
data pool, the labeled data set, and the specified annotation
budget (simply referring to the maximum number of labeled
samples), respectively. Following the standard setup of pool-
based active learning methods, we have an initial labeled set
Dl = {(xi,yi)}Mi=1 and a large-scale pool of unlabeled sam-
ples Du = {xi}Ni=1, where M ≪ N , and xi and yi represent
the i-th image and its corresponding true segmentation mask.
In the t-th iteration of the proposed method, firstly, based on
the current segmentation modelMt, accuracy predictor Pt,
and query strategy αwps = (Du,Mt,Pt), a subset Dt

q of
batch size b is selected from Du, where b = ⌊B/T ⌋ and
T is the pre-set maximum number of iterations that varies
with the annotation budget. Then, we directly query their
true labels from the oracle to construct the labeled subset
Dt,∗

q = {(xi,yi)}bi=1, simulating human annotation. Finally,
we update Du = Du \ Dt

q and Dl = Dl ∪ Dt,∗
q , and retrain

M and P using Dl. The iteration process terminates when
the budget B is exhausted, and the network converges to a
stable state. In this paper, our goal is to maximize the seg-
mentation accuracy of the model using as little labeled data
as possible. Since the quality ofDl is positively related to the
performance of M, the key to this study lies in optimizing
the query function αwps.

3.2 Overview Architecture
Figure 2 illustrates the overall structure and workflow of
PAAL. In addition to the basic segmentation network M,
PAAL includes two main modules: an Accuracy Predictor P
(AP) and a Weighted Polling Strategy αwps (WPS). The for-
mer predicts the segmentation accuracy of the target model
for unlabeled samples, while the latter selects a subset Dq

with the most informative and diverse. Without loss of gen-
erality, we utilize the U-Net [Ronneberger et al., 2015] with
an encoder of ResNet-50 [He et al., 2016] as the base model
in the experiments. Unlike LPL, we completely decouple the
optimization processes of the AP and the segmentation net-
work, embedding them into an end-to-end unified training
framework in a cascaded manner. Besides, our AP utilizes
the posterior probability of the segmentation network as prior
information, aiming to minimize the discrepancy between the
predicted and actual accuracy. More importantly, we design
the WPS that utilizes both the predicted accuracy and feature
representations of samples to balance the uncertainty and di-
versity of the acquired samples. The following sections pro-
vide detailed explanations of these two core modules.

3.3 Accuracy Predictor
The Accuracy Predictor (AP) of PAAL is fundamentally a re-
gression model in the form of a deep neural network. The
primary consideration involves the selection of a suitable ac-
curacy metric as the regression target. Multiple metrics are
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Figure 2: Overview of our proposed PAAL, where Dim = 2048, t denotes the t-th iteration, Ldice+ce represents the combined loss.

available for quantifying segmentation accuracy, such as the
Dice Similarity Coefficient (DSC), Hausdorff Distance, and
pixel-wise classification accuracy. Considering the stability
of convergence, we empirically select a metric with a value
range within [0, 1] to represent “Predictive Accuracy”. We
use DSC as the regression target in the experiments, although
it can be replaced with any normalized metric. To reduce
computation, AP is a simple variant of ResNet-18, which
adds a Sigmoid layer behind the linear layer of the classifi-
cation head. During training, we concatenate the input im-
age O0 ∈ RB×C′×H×W and its corresponding segmentation
prediction probability O1 ∈ RB×C×H×W along the chan-
nel dimension and deliver it to AP, where B, C ′, H , W , and
C denote the batch size, number of image channels, height
and width of the image, and the number of segmentation cat-
egories, respectively. The optimization process utilizes Mean
Squared Error (MSE) loss Lmse to minimize the difference
between the predicted O2 ∈ RB×C and actual accuracy. No-
tably, during the early stages of joint training, we set a brief
silent period (5 epochs) for AP, meaning that only the seg-
mentation network undergoes training during this period to
alleviate the impact of early segmentation noise. Compared
to the loss prediction module of LPL, the optimization pro-
cess of the proposed AP is independent of the segmentation
network, thereby bypassing the multi-objective optimization
problem. Further, utilizing the posterior probability of the
segmentation network, rather than solely relying on image
features, as prior information helps to enhance convergence.
Experimental results showcase a high consistency between
predicted and actual accuracy, affirming the effectiveness of
the proposed accuracy prediction approach.

