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Abstract
Multi-view clustering (MVC) has garnered signif-
icant attention in recent studies. In this paper, we
propose a novel MVC method, named CCL-MVC.
The novel method constructs a cross-order neigh-
bor tensor of multi-view data to recover a low-rank
essential tensor, which preserves noise-free, com-
prehensive, and complementary cross-order rela-
tionships among the samples. Furthermore, it con-
structs a consensus representation matrix by fus-
ing the low-rank essential tensor with auto-adjusted
cross-view diversity embedding, fully exploiting
both consensus and discriminative information of
the data. An effective optimization algorithm is de-
veloped, which is theoretically guaranteed to con-
verge. Extensive experimental results confirm the
effectiveness of the proposed method.

1 Introduction
As one of the fundamental tasks of machine learning, clus-
tering has achieved notable successes in diverse domains,
such as image segmentation [Ng et al., 2023], face clustering
[Wu et al., 2023], community detection [Park et al., 2022],
etc. Among the extensive clustering algorithms, the subspace
clustering methods have drawn significant attention in recent
years due to their effectiveness and elegant theory [Liu et al.,
2010; Peng et al., 2017; Elhamifar and Vidal, 2009].

In real-world scenarios, the advancement of technology
has led to an increase in the availability of data from multi-
ple sources, leading to the natural emergence of multi-view
data [Zhang et al., 2020]. Consequently, multi-view data
are prevalent and contain a wealth of useful, discriminative,
and complementary information across multiple perspectives,
making them essential for enhancing clustering capability
[Xia et al., 2021]. However, traditional clustering methods
mainly focus on single-view data and are not suitable for an-
alyzing multi-view data, as each view can provide a unique
and valuable insight. Thus, multi-view clustering (MVC) has
garnered significant attention in recent years due to its versa-
tility and effectiveness in various domains [Xia et al., 2022;
Wen et al., 2023; Brbić and Kopriva, 2018].

Due to the great success of single-view subspace clustering
(SVSC) methods, they have been extensively developed for

MVC [Fu et al., 2023; Zhang et al., 2020; Yang et al., 2019].
Most of these methods follow a pipeline similar to the SVSC
with a two-step strategy. In particular, they first construct
an affinity matrix, on which the standard spectral clustering
(SPC) [Ng et al., 2001] is then performed. Since the SPC is
standard, the step of affinity matrix construction has been the
main focus of MVC [Chen et al., 2021; Zhang et al., 2020].

According to the way of affinity matrix construction, ex-
isting MVC methods can be mainly categorized into two
types [Wu et al., 2019]. The first type is developed from the
SPC-based subspace clustering methods [Zhang et al., 2015;
Li et al., 2019; Zhang et al., 2020], while the second is devel-
oped from the graph-based clustering, which constructs affin-
ity matrix using similarity matrix [Wang et al., 2020; Xia et
al., 2014; Zhan et al., 2018; Kumar et al., 2011] and is the
main focus of our paper. It has been revealed that the Markov
random walk has a close connection with the SPC [Zhou et
al., 2005; Shi and Malik, 2000], based on which a number
of methods have been developed [Zhou and Burges, 2007;
Xia et al., 2014; Wu et al., 2019]. For example, the transduc-
tive inference approach constructs a Markov transition prob-
ability matrix (TPM) in each view, and combines the TPMs
using the Markov mixture [Zhou and Burges, 2007]. The
RMSC constructs the TPMs of different views and learns a
common low-rank stochastic matrix to alleviate the noise ef-
fects [Xia et al., 2014]. Different from them, the ETLMSC
learns a low-rank essential tensor using the low-rank tensor
recovery (LTR) approach from the TPMs [Wu et al., 2019].

