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Abstract
Optimization models used to make discrete deci-
sions often contain uncertain parameters that are
context-dependent and estimated through predic-
tion. To account for the quality of the decision made
based on the prediction, decision-focused learning
(end-to-end predict-then-optimize) aims at training
the predictive model to minimize regret, i.e., the
loss incurred by making a suboptimal decision. De-
spite the challenge of the gradient of this loss w.r.t.
the predictive model parameters being zero almost
everywhere for optimization problems with a lin-
ear objective, effective gradient-based learning ap-
proaches have been proposed to minimize the ex-
pected loss, using the empirical loss as a surrogate.
However, empirical regret can be an ineffective sur-
rogate because empirical optimal decisions can vary
substantially from expected optimal decisions. To
understand the impact of this deficiency, we evalu-
ate the effect of aleatoric and epistemic uncertainty
on the accuracy of empirical regret as a surrogate.
Next, we propose three novel loss functions that
approximate expected regret more robustly. Experi-
mental results show that training two state-of-the-art
decision-focused learning approaches using robust
regret losses improves test–sample empirical regret
in general while keeping computational time equiv-
alent relative to the number of training epochs.

1 Introduction
Real-world optimization problems, often formulated and
solved as mixed-integer linear problems (MIPs) – such as
shortest path problems or machine scheduling problems – in-
volve parameters whose value is not known exactly. It is
natural to use data to predict the uncertain parameters’ values
based on contextual information.

In predictive (regression) problems the goal is to make the
most accurate prediction possible in the sense of prediction
error. However, since there remains uncertainty around the
predictions, and their purpose is to more accurately solve a
downstream optimization problem, such a measure of pre-
diction accuracy is of little relevance: the quality of the
resulting decisions is what is important. This is the main

premise of decision-focused learning (DFL) (also named pre-
dict+optimize or smart/end-to-end predict-then-optimize), and
contrasts with prediction-focused learning (PFL) which is
focused on prediction accuracy. DFL was first pioneered
specifically for portfolio selection by Bengio [1997], and more
generally introduced by Elmachtoub and Grigas [2022].

Learning based on decision errors obtained through solving
a MIP faces difficulty, since the gradient of the decisions
relative to the predicted parameters is zero almost everywhere
and otherwise undefined [Vlastelica et al., 2020]. Because of
this, approximation methods have been introduced and shown
to be more effective than PFL [Elmachtoub and Grigas, 2022;
Berthet et al., 2020]. The loss used in these methods is based
on empirical regret, i.e., the loss incurred from not making
the optimal decision for a given, empirical scenario. However,
we observe that minimizing empirical regret deviates from
minimizing expected regret as it leads to a form of overfitting
on the empirical samples.

Recognizing this shortcoming in the most commonly used
loss function in DFL, this paper develops three contributions:
1. We examine the usage of empirical regret from an uncer-

tainty perspective, showing how empirical regret can lead
to poor generalization and biased learning towards uncer-
tain parameters with high variance.

2. We propose three different robust loss functions that simul-
taneously (1) improve conditional mean estimation, (2) are
robust against errors in the mean estimation, and (3) do not
increase computational expense relative to the number of
training epochs.

3. We study two state-of-the-art gradient approximation DFL
methods using the proposed robust losses compared to them
using empirical regret. On three experimental problems,
average test–sample regret is improved without additional
overhead.

2 Problem Formulation
In this work we adopt the problem setting as introduced in
Elmachtoub and Grigas [2022]. Observing some contextual
information in the form of feature values z ∈ Rm, the goal
of the decision maker is to solve the following stochastic
optimization problem with linear objective:

min
x∈X

Ec∼Cz
[cTx|z], (1)
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Figure 1: Visualization of the empirical regret loss in DFL (left) and the robust losses in comparison (predictive pipeline is equal). The robust
losses are constructed through using an optimization model (optimizer) that is robust against the mean estimation error and/or using a different
mean estimator than empirically observed c. From left to right: empirical regret (lemp), RO loss (lRO), top-k loss (ltop-k), k-NN loss (lk-NN).

where X denotes the set of feasible decisions and Cz is the
conditional distribution of uncertain objective coefficients c ∈
Rn given feature values z. Since Cz is unknown, training a
parametric predictor fθ(z) can assist in picking good decisions.
Ideally we find a predictor s.t. for each z we make a decision
that has an equal objective to (1), i.e.,

Ec∼Cz
[c|z]T

[
argmin
x∈X

fθ(z)
Tx

]
= min

x∈X
Ec∼Cz

[cTx|z].