3.4 Weighted Polling Strategy
From the perspective of data efficiency, the pixel-level anno-
tation of medical images faces two challenges: sample re-
dundancy and imbalanced inter-class annotation. Taking 3D
images as an example, a CT or MR dataset typically con-

tains numerous highly similar slices due to the similarity of
anatomical structures, leading to redundant annotations and
reduced data efficiency. Moreover, there are significant vol-
ume differences between tissues or organs, and small-volume
targets only appear in a few slices, causing an imbalanced
annotation distribution that may hamper the segmentation ac-
curacy of the model for minority classes. Although AP can
identify the samples with high uncertainty, it fails to ensure
their diversity. To address these issues, we propose a hybrid
Weighted Polling Strategy (WPS) to balance the informative-
ness and diversity of the selected samples.

As illustrated in Algorithm 1, in the query process of ac-
tive learning, WPS first transforms the predicted accuracy of
unlabeled samples into query weightsW . The query weight
wi for the i-th sample is negatively correlated with the overall
predicted accuracy. The computation is detailed as follows:

W = {wi}Ni=1, wi =
1

C

C∑
j=1

−log(pji ), (1)

where pji denotes the predicted accuracy for the j-th seg-
mentation class of the i-th sample. We employ the loga-
rithmic mean to amplify attention to minority classes. Then,
based on the hidden features of the segmentation model, a
naive KMeans algorithm is utilized for unsupervised cluster-
ing of the unlabeled samples, yielding K clusters {Ωi}Ki=1.
To reduce computational complexity, we set a small K =
⌊log2(b ∗ 4) + 1⌋ and use an adaptive global average pooling
layer to compress the original representations. Finally, we
alternately query the sample with the highest weight in each
cluster until the current iteration concludes. Compared to ex-
isting diversity-based methods, WPS exhibits lower compu-
tational complexity, suitable for deeper networks and larger
datasets, and considers both the uncertainty and distribution
of the selected samples to alleviate the issue of imbalanced
inter-class annotation. Besides, we propose an Incremental
Querying (IQ) mechanism that differs from querying based
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Algorithm 1 The Proposed PAAL Process
Input: Unlabeled datasetDu, Initial labeled datasetDl , Seg-
mentation networkM, Accuracy predictor P , Oracle
Parameter: Maximum iterations T , Number of clusters K
Output: Final Dl,M and P

1: t← 1, IQ← 0
2: while not reach the budget and stable convergence do
3: M,P ← Dl

4: if t ≤ T and IQ ≥ 10 then
5: O1,F ← (M,Du)
6: O2 ← (P ,O1,Du)
7: W ← O2

8: {Ωi}Ki=1 ← (F ,K)
9: Dt

q ← ({Ωi}Ki=1,W)
10: Dt,∗

q ← Oracle(Dt
q)

11: Dl ← Dl ∪ Dt,∗
q

12: Du ← Du \ Dt
q

13: t← t+ 1, IQ← 0
14: end if
15: if notM ↑ then
16: IQ← IQ+ 1
17: else
18: IQ← 0
19: end if
20: end while
21: return Dl,M and P

on specified epochs. We design a simple trigger mechanism,
initiating the next query only when the current model fails
to achieve a performance gain over ten consecutive epochs.
This ensures training stability and facilitates achieving higher
performance within a fixed budget.