The LTR approach has been quite popular and successful
in recent development of MVC [Xie et al., 2018; Zhang et al.,
2015; Wu et al., 2019], which has been extensively attempted
in above mentioned methods [Zhou and Burges, 2007; Xia et
al., 2014; Wu et al., 2019; Xie et al., 2018]. However, these
methods suffer from some key issues, which may severely de-
grade the learning performance. First, by adopting the tensor
nuclear norm (TNN), the LTR approach may suffer from in-
accurate approximation issue [Yu and Yang, 2023]. Second,
the high-order neighbor information of the data is rarely con-
sidered, which has been revealed essential in graph learning
[Tang et al., 2015]. Third, simultaneous consensus and di-
versity learning is rarely considered on the low-rank essential
tensor, which omits some essential properties. To this end, we
develop a new method for MVC to address the above issues.

We summarize the key contributions of this paper as fol-
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lows: 1) We recover a low-rank essential tensor from a cross-
order neighbor graph tensor derived from multi-view data,
which preserves comprehensive and complementary infor-
mation of the data. 2) By embedding an automatically ad-
justed weighting vector with the learned noise-free cross-
order neighbor graphs, our method explicitly preserves cross-
view diversity information of the multi-view data to learn a
consensus affinity matrix. 3) We design an efficient optimiza-
tion algorithm, which is theoretically guaranteed to converge
under some mild conditions. 4) Extensive experimental re-
sults confirm the effectiveness of the proposed method and
its superiority to baselines.

2 Related Work
Given multi-view data {X(v)}Vv=1, with superscript (·)(v) de-
noting the v-th view of multi-view data or the v-th frontal
slice of a tensor, X(v) ∈ Rdv×n being the v-th view samples,
dv and n being the number of features and samples in the v-
th view, and V being the number of views, respectively, the
ETLMSC recovers a low-rank essential tensor Z ∈ Rn×n×V

from a TPM-based tensor P ∈ Rn×n×V constructed from
multi-view data by [Wu et al., 2019]:

min
Z,E∈Rn×n×V

∥Z∥⊛ + λ∥E∥2,1 s.t. P = Z + E , (1)

where E denotes the noise, ∥ · ∥⊛ is the t-SVD-based TNN,
and ∥ · ∥2,1 denotes the tensor ℓ2,1 norm defined as the sum of
ℓ2-norm of mode-3 fibers. Here, the tensor P is constructed
by slice as P(v) = (Ds(S(v)))−1S(v), where Ds(·) returns
a diagonal matrix with diagonal elements being the sum of
rows of the input matrix, and S ∈ Rn×n×V is a similarity
tensor constructed by slice with S(v) being a pair-wise simi-
larity matrix in the v-th view. Eq. (1) essentially follows the
robust tensor PCA [Lu et al., 2016], where the key difference
between them is that they aim at different learning tasks with
different types of data as input.

3 The Proposed Method
Due to the great success of low-rank essential recovery ap-
proach, in this paper, we follow the framework of Eq. (1)
and develop a new method with some more desired proper-
ties for enhanced learning performance. As has been widely
revealed in literature, the convex approach to rank or spar-
sity approximation is not accurate, and nonconvex approach
may provide a more accurate approximation and enhance the
structural learning capability of the model [Peng et al., 2022a;
Peng et al., 2022b]. Therefore, in a way similar to the
t-SVD-based TNN [Wu et al., 2019] and tensor Schatten
norm [Xia et al., 2022], and inspired by [Peng et al., 2022a;
Peng et al., 2020], we expand the log-based matrix rank and
sparsity approximation to log-based tensor rank approxima-
tion (LTRA) and sparsity approximation (LTSA) as ∥Z∥® =∑V

v=1

∑n
i=1 log(1 +σi(Ẑ(v))), and ∥E∥Ⓢ =

∑n
j=1 log(1 +

(
∑n

i=1

∑V
v=1 E2

ijv)
1/2), respectively, where the LTRA is de-

fined in the frequency domain, Ẑ = fft(Z, [ ], 3) ∈ Rn×n×V

with fft(·) being the fast Fourier transform (FFT) along the
third dimension, σi(·) is the i-th largest singular value of

the input matrix, and the LTSA is defined in a lateral slice-
wise manner that enhances the cross-view sparsity and helps
strengthen the connections among different views. Then, we
may develop Eq. (1) into the following model:

min
Z,E∈Rn×n×V

∥Z∥® + λ∥E∥Ⓢ s.t. P = Z + E , (2)

in which the nonconvex approach provides more accurate ap-
proximations and helps preserve more useful information to
enhance the learning capability [Peng et al., 2022a].

