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Abstract
Compositionality is thought to be a key component
of language, and various compositional benchmarks
have been developed to empirically probe the com-
positional generalization of existing sequence pro-
cessing models. These benchmarks often highlight
failures of existing models, but it is not clear why
these models fail in this way. In this paper, we
seek to theoretically understand the role the com-
positional structure of the models plays in these
failures and how this structure relates to their ex-
pressivity and sample complexity. We propose a
general neuro-symbolic definition of compositional
functions and their compositional complexity. We
then show how various existing general and special
purpose sequence processing models (such as re-
current, convolution and attention-based ones) fit
this definition and use it to analyze their composi-
tional complexity. Finally, we provide theoretical
guarantees for the expressivity and systematic gen-
eralization of compositional models that explicitly
depend on our proposed definition and highlighting
factors which drive poor empirical performance.

1 Introduction
Compositionality is assumed to be integral to language pro-
cessing [Pagin and Westerståhl, 2010a; Pagin and Westerståhl,
2010b]. Generalizing in a compositional manner or compo-
sitional generalization is of high interest when learning with
sequences since it can enable a (learned) model to general-
ize well to a possibly infinite domain of sequences while
learning from only a small number of examples. With this
motivation, there has been interest in quantifying the compo-
sitional generalization of sequence or language models. This
has led to various language modeling benchmarks such as
SCAN [Lake and Baroni, 2018], CFQ [Keysers et al., 2019],
COGS [Kim and Linzen, 2020] and others [Andreas, 2018;
Hupkes et al., 2020], although compositional generalization
can also be of interest in vision [Klinger et al., 2020].

These benchmarks empirically probe the compositional-
ity of off-the-shelf language models, often demonstrating the
lack of compositional generalization. These highlight exam-
ples on which the models fail, but there is no precise un-

derstanding of why the failures occur. These findings are
further put into question by results highlighting how such
models can in fact compositionally generalize [Csordás et
al., 2021]. Nonetheless, various novel methods with im-
proved compositional generalization (as measured by these
benchmarks) have been developed [Russin et al., 2019;
Gordon et al., 2019; Li et al., 2019; Liu et al., 2020;
Nye et al., 2020; Liu et al., 2021], utilizing specialized mod-
els with compositional inductive biases. However, the area
of compositional generalization is still lacks a mathematical
definition and measure of compositionality.
Our contributions. Inspired by existing discussions on com-
positionality, and recent solutions for compositional general-
ization benchmarks, we make the following contributions: 1

• We propose a general modular definition of “compositional
functions” to facilitate concrete understanding of the expres-
siveness and generalization of such functions, and propose
the notion of “compositional complexity” to quantify the
complexity of such functions.

• We demonstrate the flexibility of this definition by highlight-
ing how various existing models fit this definition, and how
complex their compositions are.

• Given these definitions of compositional functions and com-
positional complexity, we precisely characterize the expres-
siveness and systematic generalization of such functions.

2 Related Work
A definition of compositionality [Pagin and Westerståhl,
2010a] states that the meaning µ(·) of an expression is:

µ(α(u1, . . . , uk)) = rα(µ(u1), . . . , µ(uk)), (1)

where α is a (grammar) rule applied to the sub-terms ui to
obtain the expression α(u1, . . . , uk), and rα is a meaning op-
eration that depends on the rule α. A non-technical phrasing
of the principle of compositionality [Partee, 1995] is(quoted
from Hupkes et al. [2020]): “The meaning of a whole is a
function of the meanings of the parts and of the way they
are syntactically combined.” Among the expected properties
of compositional functions are systematicity – the ability to

1A preliminary version of this work [Ram et al., 2023] was previ-
ously presented at the KBCG@IJCAI23 workshop, while the supple-
mentary material for this submission [Ram et al., 2024] can be found
at https://www.arxiv.org/abs/2405.02350.
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consistently handle unknown combinations of known parts,
and productivity – the ability to handle arbitrary length se-
quences. For systematic generalization, a model learned from
some examples (“known parts”) is expected to generalize to
unseen examples (“unknown combinations”). Productive gen-
eralization requires learned models to generalize to sequences
longer than those seen during learning.

Understanding compositionality and its relation to system-
aticity has been of long interest, and Zadrozny [1994] showed
that compositional semantics can be defined for any meaning
function without necessarily inducing systematicity. Recently,
Rosenbaum et al. [2019] studied how networks (specifically
routing networks) can be composed of multiple modules, fo-
cusing mainly on the training dynamics and empirical per-
formance of such compositional models, while Wiedemer et
al. [2023] try to formalize compositional generalization from
the perspective of disentangled representations. In contrast to
these works, we focus on understanding the compositional-
ity of functions in terms of hierarchical computation needed
to process the input (sequences), and the kinds of hierarchy
induced by existing sequence processing models, such as re-
current, convolutional and attention-based models.