4 Experiments and Results
4.1 Datasets
As shown in Table 1, datasets used in our experiments include
(1) Brain Tumour [Antonelli et al., 2022]: a multi-modal
Magnetic Resonance (MR) dataset provided by the Medi-
cal Segmentation Decathlon (MSD), comprising 484 anno-
tated samples with segmentation targets of brain Edema, En-
hanced (ET) and non-Enhanced tumors (nET); (2) SegTHOR
[Lambert et al., 2020]: a chest Computed Tomography (CT)
dataset containing only 40 scans, annotated for 4 organs; (3)
ACDC [Bernard et al., 2018]: a commonly used cardiac MR
dataset composed of scan images from 100 patients, anno-
tated for the Left Ventricle (LV), Right Ventricle (RV), and
Myocardium (Myo). More importantly, to explore the ap-
plication potential of the proposed method, we constructed
(4) Liver OAR: a clinical organ-at-risk (OAR) segmentation
dataset for liver cancer, annotated for 8 abdominal organs,
collected by the Radiotherapy Department of the First Affil-
iated Hospital of University of Science and Technology of
China, where all CT images were annotated and verified by
two experienced physicists and have been used in radiother-
apy planning. We set different initial annotation ratios for
different datasets due to the varying slice scales.

Dataset Modality Samples (slices) Init.R.

Brain Tumour multi-MR 484 (66,512) 0.5%
SegTHOR CT 40 (7,420) 5.0%
ACDC MR 100 (1,902) 5.0%
Liver OAR * CT 49 (3,725) 5.0%

Table 1: Datasets used in the experiments. * denotes the private
dataset from clinical, and Init.R. refers to the initial annotation ratio.

Specifically, we list the annotation ratio for different cat-
egories on different datasets as follows. For Brain Tu-
mour, (Edma, nET, ET) = (50%, 35%, 31%); for SegTHOR,
(Esophagus, Heart, Trachea, Aorta) = (53%, 21%, 27%,
51%); for ACDC, (RV, Myo, LV) = (82%, 95%, 95%);
and for Liver OAR, (Spinal-Cord, Small-Intestine, Kidney-
L, Kidney-R, Liver, Heart, Lung-L, Lung-R) = (80%, 44%,
22%, 20%, 30%, 17%, 34%, 34%). We can see that except
for the ACDC dataset, the other datasets suffer from different
degrees of inter-class annotation imbalance. During training,
each dataset was split into training and validation sets at a
ratio of 8:2 for five-fold cross-validation. All reported DSC
results in subsequent sections are the average and standard
deviation of the five-fold.

4.2 Implementation Details
PAAL and all baselines are implemented using PyTorch and
integrated into a unified training framework. In particu-
lar, we select representative methods as baselines, including
uncertainty-based, diversity-based, and combined methods,
all of which have open-source implementations. All models
are trained from scratch on 8 NVIDIA A800 GPUs, with the
same loss function, e.g. the combined loss [Shi et al., 2023]
of Dice and Cross-Entropy for segmentation model and MSE
loss for AP. We set 3 maximum querying ratios for different
datasets according to varying slice scales: {5%, 10%, 20%}
for the Brain Tumour dataset and {10%, 20%, 50%} for the
other datasets. Unlike the proposed IQ mechanism, the query
interval for comparison methods is set to 5 epochs. The max-
imum iterations for each dataset are related to the maximum
querying ratio. Specifically, Brain Tumour dataset has maxi-
mum iterations of {10, 15, 15}, while the other datasets have
the same {5, 15, 20}. For the Brain Tumour dataset, the slice
resolution is resized to 4 × 256 × 256, while for the other
datasets, it is 1 × 512 × 512. We employ AdamW optimizer
[Loshchilov and Hutter, 2018] with an initial learning rate of
1e-3, a batch size of 64, and use the cosine annealing strategy
[Loshchilov and Hutter, 2016] to control the learning rate,
with a weight decay of 1e-4, warm-up epochs of 10, and the
minimum learning rate of 1e-6. Each model is evaluated on
the validation set at the end of every epoch. To alleviate over-
fitting, we adopt an early stopping strategy with a tolerance of
40 epochs to search for the best model within 400 epochs and
apply data augmentation, including random distortion, rota-
tion, flip, and noise.