In Eq. (2), P reveals the probability of a one-step random
walk from one example to another in each view, which pro-
vides soft neighbor relationships of the samples. In practice,
such relationships may be insufficient to explicitly measure
the structure of the data, because samples may have latent
higher-order neighbor relationships that are not directly pre-
served in a first-order graph [Kang et al., 2022]. Intuitively,
a higher-order relationship can be measured by the proba-
bility of a multi-step random walk from one example to an-
other [Tang et al., 2015]. Therefore, we may incorporate the
higher-order neighbor relationships into LTR by defining a
high-order TPM for multi-step random walks in each view as:
(P(v))k = P(v) · P(v) · · · · · P(v), with k being the step of
random walks or the order of neighbor relationships. To fully
exploit the cross-order neighbor relationships, we define the
following fine-grained probability tensor PK ∈ Rn×n×V by
slice as: P(v)

K =
∑K

k=1
(P(v))k+((P(v))k)T

2 , where the trans-
pose ensures the symmetry of the neighbor relationships that
is natural and essentially desired for neighbor relationships.
Moreover, to exploit local structure of the data and filter the
redundancy of neighbor relationships, we construct a local
similarity tensor S , where in each view we keep N neighbors
in the neighbor graph while setting the others to zero for each
sample. Consequently, we construct PK with local structure
of the data and our model becomes

min
Z,E

∥Z∥® + λ∥E∥Ⓢ s.t. PK = Z + E . (3)

In particular, Eq. (3) is treated as a K-th order model. In lit-
erature, an intuitive and common way of clustering is to fuse
Z across different views to obtain a representation matrix by
Z0 = 1

V

∑V
v=1 Z(v), on which the final clustering algorithm

is performed for the final clustering result [Wu et al., 2019].
However, the two-step strategy omits the close connection be-
tween the learning and fusion tasks, and the straight fusion
omits the discriminative information embedded in different
views, which might be insufficient to fully exploit structural
information of the data [Pan et al., 2023].

To build a close connection between learning and fusion,
we embed the fusion task into our model, leading to:

min
Z,E,w

∥Z∥® + λ∥E∥Ⓢ + α
∑

v
∥Z0 − wvZ(v)∥2F

s.t. PK = Z + E , wv ≥ 0,
∑

v
wv = 1,

(4)

where Z0 is a consensus affinity matrix that fuses cross-view
neighbor graphs, and w ∈ RV is a weighting vector that is
automatically adjusted to balance the discrinimative informa-
tion embedded across different views. To further enhance the
cross-view diversity embedded in the weighting vector w, and
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thus in the consensus affinity matrix Z0, it is desired to pre-
vent the weights from being simultaneously large if the TPMs
of their corresponding views are highly similar [Kang et al.,
2023], which leads to the diversity embedding defined as
minw≥0,

∑
i wi=1

∑
i,j wiwjTr((P(i)

K )TP(j)
K ). Although the

embedding is straightforward and easy to solve, PK may be
prone to noise effects and thus the embedding might be in-
accurate. As an alternative, we may embed the diversity of
w with Z , which efficiently alleviates the noise effects while
is more challenging to solve. Therefore, to embed the cross-
view noise-free diversity, we finally develop Eq. (4) as:

min
PK=Z+E,w≥0,

∑
i wi=1

∥Z∥® + λ∥E∥Ⓢ

+α
V∑

v=1

∥Z0 − wvZ(v)∥2F +β
V∑

i,j=1

wiwjTr((Z(i))TZ(j)),
(5)

where β > 0 is a balancing parameter. We name the above
model the Cross-view diversity embedded Consensus Learn-
ing for Multi-View Clustering (CCL-MVC). We will develop
an effective optimization algorithm in the next section.