When the prediction problem is seen as separate from the
optimization problem (PFL), regression is performed with co-
efficients c as responses to features z by minimizing prediction
error. However, since the decision maker’s goal is not to make
accurate predictions but to make optimal decisions, it is prefer-
able to minimize decision error, which is the main premise
of DFL. To attain this goal, Elmachtoub and Grigas [2022]
introduce a loss function based on the notion of regret, i.e., the
loss incurred by not making the optimal decision given z:

lemp(ĉ, c) = cTx∗(ĉ)− cTx∗(c), (2)

where ĉ = fθ(z), and x∗(c) = argminx∈X cTx is the optimal
decision when c are the objective coefficients. We will refer
to this as empirical regret, as it is the regret in an empirical
realization of (z, c). This loss is a natural choice, for when
(z, c) is realized the loss is minimal when the empirical optimal
decision is made. Figure 1 visualizes this loss and the robust
losses that will be introduced in Section 3.

Due to the effectiveness of (stochastic) gradient descent
in training predictive models, much research on DFL con-
centrates on finding effective gradient approximations. Ap-
proximations are necessary when the optimization problem
is defined as in (1), as the linearity of the uncertain param-
eters in the objective function makes the true gradient zero
almost everywhere and otherwise undefined. Gradient descent
is based on the premise that minimizing empirical losses leads
to minimizing the expected loss. The empirical loss is used

as a surrogate, while the main goal is to find predictive pa-
rameters such that for every feature realization z we have a
minimal expected regret loss defined as:

lE(ĉ, Cz) = Ec∼Cz
[c|z]Tx∗(ĉ)−min

x∈X
Ec∼Cz

[cTx|z]. (3)

Directly minimizing this loss is often impossible since in
practice data is only available in the form of realized value
pairs D = {(zi, ci) : i ∈ {1, . . . , t}}. The empirical loss is a
valid alternative, as the set of minimizers of (3) is equal to the
set of minimizers of the expectation of (2), i.e.:

min
θ

{lE(fθ(z), Cz)} = min
θ

{Ec∼Cz
[lemp(fθ(z), c)]},

and therefore the assumption in the literature until now is that
representative data should be sufficient to learn good predictive
models through empirical regret. In this paper we challenge
this assumption and show that when there is significant un-
certainty empirical regret can be an ineffective surrogate. We
propose three alternative losses that are more robust.

We begin by showing what issues can arise when training
using empirical regret. The main intuition is the following:
When using empirical regret, training is biased towards em-
pirical optimal decisions that are not necessarily expected
optimal decisions. This is due to a form of overfitting, i.e.,
uncertainty causing a mismatch between training and test data,
and the non-smoothness of a discrete optimization problem,
which can cause significant changes in optimal decisions by
only small perturbations. To analyze the impact of uncertainty
more formally, we make the distinction between epistemic
and aleatoric [Kiureghian and Ditlevsen, 2009]. Epistemic
uncertainty is uncertainty that occurs due to a lack of knowl-
edge, which in practice often equates to not having enough
representative data available. Aleatoric uncertainty is the un-
certainty inherent to some underlying process and is therefore
irreducible. In our DFL setting, we assume there exists a distri-
bution Cz for every z that contains purely aleatoric uncertainty,
but since we are limited by finite data the distributions Cz are
unknown to us – the epistemic uncertainty.
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(a) PFL – mean squared error (b) DFL – empirical regret (c) DFL – robust regret

Figure 2: Observed coefficients c (profit) per feature value z (temperature) and optimal linear predictors ĉ = f∗
θ (z) according to different loss

functions. The example problem is a coffee stand owner deciding what treat to make from their daily batch of chocolate. There are 3 possible
weather related decisions: chocolate ice cream , chocolate cookies or hot chocolate . In short: maxx c

Tx s.t. xi ∈ {0, 1},
∑

i xi = 1.
The linear predictors are the lines with corresponding colour and shade. The shaded area is considered to be sub-optimal. (It is determined
assuming the expected value of c is equal to a linear interpolation between the observed points closest to the middle.)