4.3 Overall Performance
Results on Open-Source Datasets. In Table 2, we report
the results of the proposed PAAL on open-source single-
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Method ACDC SegTHOR Brain Tumour
10% 20% 50% 10% 20% 50% 5% 10% 20%

Random 85.3±2.9 87.9±2.9 90.3±1.5 81.1±1.2 84.6±0.8 86.4±0.7 70.7±4.2 71.7±2.6 73.5±2.9
MaxEntropy [Li and Guo, 2013] 83.0±2.3 86.6±3.3 89.8±2.0 75.1±7.1 81.9±1.0 85.9±1.4 67.3±4.8 68.7±4.6 71.1±3.8
LeastConf [Wang and Shang, 2014] 83.0±3.5 86.2±3.7 89.7±1.9 78.8±1.4 82.0±1.1 85.3±1.1 68.6±5.1 69.3±4.0 72.2±2.9
VarRatio [Zhan et al., 2022] 82.8±2.5 85.1±3.4 89.4±2.4 75.4±8.2 78.6±8.3 84.9±1.2 68.2±4.9 69.9±3.8 71.3±3.4
Margin [Yuval, 2011] 84.6±2.9 85.9±3.9 89.4±2.0 76.6±5.7 78.7±8.6 85.5±1.6 65.8±7.2 69.7±4.1 71.4±2.8
KMeans [Rombaut et al., 2022] 84.6±4.3 86.0±2.5 90.2±1.6 81.2±1.9 84.8±0.8 86.6±0.9 71.3±4.2 73.1±2.0 73.3±4.2
CoreSet [Zhan et al., 2022] 85.0±2.6 87.4±1.9 90.3±1.5 — — — — — —
Entropy+KMeans [Yin et al., 2017] 82.8±4.0 86.6±3.6 89.8±2.2 79.1±2.7 84.8±0.5 86.4±0.9 69.8±4.3 70.7±4.4 72.8±2.9
AB-UNet [Saidu and Csató, 2021] 82.2±3.4 86.9±2.1 90.2±1.4 81.3±1.3 84.7±0.8 86.4±0.6 71.5±3.4 72.6±2.8 73.4±2.5
CEAL [Blanch et al., 2017] 83.5±2.4 86.2±2.9 89.5±2.3 70.6±8.5 77.9±7.6 84.7±1.3 67.3±5.8 70.2±3.0 71.3±3.5
LPL [Yoo and Kweon, 2019] 70.9±5.9 80.2±3.5 87.6±3.2 75.4±2.1 78.2±1.3 83.6±1.1 51.5±8.6 61.7±4.0 66.6±4.7
PAAL (only AP) 86.3±2.5 89.1±2.0 90.7±1.2 82.8±1.2 85.5±0.2 86.9±0.9 71.7±0.8 72.9±1.2 73.9±1.1
PAAL 86.8±2.2 89.5±1.3 91.1±1.5 84.3±1.3 85.7±0.5 87.5±0.6 72.2±1.7 74.0±2.0 75.6±1.1
Full data 91.6±1.4 88.5±1.3 76.4±1.7

Table 2: Comparison with state-of-the-art methods on 3 open-source datasets under different annotation ratios. We show the mean±std
(standard deviation) of DSC (%) score for five-fold cross-validation. Bold is the best result, and — denotes that the method is not applicable.

modal datasets ACDC [Bernard et al., 2018] and SegTHOR
[Lambert et al., 2020], as well as the multi-modal dataset
Brain Tumour [Antonelli et al., 2022], compared with state-
of-the-art methods. PAAL (only AP) indicates the removal
of the WPS module, selecting samples solely based on query
weights, similar to other uncertainty-based methods. We can
see that PAAL significantly outperforms all previous meth-
ods, achieving the highest DSC across different datasets with
varying annotation ratios. In particular, at the lowest anno-
tation budget, our proposed method surpasses typical Maxi-
mum Entropy [Li and Guo, 2013], KMeans [Rombaut et al.,
2022], and LPL [Yoo and Kweon, 2019] methods by 3.8%,
2.2%, and 15.9% on ACDC, 9.2%, 3.1%, and 8.9% on
SegTHOR, and 4.9%, 0.9%, and 20.7% on Brain Tumour,
respectively. These results demonstrate the superior data effi-
ciency of PAAL under a limited budget. Notably, the perfor-
mance differences among different methods diminish as the
annotation ratio increases. PAAL achieves segmentation ac-
curacy comparable to fully annotated data at annotation ratios
of 50% and 20%, respectively.