4 Optimization
In this section, we develop an effective optimization al-
gorithm using the augmented Lagrange multiplier method
(ALM). We introduce an auxiliary variable Q ∈ Rn×n×V

and obtain the following augmented Lagrange function:

L(Z, E ,Q,Z0, w,Y1,Y2, ρ) = ∥Q∥® + λ∥E∥Ⓢ
+ α

∑
v

∥Z0−wvZ(v)∥2F +β
∑
i,j

wiwjTr((Z(i))TZ(j))

+
ρ

2
∥Q − Z + Y1/ρ∥2F +

ρ

2
∥PK −Z − E + Y2/ρ∥2F ,

(6)

where Y1,Y2 ∈ Rn×n×V are Lagrange multipliers and ρ is
the penalty parameter. Then, we alternately optimize each
variable with details presented as follows.

4.1 Optimization of Z
The subproblem associated with Z is to minimize

min
Z

α
∑
v

∥Z0−wvZ(v)∥2F +β
∑
i,j

wiwjTr((Z(i))TZ(j))

+
ρ

2
∥Q−Z+Y1/ρ∥2F +

ρ

2
∥PK−Z−E+Y2/ρ∥2F .

(7)

An intuitive way is to optimize each Z(v) while keeping the
others fixed. However, this strategy may suffer from the fol-
lowing issues. First, all Z(v)’s depend on each other and
we cannot obtain the global solution for all Z(v)’s simulta-
neously. Second, we may need to iteratively update all Z(v)’s
within an inner loop until convergence to obtain the optimal
Z , which lacks efficiency. To address these issues, we design
an efficient optimization strategy as follows. First, we define
the following augmented variables:

Z̄=


Z(1)

...

Z(V )

,Z̄0=


Z0

...
Z0

 ,̄I1=


w1I

. . .
wV I

 , Ī2 =


w1I

...
wV I


T

.

Then, with these notations, we derive an equavilent form of
Eq. (7) to facilitate the optimization. For the first term of
Eq. (7), we have α

∑
v ∥Z0−wvZ(v)∥2F = α∥Z̄0− Ī1Z̄∥2F .

For the second term, we have β
∑

ij wiwjTr((Z(i))TZ(j))=

β
∑

ijTr((wiZ(i))T (wjZ(j)))=β∥
∑

i wiZ(i)∥2F =β∥Ī2Z̄∥2F .
For the last two terms, we may combine them and obtain
ρ
2∥Q − Z + Y1/ρ∥2F + ρ

2∥PK − Z − E + Y2/ρ∥2F =

ρ∥Z̄−H̄∥2F , where H̄ = [
(Q(1)+P(1)

K −E(1))T

2 +
(Y(1)

1 +Y(1)
2 )T

2ρ ,· · ·,
(Q(V )+P(V )

K −E(V ))T

2 +
(Y(V )

1 +Y(V )
2 )T

2ρ ]
T ∈ RnV×n. Thus, we

may convert Eq. (7) to the following quadratic problem:

min
Z̄

α
∥∥Z̄0 − Ī1Z̄

∥∥2
F
+β∥Ī2Z̄∥2F +ρ∥Z̄− H̄∥2F . (8)

The first-order optimality condition of Eq. (10) is:
2αĪT1 Ī1Z̄ + 2βĪT2 Ī2Z̄− 2αĪT1 Z̄0 + 2ρZ̄− 2ρH̄ = 0, (9)

which leads to the following closed-form solution:
Z̄ = (αĪT1 Ī1 + βĪT2 Ī2 + ρI)−1(αĪT1 Z̄0 + ρH̄). (10)

It is seen that the above solution involves inversion of an
nV × nV matrix, which generally has O(n3V 3) complex-
ity. Fortunately, the above solution admits a special structure,
which can be further simplified by the Sherman-Morrison-
Woodbury formula. First, we have