2.1 Impact of Epistemic Uncertainty
Epistemic uncertainty makes generalization, i.e., adapting to
unseen data, challenging as there is no complete knowledge,
hence making it impossible to learn the exact underlying pro-
cess. This general challenge for predictive problems is exem-
plified in DFL due to the focus on optimal decisions. When
using PFL, the predictive model is trained to predict all co-
efficients as accurately as possible. When using DFL with
empirical regret, the focus is on predicting the objective coef-
ficients related to optimal decisions, i.e., objective coefficients
that directly impact the empirically optimal decisions’ objec-
tives. This is because empirical regret (2) is based on the
obtained objective given the optimal decision according to pre-
diction ĉ. This means that if we would like to move towards the
empirical optimal loss, i.e., ĉ such that cTx∗(ĉ) = cTx∗(c),
only objective coefficients that relate to the empirical optimal
objective value based on prediction ĉ are relevant. Other ob-
jective coefficients are disregarded, which can lead to poor
generalization.

Figure 2 gives an illustrative example in which PFL using
the mean squared error and DFL using empirical regret both
lead to likely sub-optimal predictors. Note that in Figure 2b,
the linear predictors are empirically optimal as long as square
( ) is predicted with low values of z and diamond ( ) with
high values of z, which makes the linear predictor of circle
( ) optimal as long as it does not predict the highest value
for any of the realized points (c, z). This means the predictors
denoted in Figure 2c are also optimal according to empirical
regret, but it has such a wide range of parameter values that
are considered optimal it is likely the linear predictor of circle
( ) predicts low objective values.

2.2 Impact of Aleatoric Uncertainty
In general, a lack of enough representative data leads to epis-
temic uncertainty. However, even when there is plenty of
representative data and only aleatoric uncertainty, we observe
that using the empirical loss biases learning towards objec-
tive coefficients that have high variance, with variance being

a measure of aleatoric uncertainty. This is because the pre-
dictive model parameters that affect high variance objective
coefficient predictions ĉ are more likely to be updated during
training than those that affect low variance objective coeffi-
cient predictions ĉ. This can be problematic because it can
make predictions of low variance objective coefficients less
accurately (also with respect to decision quality), while it is
these objective coefficients that relate to optimal decisions
with a less uncertain objective value.

To provide intuition behind this, we again note that empir-
ical regret (2) is based on the obtained objective given the
optimal decision according to prediction ĉ. Now we extend
previous reasoning to a probabilistic perspective: If certain
coefficients are more often related to the empirical optimal ob-
jective value, they are more often updated during training, i.e.,
biased learning occurs. We provide an example of a simple
optimization problem to show that the variance of objective
coefficient can affect this. This is specific to DFL compared
to regression due to the downstream optimization problem, as
Var(min c) ̸= minVar(c) for some random variable c.

Example 1. Consider optimization problem (1), where deci-
sion set X is finite and each decision has its own objective
coefficient, i.e., X = {x : x ∈ {0, 1}n,

∑n
i=1 xi = 1}, where

we recall that c ∈ Rn. Assume that all ci are independently
distributed with Ec∼Cz

[ci|z] = 0 but different variances. In ex-
pectation, all decisions have equal objective value 0. However,
empirically we observe the decision with the lowest realized
coefficient as optimal. If the coefficient of decision variable
xi has Var(ci) = 0, it is only optimal if all other coefficients
are realized greater or equal to 0. If the coefficient of xi has
high variance, it is more likely for xi to be optimal as its coef-
ficient is more likely to realize the lowest value. Considering
a dataset with realized values, decisions with higher vari-
ance coefficients are more often empirically optimal assuming
similarly shaped distributions.