An intriguing observation is that most uncertainty-based
methods relying on the posterior probability perform even
worse than random sampling, implying their limited appli-
cability to segmentation tasks. We hypothesize that this phe-
nomenon stems from the potential noise introduced by net-
work overconfidence, making uncertainty assessment prone
to failure in dense prediction tasks. The experimental re-
sults provide supporting evidence. For example, AB-UNet
[Saidu and Csató, 2021] uses a Bayesian network to enhance
uncertainty assessment and achieves the performance gain,
while CEAL [Blanch et al., 2017] using pseudo-labels per-
forms worse in most cases, indicating the low reliability of
the network predictions. Although diversity-based methods
[Rombaut et al., 2022; Zhan et al., 2022] can maintain rela-
tively satisfactory performance, they are constrained by net-
work depth and data scale. Moreover, LPL performs poorly
due to convergence issues arising from joint optimization, es-
pecially on the complicated Brain Tumour datasets. In con-
trast, our proposed PAAL outperforms all comparison meth-
ods even using AP alone, demonstrating its effectiveness.

Method Liver OAR Query Time
10% 20% 50%

Random 86.5±5.3 89.8±0.5 91.4±0.4 —
MaxEntropy 80.0±9.0 88.9±0.9 91.4±0.4 13.57
LeastConf 86.4±1.2 88.9±0.6 91.4±0.6 13.26
VarRatio 83.0±8.4 89.0±0.6 91.1±0.5 13.86
Margin 87.4±0.6 89.3±0.6 91.4±0.6 13.41
KMeans 88.0±0.7 89.7±0.4 91.3±0.6 21.40
CoreSet 86.3±5.0 90.1±0.5 91.4±0.4 47.88
Entropy+KMeans 87.6±1.5 89.5±0.7 91.0±0.4 22.75
AB-UNet 88.1±1.1 90.1±0.1 91.1±0.5 240.67
CEAL 85.0±4.0 88.2±0.4 90.8±0.4 26.65
LPL 86.5±1.0 88.4±0.9 90.4±0.8 13.55
PAAL (only AP) 89.2±0.8 90.4±0.3 91.4±0.5 12.68
PAAL 89.7±0.4 90.8±0.6 91.9±0.2 20.24
Full data 92.3±1.6 —

Table 3: DSC (%) score and average query time (s) on the private
dataset of different methods. — denotes without AL process.

Results on Private Clinical Dataset. Table 3 shows the
results on the small-scale private dataset, Liver OAR. Simi-
larly, PAAL achieves the highest DSC at 10%, 20%, and 50%
annotation ratios, reaching 89.7%, 90.8%, and 91.9%, re-
spectively. Notably, at an annotation budget of 20%, except
for our proposed method, CoreSet, and AB-UNet, all other
comparative methods perform worse than random sampling.
Given the computational complexity, CoreSet is unsuitable
for deeper networks and larger datasets, and AB-UNet also
requires additional computations to simulate the Bayesian
network. In contrast, PAAL achieves higher segmentation
performance with lower computational overhead, especially
when using only AP. These results further validate the effec-
tiveness of PAAL in reducing annotation costs, showcasing
significant potential in practical applications.