(αĪT1 Ī1 + βĪT2 Ī2 + ρI)−1 = (αĪT1 Ī1 + ρI + βĪT2 Ī2)
−1

=A−1 − βA−1ĪT2 (I + βĪ2A
−1ĪT2 )

−1Ī2A
−1

=A−1−βA−1ĪT2

(
I+

(
β

V∑
i=1

w2
i

ρ+ αw2
i

)
I

)−1

Ī2A
−1

=A−1 − β

1 +
∑V

i=1
βw2

i

ρ+αw2
i

A−1ĪT2 Ī2A
−1

=A−1 − β


w1

ρ+αw2
1
I

...
wV

ρ+αw2
V
I

[ w1

ρ+αw2
1
I · · · wV

ρ+αw2
V
I
]

1 +
∑V

i=1
βw2

i

ρ+αw2
i

=


1
ξ1
I · · · 0

...
. . .

...
0 · · · 1

ξV
I

− β

1+
∑

i
βw2

i

ξi


ξ′11I · · · ξ′1V I

...
. . .

...
ξ′V 1I · · · ξ′V V I

 ,

(11)

with ξi = ρ+αw2
i and ξ′ij =

wiwj

ξiξj
for i, j = 1, · · · , V ,

and A = αĪT1 Ī1 + ρI. Define B ∈ Rn×n×V with B(v) =

αwvZ0 +
ρ(Q(v)+P(v)

K −E(v))+Y(v)
1 +Y(v)

2

2 for v = 1, · · · , V ,
then, by plugging Eq. (11) and B into Eq. (10), we have

Z̄=



B(1)

ρ+αw2
1
− 1

1
β+

∑
i

w2
i

ρ+αw2
i

∑
j

w1wjB(j)

(ρ+αw2
1)(ρ+αw2

j )

...
B(V )

ρ+αw2
V
− 1

1
β+

∑
i

w2
i

ρ+αw2
i

∑
j

wV wjB(j)

(ρ+αw2
V )(ρ+αw2

j )

 , (12)

whose complexity surprisingly mainly comes from scatter-
matrix product. Then, Z is obtained by tensorizing Z̄.
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4.2 Optimization of Q
The subproblem of Q is minQ ∥Q∥®+ ρ

2∥Q−Z+Y1/ρ∥2F .
This problem is not straightforward to solve since the LTRA
is defined in the frequency domain. In a way similar to the
shrinkage problems in [Gao et al., 2021; Pan et al., 2023;
Wu et al., 2019], the above problem can be converted to the
frequency domain as

min
Q̂

V∑
v=1

{1
2
∥K̂(v)−Q̂(v)∥2F+

1

ρ

n∑
i=1

log(1+σi(Q̂(v)))
}
, (13)

where K̂ = fft(Z − Y1/ρ, [ ], 3). Then, the above prob-
lem can be divided into V independent subproblems of Q(v)

with v = 1, · · · , V , which are the standard log-determinant
regularized shrinkage problems described in [Peng et al.,
2022a]. We denote U(·) and V(·) as operators that re-
turn the left and right singular vectors of the input, and
De(·) as an operator that returns a diagonal matrix based on
the input elements, then according to [Peng et al., 2022a;
Peng et al., 2015], Q̂(v) is obtained by

Q̂(v) = U(K̂(v))De{σ̂(v)
i , · · · , σ̂(v)

n }(V(K̂(v)))T ,

with σ̂
(v)
i = argminx≥0

1
2 (x − σ

(v)
i )2 + 1

ρ log(1 + x) for
i = 1, · · · , n. With straightforward algebra, we may obtain

σ̂
(v)
i = I{σ̂(v)

i ∈Si,v}
·
σ
(v)
i −1+

√
(1+σ

(v)
i )2− 4

ρ

2 , with I{·} being an
indicator function that returns 1 if the conditions in subscript
hold and 0 otherwise, and Si,v=