A formal proof of this example is provided in the Appendix.
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3 Robust Losses
We introduce novel DFL losses with the goal to mitigate the
issues of poor generalization and biased learning that can arise
when using empirical regret as a loss. We show that these
issues can be mitigated by finding an estimator of Ec∼Cz

[c|z]
with lower variance than c and making the loss robust against
the estimation error. Based on this we define three novel loss
functions. First, we note that the predictor f(z) = c would
lead to an empirical regret loss of 0 that is unattainable due
to Cz being the underlying distribution given z. A perfect
predictor would be f(z) = Ec∼Cz [c|z], which is because of
the assumption of the uncertain parameters c being linear in
the objective function, as

min
x∈X

Ec∼Cz
[cTx|z] = min

x∈X
Ec∼Cz

[c|z]Tx

leads to an expected regret loss of 0. This is important as it
shows that a deterministic predictor can be expressive enough
and we do not need to be able to predict the whole distribution
Cz to have a strong predictor. This also means that we can still
consider the deterministic problem x∗(f(z)) as the problem
the decision maker solves when observing feature values z
in practice. This consideration is important in designing the
robust losses, as this means that during training we can still
evaluate the loss by solving a deterministic problem without
losing performance. Since DFL using gradient descent is
already relatively expensive due to frequently having to solve
an optimization problem, it is important computation time is
not increased further [Mulamba et al., 2021].

To find a good surrogate for the expected regret loss, we first
look at the empirical regret as surrogate. When we optimize
using empirical regret, effectively the realized c are used as an
estimate of Ec∼Cz

[c|z] when considering the expected regret
as the true regret. Since the realized c is a sample realization
from Cz , the expected estimation error is equal to the variance
of Cz . This means that the empirical optimal decision x∗(c)
can be significantly different from the expected optimal deci-
sion x∗(Ec∼Cz

[c|z]), which leads us to two main principles in
designing the robust losses:

1. Determine an estimator of Ec∼Cz
[c|z] that has lower vari-

ance than c.

2. Determine close-to optimal decisions that are robust against
the estimation error of Ec∼Cz

[c|z] as an alternative to x∗(c).

We introduce two losses based on the second principle,
followed by a loss based on the first principle that naturally
extends to a generalization that also includes the second prin-
ciple. Figure 1 visualizes the three proposed losses compared
to empirical regret.

3.1 Robust Optimization (RO) Loss
Assuming c is an erroneous estimation of Ec∼Cz

[c|z], we con-
sider empirical optimal decision x∗(c) as an erroneous optimal
decision. Instead of using x∗(c), we can use the decision that
minimizes the worst-case value of this error given some as-
sumptions, i.e., robust optimal decision

x∗
RO(c) = min

x∈X
max
c∈Uc

cTx, (4)

where Uc is an uncertainty set, i.e., a set that specifies the
possible estimation error of c. This formulation is commonly
used in Robust Optimization (RO), where the goal is to find de-
cisions that are optimal given the worst case in some specified
uncertainty set [Bertsimas et al., 2011].

Since in RO the retrieved optimal decision is robust against
the uncertainty specified by the uncertainty set, a proper speci-
fication of the latter is important. An uncertainty set that is too
small makes the optimal decision not robust against the actual
uncertainty, while an uncertainty set that is too large leads to
conservative decisions that could be far from expected optimal.
Further, depending on the uncertainty set the optimization
problem (4) has a tractable reformulation. We propose the RO
loss defined as follows:

lRO(ĉ, c) = cT (x∗(ĉ)− x∗
RO(c)).