Dziri et al. [2023] empirically probe the compositionality
of transformers on problems that require “strict multi-step
computations to derive correct answers”, and consider the
hierarchical computation necessary for the problem solving
similar to our definitions. While Dziri et al. [2023] and oth-
ers [Kim and Linzen, 2020; Sikarwar et al., 2022; Ontanon et
al., 2022] show that transformers struggle with such tasks, a
separate line of work highlight how transformers can be suc-
cessful on compositional benchmarks [Csordás et al., 2021;
Zhou et al., 2023; Drozdov et al., 2023], which begs the
questions (i) whether models (such as transformers) are at all
capable of solving compositional tasks, and (ii) when such
models are able to solve compositional tasks. Our proposed
framework allows us to study such questions theoretically.

Jarvis et al. [2023] study systematicity for both datasets
and functions, showing that modular functions can systemati-
cally generalize on datasets with compositional sub-structures,
while general purpose non-modular functions do not. How-
ever, if the function modularity is unable to appropriately
segregate the compositional sub-structure, even modular func-
tions fail. To that end, they study a space of datasets with
cleanly separable systematic sub-structures. In the context
of Eq. (1), cleanly-separable systematic sub-structures corre-
spond to non-overlapping sub-terms ui, i ∈ JkK. Our proposed
framework can be seen as a generalization where the composi-
tional sub-structures may not always be cleanly separable, but
still present, and we study general purpose sequence models
and their ability to express such compositional sub-structures.

3 Defining Compositionality
Our goal is to ground this principle into a mathematical form
that will allow us to quantify the compositionality of models
and understand how this quantification affects downstream
compositional generalization. We define compositional func-
tions f : X → Y with the domain X of input sequences
X = {x1, . . . , xL} of atoms or tokens xi ∈ I from an input

0:1 1:1

0:2

0:3 1:2 2:1 3:1

0:4

0:5

0:1

0:2 1:1 2:1 3:1

0:3

0:4 1:2

0:5

Figure 1: cDAGs for f(X) (left) and f(X ′) (right) in Example 1.
Nodes are labeled l:i (level l, index i). Sources are Fuchsia, sinks are
Sepia, and internal nodes are Blue.

dictionary I . The range Y of f can be R for regression, {0, 1}
for binary classification, or I for next token prediction.

Definition 1. To define f , we need the following components:
• Token encoder e : I × N → H (latent space), with ei =
e(xi, i) ∈ H encoding the ith token in X ∈ X .

• A computation directed acyclic graph (DAG) or cDAG D :
X → D (the space of DAGs), with D(X) defining the
hierarchical processing of a sequence X . D(X) can also
be viewed as the trace of program used by function f to
process X . We will describe this in further detail soon.

• Span processor g : Hk → H maps k terms in the latent
space into a new term in the latent space.

• Read-out function h : Hm → Y which maps the final set of
terms in the latent space to the output space Y .

Given the above, we define a compositional function as

f(X) = h
(
g⊗D(X)(e(x1, 1), . . . , e(xL, L))

)
, (2)

where g⊗D(X) is the recursive operation of g over D(X).

Next we further discuss the components.
A computation DAG or cDAG D(X) ≜ {N(X), E(X)}

for a specific input sequence X ∈ X can depend on X or be
pre-specified. This cDAG is a leveled DAG with set of nodes
N(X) and edges E(X). Each node n ≜ (l : i) ∈ N(X)
has a level l and index i (see Appendix A.1 in supplement for
details). The recursive application of g over D(X) induces
a value vl:i ∈ H for each internal node n ∈ N(X). The
sources is N(X) have level 0, and there is one source for
each xi ∈ X, i ∈ JLK ≜ {1, . . . , L} with index i and value
v0:i = e(xi, i) ∈ H. There are m sinks in N(X), and at
most k incoming edges and q outgoing edges at any node. For
an internal node n ∈ N(X) with k parents P (n), the value
vl:i = g(vl1:i1 , . . . , vlk:ik) ∈ H where vlj :ij is the value of
the jth parent in P (n). Note that this cDAG corresponds to the
“forward-pass” for inference.

We consider the explicit cDAG because it allows us to
see how the different elements xi, i ∈ JLK of the input se-
quence X are hierarchically composed to obtain the output.
This will allow us to study the complexity of any composi-
tional function. A “simple” cDAG, where all source nodes
just connect to a single sink node, would be “applicable” to
all functions, but it does not allow us to study it in an in-
teresting manner. When we study the compositional func-
tions induced by general purpose models (such as recurrent,
convolutional or transformer models), we will see that some
models have explicit cDAGs with more structure, while oth-
ers have less structured explicit cDAGs, but there are implicit
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structures induced in the cDAG; whenever possible, we will
explicitly state this implicit structure and study its proper-
ties. From a neuro-symbolic perspective [Sarker et al., 2021;
Garcez et al., 2022], this explicit cDAG can be seen as the
symbolic part, while the e, g, h are the neural; note that, in
some models, this symbolic cDAG might be created with neu-
ral elements, while in others, the cDAG might be obtained
with a symbolic grammar. This neuro-symbolic view offers a
novel theoretical understanding of compositionality.