{
x|x∈R, f :R→R, f(x) =

1
2 (x − σ

(v)
i )2 + 1

ρ log(1 + x), ξ =
σ
(v)
i −1+

√
(1+σ

(v)
i )2−4

ρ

2 > 0,

f(ξ) ≤ (σ
(v)
i )2

2 , (1 + σ
(v)
i )2 > 4

ρ

}
. Thus, we may obtain

Q = ifft(Q̂, [ ], 3), with ifft(·) being the inverse FFT of the
input tensor along the third dimension. For ease of notation,
we summarize the above procedure as

Q = LTRA1/ρ(Z − Y1/ρ). (14)

4.3 Optimization of E
The LTSA-regularized shrinkage problem of E is:

min
E

λ∥E∥Ⓢ +
ρ

2
∥PK −Z − E + Y2/ρ∥2F , (15)

which is a LTSA-regularized shrinkage problem. It is noted
that by reforming the lateral slices of the tensors in Eq. (15)
into vectors, the problem is a direct extension of the ℓ2,log-
norm regularized shrinkage problem in [Peng et al., 2022a].
Then, by performing a vectorization-matrixization procedure
to the ℓ2,log-norm shrinkage problem in [Peng et al., 2022a],
we may obtain the above solution. Thus, it is straightforward
that Eq. (15) admits the following closed-form solution by

lateral slice as EL,j =
δj−1+

√
(1+δj)2− 4λ

ρ

2δj
· K̄L,j · I{δj∈Sj},

where (·)L,j denotes the j-th lateral slice of the input tensor,
K̄ = PK − Z + Y2/ρ, δj = ∥(PK − Z + Y2/ρ)L,j∥F , and

Sj =
{
x|x ∈ R, f : R → R, f(x)= 1

2 (x−δj)
2+λ

ρ log(1+x),

ξ=
δj−1+

√
(1+δj)2−4λ

ρ

2 > 0, f(ξ) ≤ δ2j
2 , (1 + δj)

2 > 4λ
ρ

}
. For

ease of notation, we summarize the above procedure as

E = LTSAλ/ρ(PK −Z + Y2/ρ). (16)

4.4 Optimization of Z0

The subproblem of Z0 is α
∑

v ∥Z0 − wvZ(v)∥2F , which is
convex and quadratic, and admits a closed-form solution by
the first-order optimality condition: Z0 = 1

V

∑V
v=1 wvZ(v).

4.5 Optimization of w
The subproblem of w is minw≥0,

∑
i wi=1{α

∑
i ∥Z0 −

wiZ(i)∥2F +β
∑

ij wiwjTr((Z(i))TZ(j))}. Let zi be vector-
ized Z(i) for i = 1, · · · , V , M1 ∈ RV×V be a diagonal ma-
trix with (M1)ii = zTi zi, M2 ∈ RV×V with (M2)ij = zTi zj ,
and h ∈ RV with hi = −αTr(ZT

0 Z(i)), then the subproblem
of w is equavilent to

min
w

wT(αM1+βM2)w+2hTw, s.t. w ≥ 0,
∑
i

wi = 1. (17)

It is easy to verify that ∀z ∈ RV and z ̸= 0, we have
zT (αM1 + βM2)z = α

∑
i z

2
i z

T
i zi + β

∑
i,j zizjz

T
i zj =

α
∑

i(zizi)
T (zizi)+β

∑
i

∑
j(zizi)

T (zjzj)=α
∑

i ∥zizi∥22
+β∥[z1, · · · , zV ]De(z)∥2F ≥ 0, with zi and zj being the vec-
torized Z(i) and Z(j), and zi and zj denoting the i-th and
j-th elements of z, respectively. Thus, αM1 + βM2 ⪰ 0,
and Eq. (17) is convex. Then, w can be efficiently solved by
standard convex programming technique, which is denoted as

w = quadprog(αM1 + βM2, h). (18)

4.6 Updating of Y1, Y2, and ρ

The Lagrange multipliers and the penalty parameter are up-
dated in a standard way as follows:

Y1=Y1+ρ(Q−Z),Y2=Y2+ρ(PK−Z−E), ρ=ρκ, (19)
with κ> 1 being a parameter that keeps ρ increasing. In our
paper, we update the variables in the order of Z , E , Q, Z0, w,
Y1, Y2, and ρ, which is essentially important for the conver-
gence analysis in Section 5. After we obtain the solution, the
standard SPC is applied to Z0 for the final clustering result.