As a choice of uncertainty set we propose the budget uncer-
tainty set, which is a special case of a polyhedron uncertainty
set [Bertsimas and den Hertog, 2022]. This set is practical as it
is not too conservative while it allows for a tractable reformu-
lation of linear optimization problems, i.e., if the optimization
problem has a linear objective and only linear constraints spec-
ifying the decision set X the reformulation does not increase
complexity. Our setting is not limited to this model class, but
having a linear tractable reformulation is helpful as it does
not change the class of the problem: the budget uncertainty
set reformulation of the MIPs we consider is a MIP. Since
the robust formulation adds constraints and auxiliary decision
variables, the problem can become harder (albeit also easier)
to solve. However this is highly dependent on the problem
and is not straightforward to quantify.

The budget uncertainty set allows us to model the estima-
tion error of c as percentage deviation ζ ∈ Rn. We limit
the individual coefficient percentage deviation and the total
percentage deviation by ρ and Γ respectively, giving

Uc = {c ◦ (1 + ζ) : ||ζ||∞ ≤ ρ, ||ζ||1 ≤ Γ},
where ◦ denotes the Hammard product. Depending on knowl-
edge of the optimization problem and/or the uncertainty
around c the uncertainty set can be adjusted. Our goal here
is to show a proof of concept, leaving for the future a full
exploration of specifying uncertainty sets in a DFL setting.

3.2 Best k Decisions (Top-k) Loss
An alternative to finding a decision that is robust against er-
roneous estimations is to consider multiple decisions that are
close-to optimal. For instance, suppose that in the example in
Figure 2 the second-best decision is also considered as opti-
mal, then its coefficients would not be disregarded. Looking
at multiple close-to optimal decisions can lead to a good area
in the decision space, compared to a single optimal decision
that might lay in a narrow global optimum. Moreover, high
variance of c as an estimate of Ec∼Cz [c|z] can lead to signifi-
cantly different decisions, while considering multiple close-to
optimal decisions can lead to certain decisions being found
more often and therefore a more stable signal.

The process of finding multiple quality decisions is not
complicated, as any solving method can be used subsequently
while excluding already found decisions. Some methods even
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record suboptimal decisions and therefore a single solve could
suffice. This makes the loss we propose viable, as we propose
a loss that evaluates regret against the best k decisions (top-k):

ltop-k(ĉ, c) =
1

k

k∑
j=1

cT (x∗(ĉ)− x∗
(j)(c)),

where x∗
(j)(c) := argminx∈X\{x∗

(1)
(c),...,x∗

(j−1)
(c)}{cTx}.

Alternatively one could refrain from specifying the number
of decisions that is considered as good enough, but instead
specifying a certain quality metric like a certain percentage
from the optimal objective. This would depend on the use-case
and hence will not be considered here.

3.3 k-Nearest Neighbour (k-NN) Loss
An estimator of Ec∼Cz [c|z] that has lower variance than c has
to utilize the training data, while preferably being unbiased and
consistent. This makes k-nearest neighbour (k-NN) regression
a strong candidate as it is a non-parametric regression that
has extensively studied strong asymptotic uniform consistency
results [Cheng, 1984] and more recently also finite-sample uni-
form consistency results [Jiang, 2019]. Being non-parametric
is beneficial as we will train a parameterized predictive model
using signals from the estimator. If the estimator would be in
the same model class, this would potentially amplify predictive
and decision errors due to model misspecification. The k-NN
estimator given feature values z is defined as the arithmetic
mean of c(j) where

(z(j), c(j)) = argmin
(z′,c′)∈D\

⋃j−1
i=1 {(z(i),c(i))}

||z′ − z||

is the j-th closest data point in the feature space, || · || is
some norm (we use the Euclidean norm) and D the set of data
points. The consistency of the k-NN estimator is intuitive, as
with an increasing number of data realizations, the k nearest
neighbours converge in distance, i.e.,

lim
|D|→∞

||z(j) − z|| < ϵ ∀j ∈ {1, . . . , k}, ∀ϵ > 0.

If the distance between feature values goes to zero, the
conditional probability distributions Cz(j) converge to Cz as
well, assuming the underlying cumulative distribution function
is continuous in z. This means that when the dataset grows
infinitely large, the realized coefficient values c(1), . . . , c(k)
are samples drawn from the same distribution Cz . Taking the
mean of this is then a sample mean and therefore a consistent
estimator of Ec∼Cz

[c|z] with variance Varc∼Cz
(c)/k.