The span processor g : Hk → H takes as input k elements
from the latent spaceH and outputs an element inH. While
the definition implies that the same g needs to be operated
recursively over the cDAG D(X), there is no restriction on
the inputs and output of g regarding the information encoded
in the latent space. For example, if the level l of any node l:i
is encoded into its value vl:i, then the g will behave differently
across levels (level-dependent); if the index i of the node l:i
is encoded into its value, then g will be sensitive to the posi-
tional information (order-dependent); if the value of a node
includes the type of the node (for example, a non-terminal
in a grammar), then g can be type-dependent. Our definition
states that the arity of the span processor g : Hk → H is k.
We do so for the ease of exposition, though our definition can
incorporate more flexible span processors (see Appendix A.2
in supplement).

The read-out function h : Hm → Y finally maps m ele-
ments in the latent space to the output space Y . This separation
between g and h was necessary in our proposed definition be-
cause we require g to be operable recursively, and thus g can
operate in a latent spaceH distinct from Y . In some applica-
tions, H ⊇ Y , in which case, h can be an identity function.
In an alternate scenario, where the g function is identity, and
the cDAG function produces “trivial cDAGs” – cDAGs where
the source nodes are the sink nodes (see Fig. 3a for example),
h would effectively be a mapping from X → Y (subsuming
the token encoder within h). But in this scenario, we are not
able to explicitly view the recursive operation desired in the
“meaning of the whole is a function of the meaning of the parts”
principle of compositionality. Hence, we make this separation
between h and g explicit. There are couple of aspects of this
read-out function we wish to discuss explicitly – (i) We as-
sume that h is specifically non-compositional and processes
its input without breaking it up into any sub-problems; we
explicitly define the compositional function f separating out
g,D, h, where g (neural) and D (symbolic) represent the com-
positional part. (ii) We require h to have a fixed-arity of m
since g and D are aggregating the information over the input.

Example 1. Figure 1 (left) shows the cDAG D(X) for
a compositional f on X = [x1, . . . , x5], with f(X) =
h (g (g (e1, e2) , g (g(e3, e4), e5))), k = 2 in-degree, q = 1
out-degree, m = 1 sink, ei = e(xi, i) ∈ H, span-processor
g : H2 → H, and read-out function h : H → Y . The values
v0:i = ei for sources 0:i, i ∈ {1, . . . , 5}, and the inter-
nal node values are: v1:1 ← g(e1, e2), v1:2 ← g(e3, e4),
v2:1 ← g(v1:2, e5), v3:1 ← g(v1:1, v2:1). h operates on
v3:1 at sink 3:1. Figure 1 (right) shows the cDAG D(X ′) of
the same f on X ′ ̸= X with the same k = 2, q = 1,m = 1
and f(X ′) = h (g(g(e1, g(e2, e3)), g(e4, e5))).
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0:2 1:2
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0:2 1:1 2:1

0:3

0:4 1:2 2:2 3:1 4:1

0:5 1:3 2:3

0:6 1:4 2:4 3:2 4:2

0:7 1:5

Figure 2: cDAGs for f(X) (left) and f(X ′) (right) in Example 2.

Example 2. Figure 2 (left) shows the cDAG D(X) for a com-
positional f on X = [x1, . . . , x7], with f(X) = h (v4:1, v3:1),
k = 3 maximum in-degree, q = 3 maximum out-degree,
m = 2 sinks, ei = e(xi, i) ∈ H, span processor g : H3 → H,
and read-out function h : H2 → Y . The source values
v0:i = ei for each i ∈ {1, . . . , 7}, and the internal node val-
ues are: v1:1 ← g(e1, e2, e3), v1:2 ← g(e2, e3, e4), v1:3 ←
g(e3, e5, e7), v1:4 ← g(e4, e5, e6), v1:5 ← g(e5, e6, e7),
v2:1 ← g(v1:1, v1:2, v1:3), v2:2 ← g(v1:1, v1:3, v1:4),
v2:3 ← g(v1:2, v1:4, v1:5), v2:4 ← g(v1:3, v1:4, v1:5),
v3:1 ← g(v2:1, v2:2, v2:3), v3:2 ← g(v2:2, v2:3, v2:4),
v4:1 ← g(v3:2, v2:3, v2:4). h operates on v3:1 and v4:1 at
sinks 3:1 and 4:1. Figure 2 (right) shows the cDAG D(X ′)
of the same f on X ′ ̸= X with the same k = 3, q = 3,m = 2.

While Example 1 is a simple compositional function on a
sequence, Example 2 is a more sophisticated one. This is to
highlight that our proposed Definition 1 can handle functions
which require more complex interactions between the tokens
in a sequence. Example 1 has a cDAG with a maximum out-
degree q = 1, implying a single path from any source to a
sink. Example 2 has a cDAG with a maximum out-degree
q = 3 across all levels in the DAG, implying that there can be
a large number of paths to any sink from a source. This allows
the definition to include functions where certain tokens in the
sequence are of much higher importance to the output than
others. These examples also highlight that edges in the cDAG
are allowed to skip levels, and the sinks can be from different
levels, further highlighting the compositional flexibility.