5 Convergence Analysis
In this section, we analyze the convergent property of the
CCL-MVC. The main results are presented in the following.

Theorem 1. Let t in the superscript denote the iteration num-
ber. Under assumptions that

∑
1
ρt < ∞ and

∑ ρt+1

(ρt)2 < ∞,
and given a bounded initialization of the variables, the vari-
able sequences {Zt}, {Et}, {Qt}, {Zt

0}, {wt}, {Yt
1}, and

{Yt
2} generated by our optimization algorithm are bounded.

Proof: According to the constraints of w, it is easy to verify
that {wt} is bounded. At the (t + 1)-th iteration, according
to the first-order optimality condition of Q, we have

∂QL(Zt+1, Et+1,Q,Zt
0, w

t,Yt
1,Yt

2, ρ
t)|Qt+1 (20)
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=∂∥Q∥®/∂Q|Qt+1 + ρt(Qt+1 −Zt+1) + Yt
1

=∂∥Q∥®/∂Q|Qt+1 + Yt+1
1 = 0.

By definition of the LTRA, and according to [Wu et al., 2019;
Peng et al., 2022a], it is clear that ∥∂∥Q∥®/∂Q|Qt+1∥2F < ∞
and thus Yt+1

1 is bounded.
Similarly, according to the first-order optimality condition

of E , at the (t+ 1)-th iteration, we have

∂EL(Zt+1, E ,Qt,Zt
0, w

t,Yt
1,Yt

2, ρ
t)|Et+1

=∂(α∥E∥Ⓢ)/∂E|Et+1 − ρt(PK −Zt+1 − E t+1)− Yt
2

=α · ∂∥E∥Ⓢ/∂E|Et+1 − Yt+1
2 = 0.

(21)

By definition of the LTSA, it is clear that ∥∂∥E∥Ⓢ/∂E|Et+1∥F
< ∞ and thus Yt+1

2 is bounded. Then, according to the up-
dating rules of Y1 and Y2, we have

L(Zt+1, Et+1,Qt+1,Zt+1
0 , wt+1,Yt+1

1 ,Yt+1
2 , ρt+1)

=L(Zt+1, Et+1,Qt+1,Zt+1
0 , wt+1,Yt

1,Yt
2, ρ

t)

+
ρt+1 − ρt

2
∥Qt+1 −Zt+1∥2F + ⟨Qt+1 −Zt+1,

Yt+1
1 − Yt

1⟩+
1

2ρt+1
∥Yt+1

1 ∥2F − 1

2ρt
∥Yt

1∥2F

+
ρt+1 − ρt

2
∥PK −Zt+1 − E t+1∥2F + ⟨Yt+1

2 − Yt
2,

PK −Zt+1 − E t+1⟩+ 1

2ρt+1
∥Yt+1

2 ∥2F − 1

2ρt
∥Yt

2∥2F

≤L(Zt, Et,Qt,Zt
0, w

t,Yt
1,Yt

2, ρ
t)

+
ρt+1 + ρt

2(ρt)2
∥Yt+1

1 − Yt
1∥2F +

1

2ρt+1
∥Yt+1

1 ∥2F

+
ρt+1 + ρt

2(ρt)2
∥Yt+1

2 − Yt
2∥2F +

1

2ρt+1
∥Yt+1

2 ∥2F ,

(22)

where the last inequality holds by Yt+1
1 = Yt

1 + ρt(Qt+1 −
Zt+1) and Yt+1

2 = Yt
2 + ρt(PK − Zt+1 − E t+1). Thus, by

repeating the above inequality t+ 1 times, it is clear that

L(Zt+1, Et+1,Qt+1,Zt+1
0 , wt+1,Yt+1

1 ,Yt+1
2 , ρt+1)