These consistency results do not extend to the decision
space, as optimization problem x∗(·) is a discontinuous multi-
valued function. Despite this, we have that if the k nearest
neighbours are somewhat representative of a set of samples
from conditional probability distributions Cz , the obtained de-
cisions x∗(c(1)), . . . , x

∗(c(k)) could all be empirical optimal
decisions given z. Since our k-NN estimator will still have
some estimation error, we consider multiple potential optimal
decisions in a similar fashion as in designing the top-k loss.
This way we naturally include the second principle we pro-
posed for designing robust losses. The loss we propose is the
average over the empirical regret of k nearest neighbours:

lk-NN(ĉ, c) =
1

k

k∑
j=1

cw(j)
T (x∗(ĉ)− x∗(cw(j))),

where the values of the neighbours are adjusted based on some
interpolation weight w ∈ [0, 1]:

cw(j) = wc(j) + (1− w)c.

We introduce this interpolation weight to make sure the
k-NN estimator and therefore loss function remains distinct
for all observations (z, c). Without this weight, multiple differ-
ent observations can have the same k nearest neighbours and
therefore the same estimator. This is not a general problem in
k-NN regression, but it arises because we use the estimator in-
sample, i.e., we provide an estimate of observations c that have
a known realized value. This problem arises especially when
there is little data available as it leads to over-simplification
of the existing relationships, i.e., increased assumption bias.
This makes w a tool to find a sweet spot in the bias-variance
trade-off [Geman et al., 1992]. In the same work, the k-NN
estimator is considered as an example where increasing k in-
creases bias, while decreasing k increases variance. Due to
our in-sample usage of the k-NN estimator, varying k does
not solve the issue of different observations having equal esti-
mators. We note that w = 0 makes the k-NN loss equal to the
empirical regret loss and therefore this loss is more general.

3.4 Applicability
The second principle we introduce at the beginning of this
section to design the proposed losses leads to adjusting target
solutions, i.e., the solutions that are considered to be optimal
given c. This only adjusts the second term of the empirical
loss as shown in (2). It is important to note that gradients with
respect to the predictive model parameters are independent of
this second term. This means that both the RO loss and top-k
loss do not change the true gradient. However, this is also not
our aim, as for the class of problems we look at (1) the true gra-
dient is zero almost everywhere and therefore uninformative.
In the experimental evaluation we apply our losses to two state-
of-the-art gradient-approximation approaches, Smart ‘Predict,
then Optimize’ (SPO+) of Elmachtoub and Grigas [2022] and
the Perturbed Fenchel–Young Loss (PFYL) of Berthet et al.
[2020]. Similar to the approaches by Mulamba et al. [2021]
and Sahoo et al. [2023], these gradient approximation have a
term consisting of the empirical optimal solution x∗(c). Only
the k-NN loss has the potential to generalize to approaches
that are independent of empirically optimal solution x∗(c).
Technical details are provided in the Appendix.

3.5 Computational Considerations
Training a predictive model using gradient-based approaches
requires frequently evaluating (solving) optimization problem
x∗(·). In every epoch, x∗(fθ(z)) needs to be evaluated for
each data point (z, c) to obtain the loss and/or gradient. This
is the most computationally expensive part of training and we
will therefore quantify the computational expense as a number
of problem evaluations. Looking at the empirical regret loss,
x∗(c) does not change during training, and can therefore be
precomputed. Given t data points and s epochs, problem x∗(·)
is solved t ∗ (s+ 1) times.
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The proposed robust losses increase precomputation time
i.e., computation time before the training, but do not increase
training time per epoch. For the k-NN and top-k loss the total
number of evaluations is at most t ∗ (k + s). In practice s is
significantly larger than k and therefore the increase in total
time is small. For the RO loss, the same number of evaluations
is done compared to the empirical regret loss. While it could
be that solving the robust problem formulation takes longer,
this is also during precomputation at most t times.