We like to remark on a couple of points here: (i) Through
these examples, we show that our definition explicitly con-
siders how the problem of sequence processing is broken up
into sub-problems – the cDAG embodies how disjoint or in-
tertwined these “sub-problems” are by explicitly considering
the computation hierarchy. (ii) For input sequences X,X ′

from the same problem domain, and the same compositional
function f , we allow the cDAG to be different – cDAG D(X)
can be input-dependent – thereby allowing different input
sequences to have different sub-problem hierarchies.

Before we discuss properties of this form of compositional
functions, we note that such a precise yet flexible definition
is one of our contributions, and we will show how existing
models (architectures) fit this definition. It is a precise elab-
oration of the succinct recursive Eq. (1) – we make precise
the recursion, and how the sub-terms ui are recursively built
up. At a non-technical level, we also believe that our proposed
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Definition 1 connects intuitively to existing definitions:

The meaning of the whole︸ ︷︷ ︸
f :X→Y

is a function︸ ︷︷ ︸
h:Hm→Y

of the meanings of the parts︸ ︷︷ ︸
g:Hk→H

and of the way they are syntactically combined.︸ ︷︷ ︸
D:X→D

Both Examples 1 and 2 can be seen as compositional functions,
but Example 2 is clearly a more complex composition. In
addition to its intuitive nature, our proposed definition allows
us to understand how complex the compositionality is beyond
just stating if a function is compositional.
Compositional Complexity. This depends on the functions
g, h, e as well as the cDAG function D that drives the com-
putation. For a sequence X of length L, D(X) has L source
nodes, maximum in-degree of k (controlling the span size for
g), m sink nodes (controlling the capacity of h), maximum
out-degree of q (quantifying the “localism” of the effect of a
node). However, these do not explicitly incorporate the fact
that changes to nodes at lower levels of the cDAG can have
a larger effect on the output than changes to nodes at higher
levels of the cDAG. Instead, we propose a new quantification –
the locus of influence or LoI of any source node:
Definition 2 (LoI of a source node). Consider a composi-
tional function f with components e,D, g, h (as in Defini-
tion 1). Let (vn1

, . . . , vnj
, . . . , vnk

) ∈ Hk be any input to
the span processor g, with vn = g(vn1

, . . . , vnj
, . . . , vnk

)

its output. Let ε ∈ H be a “perturbation” to the jth ar-
gument to g, j ∈ JkK, resulting in the perturbed output
vjn(ε) = g(vn1

, . . . , vnj
+ ε, . . . , vnk

). Let c > 0 be an
universal constant such that ∀j ∈ JkK, ∀ε ∈ H,∥∥vn − vjn(ε)

∥∥ ≤ c∥ε∥. (3)

For a sequence X ∈ X of length L, and a source node 0:i
in D(X), let P (xi) be the set of all unique paths from 0:i to
any of the sink nodes in D(X). We define the absolute LoI
of index i as δi =

∑
P∈P (xi)

c|P |, with |P | as the length of a
path P ∈ P (xi), and the relative LoI as βi = δi/

∑
j∈JLK δj .

This definition of the complexity of composition incorpo-
rates both the complexity of the cDAG D(X) and the com-
plexity of the span processor g : Hk → H in terms of its
smoothness, with higher values of c indicating more complex
(less smooth) g. The absolute LoI δi incorporates the effect
of longer paths, with the effect growing with path length, and
corresponds to the sensitivity of the compositional function
output to any one input token in the sequence.

The smaller the absolute LoI δi of any input index i, more
local its effect, and thus more structure that can be transferred
between examples if xi is replaced with something else. A
relative LoI βi greater than 1/L denotes that the input index i
(and thus input token xi) has an out-sized effect on D(X) (and
thus the computation) compared to the other indices (tokens).
In Example 1 (left), δ1 = c2, β1 = 1/2c+3 < 1/5 while δ3 =
c3, β3 = c/2c+3 > 1/5, implying that x3 has more influence
(absolute and relative) function than x1 (assuming c > 1). In
Example 2 (left), δ1 = c4 + 2c3, β1 = c+2/27c+39 ≈ 1/22 <
1/7, while δ5 = 7c4 + 9c3, β5 = 7c+9/27c+39 ≈ 1/4 > 1/7,
hence x5 has a significantly larger influence than x1.

We utilize the LoI to define the complexity of a composi-
tional function, and a class of such compositional functions:
Definition 3. A function f : X → Y with components
g, h, e,D is (k, q,m, δ,β)-compositional if, for any X ∈ X
of length L (that is, |X| = L), the cDAG D(X) has a in-
degree of k, maximum outgoing degree of q, and m sink nodes,
and for ∀i ∈ JLK, δi ≤ δ, and βi ≤ β ∈ [1/L, 1). We denote
with F a class of such (k, q,m, δ,β)-compositional functions.