Time Efficiency Analysis. The average query time in Table
3 demonstrates the time efficiency of different methods. The
query time of PAAL mainly consists of the inference time
of AP and KMeans clustering time of the WPS module. It’s
evident that by reducing the feature dimension and the cluster
size of the KMeans method, the query time of PAAL is still
higher than that of the uncertainty-based methods, but lower
than that of the diversity-based methods. After WPS removal,
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Method ACDC
10% 20% 50%

Random 85.3±2.9 87.9±2.9 90.3±1.5
w/o WPS and IQ 85.3±2.5 88.5±2.1 90.7±1.1
w/o IQ 86.4±2.6 89.4±1.5 90.9±1.4
w/o WPS 86.3±2.5 89.1±2.0 90.7±1.2
w/o AP 84.6±4.3 86.0±2.5 90.2±1.6
PAAL 86.8±2.2 89.5±1.3 91.1±1.5
Full data 91.6±1.4

Table 4: Ablation study on ACDC dataset, w/o denotes without.
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Figure 3: The annotation distribution of different methods.

the time efficiency of our proposed method is better than that
of all comparison methods due to the lightweight structure
of AP. Overall, PAAL achieves a good trade-off in terms of
accuracy and time efficiency.

4.4 Ablation Study
To reveal the effect of different modules on performance im-
provement, we conduct ablation studies on AP, WPS, and IQ
modules on the ACDC dataset, and the results are shown in
Table 4. After removing each module separately, there is a
varying degree of performance decline, indicating the essen-
tial importance of all modules for PAAL. It is worth noting
that w/o AP means that PAAL degenerates into the KMeans
method, where the most significant performance degradation
occurs. In low-budget scenarios, the IQ leads to a notable
improvement in overall performance, demonstrating the ef-
fectiveness of IQ in enhancing network convergence. Fur-
thermore, we can observe that both AP and WPS have a sig-
nificant impact on overall performance, further highlighting
the superiority of our designs.

4.5 Quantitative Analysis
As shown in Figure 3, we compare the annotation distribution
of samples selected by different query strategies under the
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Figure 4: The performance curves under different labeled ratios.

maximum annotation budget (20% for Brain Tumour, 50%
for the others). Notably, we introduce a background category
denoted as B.g., to represent those images without any seg-
mentation target. It can be observed that, compared to the
original distribution represented by Random, different meth-
ods exhibit significant differences. For the ACDC and Brain
Tumour datasets, PAAL achieves better performance by sig-
nificantly increasing the annotation ratio of minority classes
or reducing the ratio of majority classes. For example, the
annotated slice ratio of “Edema” and “ET” is reduced from
1.62 to 1.26. As for the other two datasets, the annotation
distribution of PAAL is generally consistent with the original
distribution, while LPL and Maximum Entropy show signifi-
cant differences, leading to poor performance. These results
demonstrate that PAAL can adaptively adjust based on the
data distribution of the specific task, helping to alleviate the
problem of imbalanced annotation of multiple categories.

Furthermore, we present the performance curves of dif-
ferent query strategies as the annotation ratio iteratively in-
creases under the maximum annotation budget. As shown in
Figure 4, unlike the drastic fluctuations of the existing meth-
ods, the DSC rising curve of the proposed PAAL is remark-
ably smooth. The essential reason is that the proposed IQ
mechanism ensures training stability by triggering queries
only after achieving the best performance on current data.
Besides, PAAL consistently maintains the best segmentation
performance under different annotation ratios, further prov-
ing its effectiveness and superiority.

5 Conclusion
In this paper, we proposed a Predictive Accuracy-based Ac-
tive Learning (PAAL) approach for medical image segmenta-
tion. Specifically, we employed a lightweight Accuracy Pre-
dictor (AP) to directly predict the segmentation accuracy of
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unlabeled samples related to the target model, and designed
a hybrid Weighted Polling Strategy (WPS) to balance uncer-
tainty and diversity. Extensive experimental results demon-
strated the superiority of PAAL over existing methods. The
low complexity and high data efficiency of PAAL indicated
significant potential for clinical applications. In the future,
we will explore more optimization methods such as semi-
supervised learning to further enhance the performance.
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