4 Experimental Evaluation
We compare SPO+ and PFYL (number of samples M = 1,
perturbation amplitude σ = 1) trained using empirical regret
as loss to the same approaches using the presented robust
losses (RO, top-k, k-NN), with PFL using mean squared error
as an additional baseline. All predictive models are linear
models. We use Python-based open-source package PyEPO
[Tang and Khalil, 2022] for the data generation of two exper-
imental problems and the training, where the robust losses
are implemented on top of the existing code. The k-NN loss
is currently available in PyEPO. We use the Adam optimizer
with learning rate 0.01 for the gradient descent and Gurobi ver-
sion 10.0.1 [Gurobi Optimization, 2023] as the optimization
problem solver. We compare the results on three experimental
problems: shortest path, travelling salesperson, and energy-
cost aware scheduling. Additional details on the experimental
problems are provided in the Appendix.

For simplicity, we do not tune the hyperparameters of the
robust losses, but use the same value for all problem config-
urations. For the top-k loss we use k = 10; the same for the
k-NN loss where w = 0.5. For the RO loss we set ρ = 0.5
and Γ = n

8 , where n = |c|. The batch size is 32.

Shortest path & travelling salesperson. The shortest path
problem considers a decision maker that has as goal to find the
shortest path from start (NW) to end (SE) over a pre-specified
grid (10 × 10) with uncertain costs (objective coefficients),
allowing only viable paths modelled by a vector of binary
decision variables. The travelling salesperson problem also
aims at finding a shortest path, but instead of a grid there is
a set of fully connected nodes (20) that all need to be vis-
ited. For both problems data is generated as in PyEPO, with
feature vectors z of size 5 and the polynomial degree param-
eter fixed at 6. We look at different noise half-width values
ϵ̄ ∈ {0, 0.5, 1} that multiply the generated objective coef-
ficients by ϵ ∼ U(1 − ϵ̄, 1 + ϵ̄), and different training set
sizes t ∈ {100, 1000}. We consider these parameter values to
mimic different levels of aleatoric and epistemic uncertainty.
The noise multiplies the existing data generating distribution
by another distribution that increases variance and therefore
aleatoric uncertainty, while the training set size is a measure of
how much knowledge we have and therefore mimics epistemic
uncertainty. In all cases a validation and test set of size 100
and 1000 are used respectively. The validation set is used
to pick the best model found during training to prevent over-
fitting, no model-selection is done. 200 epochs are run for t =
100, and 100 epochs for t = 1000. Since the data generation is
a random process, we run 20 generated datasets to be able to
measure significance.

Energy-cost aware scheduling. As a third experimental
problem we look at energy-cost aware scheduling [Simonis
et al., 1999] following precedent in a DFL setting [Mandi et
al., 2022]. The dataset consist of 789 days of historical energy
price data at 30-minute intervals from 2011–2013 [Ifrim et
al., 2012]. The optimization problem consists of scheduling
a given number of tasks (3) on a given number of machines
(10) with a certain resource capacity. Each task has a given
energy consumption per hour and the goal is to minimize the
total daily energy consumption. Energy prices are uncertain
and are therefore predicted. Instead of using the features in the
dataset, we consider the predictive problem as a time series
problem consisting of predicting the next day using the day
before, both consisting of 48 values. This way the uncertain
objective coefficients share the same feature vector as defined
in problem formulation (1). We also add noise to the data and
we use training sizes of t ∈ {100, 500} with a validation and
test set of 100 each. Given we have 789 days, we create 5
non-overlapping data partitions of the data preserving time
order when t = 100. When t = 500 we use a single partition,
and in both cases we omit the last 89 days. We run 50 epochs
for every training run.