A small δ and a β close to 1/L signifies a function that
possesses a high level of localism across all input sequences
and tokens in its domain. While this function has the most
structure, it might not be suitable for practical purposes. A
high δ and a β close to 1/L signifies a very complex function
where there is a lot of interaction between all the input tokens
in all input sequences, making it hard to exploit any composi-
tional structure in the function. A high δ and a β significantly
higher than 1/L indicates an interesting class of functions
where, some input tokens can have a high influence over the
function computation, but, for most tokens, there is a compo-
sitional structure in the function that can be exploited. This
intuitively seems to be an interesting and more practical class
of compositional functions since assuming all tokens have an
equal level of relative influence seems quite restrictive.
Cleanly-separable systematic sub-structures. Revisiting
Eq. (1), where ui are sub-parts, we highlight a special case
of our proposed Definition 3 of compositional functions: If
the sub-parts ui, uj , i ̸= j are non-overlapping throughout
the recursion, up to the base case where the sub-parts, ui, are
the tokens in the input, then it would induce a cDAG with
a maximum outgoing degree q = 1. This implies that the
number of paths |P (xi)| = 1 for any source 0:i – there is a
single source-to-sink path for any source, resulting in a cDAG
with significantly reduced compositional complexity.

4 Existing Models as Compositional Functions
Here we will discuss various model classes induced by exist-
ing model architectures, how they fit Definition 1 of compo-
sitional functions, and how they compare to each other. We
will re-express existing sequence processing models as per our
definition, teasing out the symbolic cDAG (and the neural g, h)
and studying their compositional complexity. The presented
cDAG for each model class corresponds to a “forward-pass”
for inference. Omitted technical details are in Appendix B in
the supplement.

We begin with the trivial cDAG of no hierarchical composi-
tion in Fig. 3a. All sources in D(X) connect to separate sinks.
The composition is written as h(g(e1), g(e2), g(e3), g(e4)).
For L-length inputs, this is a (k = 1, q = 1,m = L, δ =
c,β = 1/L)-compositional function class.

4.1 Recurrent Composition
Figure 3b presents an example cDAG for unidirectional re-
current composition, with the corresponding compositional
function h(g(g(g(e1, e2), e3), e4)). Specific choices of the g
and h functions would give us specific recurrent neural net-
work (RNN) models. The cDAG recursively combines 2 nodes
in the order of the original sequence to get a class of compo-
sitional functions with (k = 2, q = 1,m = 1). The cDAG
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(b) Unidirectional recurrence
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(c) Bidirectional recurrence
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0:2 1:1 2:1

0:3 1:2

0:4

(d) Binary tree

Figure 3: Existing models - I. Nodes are labeled l:i (level l, index i). Sources are Fuchsia, sinks are Sepia, and internal nodes are Blue.

is input-agnostic, that is D(X) = D(X ′)∀X,X ′ ∈ X with
|X| = |X ′|. This composition can operate on arbitrary length
sequences, and its complexity is quantified as:
Proposition 1. With unidirectional recurrent composition, the
maximum absolute LoI is δ ≜ cL−1, with a maximum relative
LoI of β ≜ (cL − cL−1)/(2cL − cL−1 − 1).

The absolute LoI is large (exponential in the input length),
and the relative LoI is close to 1/2≫ 1/L for large enough L.

Figure 3c is an example of a cDAG of a bidirectional re-
current composition, which can be written algebraically as
h(g(g(g(e1, e2), e3), e4), g(g(g(e4, e3), e2), e1)). The cDAG
recursively combines 2 nodes in the order of the sequence,
then in the reverse order, giving us a function class with
(k = 2, q = 2,m = 2). This is similar to the unidirec-
tional recurrence, but with two sink nodes instead of one, and
can operate on arbitrary length sequences but the cDAG is
input-agnostic. The compositional complexity is given by:
Proposition 2. With bidirectional recurrent composition, the
maximum absolute LoI is δ ≜ cL−1 + c, with a maximum
relative LoI of β ≜ (cL− cL−1+ c2− c)/2(2cL− cL−1− 1).

Note that, while the δ for the bidirectional recurrent compo-
sition remains of the same order as that of the unidirectional
recurrent one, β is approximately halved (approaching 1/4).

Figure 3d shows an example of a balanced tree recurrent
composition by utilizing a balanced binary-tree cDAG with
(k = 2, q = 1,m = 1) (as in a TreeLSTM [Tai et al., 2015]),
with an algebraic form h(g(g(e1, e2), g(e3, e4))). The cDAG
is input-agnostic (like the previous two), but can operate on
arbitrary length sequences. The compositional complexity is:
Proposition 3. With balanced binary-tree recurrent compo-
sition, the maximum absolute LoI is δ ≜ c⌈log2 L⌉, with a
maximum relative LoI of β ≜ 1/L.

This form of composition significantly reduces the complex-
ity of the cDAG relative to the previous two models both in
terms of δ (linear dependence in L instead of exponential) and
β (1/L instead of a constant≫ 1/L). There are versions of
the tree recurrent composition that leverage the parse tree of
the input to define the cDAG [Socher et al., 2010], and thus, na-
tively fit our definition. Here the cDAG will no longer be input-
agnostic, and Proposition 3 would not apply; the complexity
will depend on the grammar driving the input-dependent parse
trees. Various models [Bowman et al., 2016; Shen et al., 2018;
Shen et al., 2019] integrate parse-tree structures into a RNN
for an input-dependent cDAG for the recurrent composition.
They learn to generate a parse-tree for any given input (either
via supervision from an external parser or directly from the
data). All these models fit our definition of compositional
functions with an input-dependent tree-based cDAG.

4.2 Convolutional Composition with Pooling
Figure 4a shows an example cDAG induced by repeated ap-
plication of convolution-then-pooling or conv+pool, per-
forming a convolution over a span of size 2, and pooling
over a span of size 2 in this example (see Figure 5a in
supplement for a detailed version of Fig. 4a that shows
how repeated conv+pool implicitly induces the cDAG in
Fig. 4a; Figure 5e and corresponding cDAG in Figure 5f
in the supplement provides an example of convolution with
padding over a span of size 2 and pooling over a span of 3).
The composition in Fig. 4a can be algebraically written as
h(g(g(e1, e2, e3), g(e3, e4, e5), g(e5, e6, e7))). In general, we
can consider a span processor g function that performs con-
volution over a span of size w and then pools over a span of
p. Here, the number of sinks m has to be user-specified, and
the cDAG repeatedly applies conv+pool until it reduces the
number of nodes at the highest level to m. This induces a
compositional function class with (k = w + p− 1, q = w).
Proposition 4. Assuming that 1 < w, p≪ L, the conv+pool
composition has a maximum absolute LoI of δ ∼ O(clogL),
and a maximum relative LoI of β ∼ O(2/(L(1 + 1/p))).

We would like to highlight an important subtlety here: If we
utilize average or sum pooling, the cDAG is input-agnostic; if
the pooling is selective, such as in max-pooling or min-pooling,
some of the edges in the cDAG implicitly get deactivated dur-
ing the recursive computation of the function, leading to an
input-dependent cDAG – the cDAG itself depends on the in-
put sequence, and can change between inputs of same length.
Figure 5c shows an example of selective pooling, with the cor-
responding input-dependent cDAG shown in Figure 5d. This
function can operate on arbitrary length input sequences.

4.3 Transformers
Figure 4b expresses the cDAG of a transformer with M levels
or “blocks”, where the span-processor g : Hk → H is a trans-
former block with the (multi-headed) self-attention, residual
connections, layer normalization, and the token-wise ReLU
network [Vaswani et al., 2017] (see Appendix B.5 in the sup-
plement). We consider the version where, for inference, only
the last token representation (after M transformer blocks) is
utilized for prediction – the read-out function only applies to
the last token representation. For a input sequence of length
L, k = q = L, with m = 1 sink node. The compositional
complexity is:
Proposition 5. A transformer based composition with M
blocks has a the maximum absolute LoI of δ = LM+1cM+1,
and a maximum relative LoI of β = 1/L.

This function class has a really high δ (exponential in the
number of blocks M but polynomial in the input length L
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Figure 4: Existing models - II. Nodes are labeled l:i (level l, index i). Sources are Fuchsia, sinks are Sepia, and internal nodes are Blue.

unless M > L) and the lowest possible β = 1/L – the
output is equally sensitive to all tokens in the sequence. It is
interesting to contrast this complexity to that of a balanced
binary-tree recurrent composition, which has the same level
of relative LoI β = 1/L, but the δ is linear in L instead of
polynomial (or exponential if M > L); the unidirectional
and bidirectional recurrent compositions have an exponential
dependence on the length L (but much larger β).

This composition does not explicitly have an input-
dependent cDAG – all nodes at a level always connect to all
nodes at the next level since all attention (scores) are positive.
In practice, the attention weights are obtained with softmax
activation, which pushes the attention to be approximately
sparse. If we consider the attention to be exactly sparse [Tay et
al., 2022] with K ≪ L nonzero scores (rest zero), the cDAG
will have much fewer edges as in Fig. 4c (here, K = 3). If
the attention weights and sparsity pattern are input-dependent
(as in with top-K attention [Gupta et al., 2021]), transformers
with hard attention will have input-dependent cDAGs. Here
k = K, q = L,m = 1, and the compositional complexity is:

Proposition 6. A transformer with M blocks and K-sparse
attention (K ≪ L) has a maximum absolute LoI of δ =
LKMcM+1, and a maximum relative LoI of β = 1/K.