4.1 Results
Figure 3 shows all results. For the shortest path and travelling
salesperson, we see that when t = 100 the robust loss performs
significantly better than the empirical loss in 24 out of the 36
direct comparisons (equal problem, approach, t and ϵ̂) and
it never performs significantly worse. When t = 1000, we
see 13 significantly better and 4 significantly worse results,
out of which 3 are on the shortest path problem with ϵ̄ = 0.0.
These results confirm our hypothesis that both more aleatoric
and epistemic uncertainty lead to better performance of the
robust losses. Due to the limited size of the dataset, we see
only 2 significant results for the energy-cost aware scheduling
problem. However, these are both in favour of the robust loss
and in all other configurations a robust loss also performs best.

In general, the k-NN loss is the most effective loss, even
when there is ample data. The RO loss is mostly effective
for the shortest path, while the top-k loss is more effective
for the travelling salesperson. We hypothesize this is due
to optimization problem characteristics, where the difference
between optimal solutions and either robust optimal solutions
(RO) or close-to optimal solutions (top-k) is most relevant.

5 Discussion and Related Work
Our proposed losses are evaluated on DFL gradient-
approximation approaches [Elmachtoub and Grigas, 2022;
Berthet et al., 2020], which assume a linear objective function.
These approximations are needed since in general a quadratic
objective is required to have defined non-zero gradients [Amos
and Kolter, 2017; Veviurko et al., 2024]. Using the Karush-
Kuhn-Tucker conditions, exact methods can be applied to
augmented linear programs by adding a quadratic [Wilder et
al., 2019] or log-barrier [Mandi and Guns, 2020] objective
term. For MIPs, Ferber et al. [2020] introduce a cutting-plane
approach to convert the discrete problem into an equivalent
continuous problem, which is computationally expensive and
therefore less applicable compared to gradient approaches.
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Figure 3: Test set mean normalized empirical regret in % (y-axes) on 3 experimental problems with different noise (ϵ̄) and training size (t)
values. Approaches are denoted by patterns; used losses by colour (mean squared error is used for PFL). Error bars denote one in-sample
standard deviation on both sides of the mean. Mean values of robust losses that are significantly different (paired t-test, α = 0.05) from their
empirical regret counterpart are denoted with ∗ (better) or × (worse). The results are shown as a table in the Appendix.

Gradient-approximation approaches have so far not been
able to directly deal with a non-linear objective function or
uncertain parameters in the constraints, but Silvestri et al.
[2023] introduced score function gradient estimation for DFL,
by predicting a distribution instead of a point.

Empirical regret is in general used as a loss in DFL and
therefore studied here, but some alternative losses have been
proposed. Mulamba et al. [2021] introduce a contrastive loss
that uses non-optimal decisions as negative samples to attain
more effective gradients. Mandi et al. [2022] extend on this
work by defining DFL as a learning-to-rank problem, i.e., accu-
rately ranking multiple decisions leads to being able to pick an
optimal decision and we also consider this to be more robust.
Experimental results show that losses in these two works are
especially effective in reducing training time for comparable
decision quality. Shah et al. [2022] propose an approach to
learn losses that are convex and therefore practical for training,
however these losses are learned based on empirical regret.

Since we show that the robust losses improve generalization
when training data is limited, a natural alternative would be
to apply regularization, as effectively used in deep learning

[Kukačka et al., 2017]. Elmachtoub and Grigas [2022] use a
mean squared or absolute error term for regularization. This
allows for improving prediction accuracy while preserving de-
cision quality [Tang and Khalil, 2022], but it does not improve
decision quality which we do observe using robust losses.

6 Conclusion
DFL is gaining considerable recent interest due to its effective
end-to-end approach to data-driven optimization. This paper
investigated the shortcomings of using empirical regret in DFL
for MIPs, and proposed a trio of robust loss functions to mit-
igate the issues of poor generalization and biased learning.
Experimental results show improved test–sample empirical
regret, especially with little or noisy data, without inflating
computational time. Future work includes studying the ef-
fectiveness of the robust losses relative to each other based
on optimization problem characteristics, studying RO uncer-
tainty sets and fine-tuning hyperparameters. A more general
direction in DFL is analyzing robustness of DFL predictors
in settings where at test time the data and/or the optimization
problem are different, as this is currently not well-studied.
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