Contrasting this to the complexity of the standard trans-
former (Proposition 5), we see that the δ is considerably lower
(O(LLM ) vs O(LKM ) with K ≪ L), implying that the LoI
of any one input token (thus the sensitivity) is substantially
reduced. However, the relative LoI β can be considerably
higher (1/L vs 1/K), indicating that the composition is al-
lowed to be relatively more sensitive to certain tokens than
others. Attention-based span-processor g can handle arbitrary
length inputs (albeit at quadratic computation per block/level),
and the read-out function h always has a fixed arity of m = 1.
Thus, this transformer can operate on arbitrary length inputs.

If we consider a decoder-only transformer, then for all
levels l < M , all edges from nodes l:i → l+1:j for j < i
would no longer be in the cDAG (Fig. 4d). The complexity is:

Proposition 7. A decoder-only transformer with M blocks has
a maximum absolute LoI is δ = LMcM+1, and a maximum
relative LoI of β = 1/(1 +

∑
i∈JL−1K(

i/L)M ).

As L or M grows, the sum
∑

i(
i/L)M goes to zero, and

thus, β → 1. For some ∆ ∈ (0, 1), β ≜ 1/(1 + r∆) for the
largest r ∈ JLK such that ∆ ≤ (1− r/L)M . We can similarly
study the decoder-only transformer with sparse/hard attention.

Model IC AL (k, q,m) δ β

No-hierarchy(3a) ✗ ✗ (1, 1, L) c 1/L

Uni-RNN(3b) ✗ ✓ (2, 1, 1) cL−1 1/2
Bi-RNN(3c) ✗ ✓ (2, 2, 2) cL−1 1/4
Tree-RNN(3d) ♦ ✓ (2, 1, 1) clogL 1/L

Conv+pool(4a) † ‡ (w+p, w,m) clogL 2/L
1+1/p

Transformer(4b) ✗ ✓ (L,L, 1) (Lc)M 1/L
SpAtt Trf(4c) ✓ ✓ (K,L, 1) L(Kc)M 1/K
Decoder Trf(4d)• ✗ ✓ (L,L, 1) (Lc)M 1

(1+r∆)

Table 1: Complexities of existing models. LoI is specified approxi-
mately for the ease of exposition. IC: Input-dependent cDAG. AL:
Arbitrary length operation. ♦: The cDAG can be input-dependent if a
input parse tree is available. †: Conv+Pool induces input-dependent
cDAGs for max/min-pool, not for avg/sum-pool. ‡: The number of
sinks m needs to be specified for conv+pool, and the model can han-
dle arbitrary length if it can recursively conv+pool until the number
of nodes is reduced to m. •: See discussion after Proposition 7.

Efficient transformers. While transformers are able to han-
dle arbitrary length input, their computational cost scales
quadratically in the input length L (compared to the linear
cost of recurrent models). To mitigate this issue, various “ef-
ficient” transformers have been proposed [Tay et al., 2022;
Lin et al., 2022]. Various sparse attention mechanisms have
been studied, utilizing block-local, dilated, global or banded
attention (see Lin et al.[2022, Figure 4]). These architectures
reduce the quadratic cost often to almost linear. In terms
of their compositional complexity, these architectures can
easily be studied within our proposed framework, and will
have significantly lower complexity compared to the vanilla
transformer (smaller δ, similar β). However, these architec-
tures induce an input-agnostic sparsity pattern, thus leading to
input-agnostic cDAGs. In contrast, sparse attention schemes
with input-dependent sparsity patterns such as top-K atten-
tion [Gupta et al., 2021] and sparse Sinkhorn attention [Tay et
al., 2020] induce input-dependent cDAGs.

4.4 Discussion
We discussed various existing sequence processing models in
the context of our definition of compositional functions (Defi-
nitions 1 and 3), and quantify their corresponding complexities
in the form of bounds on the absolute LoI δ and relative LoI β.
We summarize these properties in Table 1 to compare different
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models. Beyond complexities, we also specify (i) whether they
can operate on arbitrarily long sequences, and (ii) whether the
cDAGs are input-dependent or input-agnostic for some fixed
input length L. In Appendix B.9, we discuss a model’s ability
to process arbitrary lengths, and how it relates to parameter
sharing across different cDAG levels. Here, we focus on the
topic of input-agnostic vs input-dependent cDAGs.

As we summarize in Table 1, the only model with explicitly
input-dependent cDAG is the sparse attention versions of the
transformer (and the tree based recurrence if the tree is input-
dependent). The conv+pool composition implicitly induces
an input-dependent cDAG if the pooling operation is explicitly
selective (such as using max-pooling or min-pooling).

Given (i) the success of the softmax attention mecha-
nism in sequence processing tasks, (ii) the use of explic-
itly input-dependent cDAGs in efficient transformers such as
Sinkhorn transformers, tree-based RNNs, and specialized mod-
els for compositional generalization, and (iii) the wide use of
max/min-pooling instead of sum/average pooling (especially
in vision tasks), we think it is important to rigorously under-
stand the value of input-dependent cDAGs. First, it is fair to
assume that most realistic problems involve input-dependent
cDAGs. For example, if the input, and the corresponding out-
put, are generated from a grammar, then the cDAG of any
input X would be closely related to its parse-tree.

To this end, we specifically study the ability of the compo-
sitional function with an input-agnostic cDAG to approximate
a compositional function with input-dependent cDAGs. We
present a condensed version of the result for ease of exposition;
see Appendix C in the supplement for details and proof.
Theorem 1 (condensed). Consider a (k, q,m, δ,β)-
compositional function class F , and input sequences X ∈ X
of length L. Consider a ground-truth function f ∈ F with
components e,D, g, h, and a compositional function f ∈ F
with components e,D, g, h, with an input-agnostic cDAG such
that D(X) = D ∀X ∈ X , |X| = L. 2 Then the worst-case
approximation of f by f, for f, f ∈ F is given by:

Clδ ≤ max
D,g,h,

f≜{e,D,g,h},
f∈F ,X∈X

min
D,g,h,

f≜{e,D,g,h},
f∈F

|f(X)− f(X)| ≤ Cu
δ

β
, (4)

where f(X) = h(g⊗D(X)(e(x1), . . . , e(xL)), and f(X) =
h(g⊗D(e(x1), . . . , e(xL)), with general smoothness and struc-
tural assumptions, and universal constants Cl, Cu > 0.

This result provides an upper and lower bound on the ap-
proximation error. Even if we select the best possible fixed
cDAG D, and corresponding span processor g and read-out
function h (the min over {D, g, h} for the approximation
f ∈ F), there are compositional functions f such that, for
some input X (the max over {D, g, h} for f ∈ F , and the
input X ∈ X ), the approximation error is at least O(δ). The
approximation is bounded from above by O(δ/β); note that
the maximum relative LoI β ∈ [1/L, 1]. This indicates that
function classes with large δ are hard to approximate with an
input-agnostic cDAG of the same complexity. Furthermore,

2We assume that the token encoder e is same for both f, f.

for the same δ, smaller β worsen the upper bound. Overall,
function classes with small δ, or moderate δ with large β
can be approximated well with input-agnostic cDAGs. As dis-
cussed earlier, for function classes of particular interest to us,
with moderately high δ and high β, input-agnostic cDAGs do
not provide promising approximation, though larger β is more
favorable. This result makes precise the intuition that input-
agnostic cDAGs are not expressive enough to appropriately
approximate functions with input-dependent cDAGs.

We also study systematic generalization within our frame-
work. We consider a special class of compositional functions
with a maximum out-degree q = 1 in the cDAG, inducing
“cleanly-separable” sub-structures, and further focus on the
case with maximum in-degree k = 2 and a single sink (m = 1)
in the cDAG. Given a class of (compositional) functions F ,
and training data S, generalization guarantees bound the dif-
ference between the true risk R(f̂) = E(X,y)ℓ(y, f̂(X)) of a
learned model f̂ ∈ F and its empirical risk RN (f̂). Here we
present a condensed result; see Appendix D in the supplement
for details.
Theorem 2 (condensed). Consider a (2, 1, 1, δ,β)-
compositional function class F , input X ∈ X of length L,
a training set S of N samples from a ground-truth function
f ∈ F with components e,D, g, h. Assume that the token
encoder e and the cDAG function D are given, and we only
learn the span encoder ĝ and the read-out function ĥ to get
f̂ ≜ (e,D, ĝ, ĥ). Then, with probability at least 1− ξ,∣∣∣R(f̂)−RN (f̂)

∣∣∣ ≤ γδCN

(
1 + 2N

√
2 log(2/ξ)

N

)
, (5)

where CN is a quantity dependent on N and ξ ∈ (0, 1).

If the model class F is expressive, the empirical risk RN (f̂)
can be small. If CN ∼ O(1/N), then we recover the standard
O(1/

√
N) rate. However, if the compositional complexity, δ,

is high, this bound does not provide a favorable systematic
generalization guarantee, highlighting that, even with cleanly-
separable compositions (q = 1), our proposed compositional
complexity is directly tied to the systematic generalization.

5 Conclusion
In this paper, we proposed a precise novel definition of com-
positional functions, separating out the neural and symbolic
parts, and a consequent compositional complexity, which ex-
plicitly quantifies the complexity in the (symbolic) compu-
tation trace or the cDAG of any compositional function. We
demonstrated how existing models, such as recurrent, convo-
lutional or attention-based ones, fit into our proposed defini-
tion, allowing us to compute and compare their compositional
complexities. We categorized models into those with input-
dependent compositions and those with input-agnostic ones,
and established theoretical guarantees on the (in)ability of
input-agnostic compositions to approximate input-dependent
ones. Based on this theoretical framework, we also establish
compositional generalization guarantees for learned composi-
tional functions, rigorously connecting our proposed notion of
compositional complexity to systematic generalization.
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