≤L(Z0, E0,Q0,Z0
0, w

0,Y0
1 ,Y0

2 , ρ
0)

+
t∑

s=0

ρs+1 + ρs

2(ρs)2
∥Ys+1

1 − Ys
1∥2F +

t∑
s=0

∥Ys+1
1 ∥2F
2ρs+1

+
t∑

s=0

ρs+1 + ρs

2(ρs)2
∥Ys+1

2 − Ys
2∥2F +

t∑
s=0

∥Ys+1
2 ∥2F
2ρs+1

≤L(Z0, E0,Q0,Z0
0, w

0,Y0
1 ,Y0

2 , ρ
0)

+ 2(Γ1 + Γ2)
t∑

s=0

ρs+1

(ρs)2
+

5(Γ1 + Γ2)

2

t+1∑
s=0

1

ρs
,

(23)

with Γ1 = maxt+1
s=0{∥Ys

1∥2F } and Γ2 = maxt+1
s=0{∥Ys

2∥2F }.
Thus, with bounded initialization, Eq. (23) must be bounded.

By definition of L(Z, E ,Q,Z0, w,Y1,Y2, ρ) in Eq. (6),
it is clear that all of its terms are nonnegative and are thus
bounded. Then, according to the definitions of ∥Qt+1∥® and
∥Et+1∥Ⓢ, the boundedness directly implies that Qt+1 and

Et+1 are bounded. Because Qt+1, Yt+1
1 , and ρt+1∥Qt+1 −

Zt+1 + Yt+1
1 /ρt+1∥2F are all bounded, it is clear that Zt+1

is also bounded. Then, Zt+1
0 = 1

V

∑V
v=1 w

t
i(Zt+1)(v) is also

bounded. Now, we may conclude that the sequences of {Zt},
{Et}, {Qt}, {Zt

0}, {wt}, {Yt
1}, and {Yt

2} are all bounded.

Theorem 2. Let {Zt,Et,Qt,Zt
0,w

t,Yt
1,Yt

2} be a sequence gen-
erated by our algorithm. Under assumptions that

∑
1
ρt < ∞,∑ ρt+1

(ρt)2 < ∞, ρt(Qt+1 −Qt) → 0, and ρt(Et+1 −E t) → 0,
the sequence {Zt, Et,Qt,Zt

0, w
t,Yt

1,Yt
2} has at least one ac-

cumulation point. For any accumulation point, denoted as
{Z∗, E∗,Q∗,Z∗

0, w
∗,Y∗

1 ,Y∗
2}, {Z∗, E∗,Q∗,Z∗

0, w
∗} is a sta-

tionary point of the optimization problem in Eq. (5).
Proof: By Theorem 1, we know {Zt, Et,Qt,Zt

0, w
t,Yt

1,Yt
2}

is bounded. Then, according to the Bolzano-Weierstrass the-
orem, the sequence has at least one accumulation point, de-
noted as {Z∗, E∗,Q∗,Z∗

0, w
∗, Y∗

1 ,Y∗
2}. Then, there exists a

sub-sequence of {Zt, Et,Qt,Zt
0, w

t,Yt
1,Yt

2} that converges
to {Z∗, E∗, Q∗,Z∗

0, w
∗,Y∗

1 ,Y∗
2}. Without loss of generality,

we assume that {Zt, Et,Qt,Zt
0, w

t,Yt
1,Yt

2} itself converges
to {Z∗, E∗,Q∗, Z∗

0, w
∗,Y∗

1 ,Y∗
2}. Next, we will show that

{Z∗,E∗,Q∗,Z∗
0, w

∗} is a stationary point of Eq. (5).
By the assumption that

∑
1
ρt < ∞, it is clear that ρt → ∞.

Then, by the boundedness of {Yt
1} and {Yt

2}, we have

Q∗−Z∗= lim
t→∞

Qt+1−Zt+1= lim
t→∞

(Yt+1
1 −Yt

1)/ρ
t=0,

PK −Z∗−E∗= lim
t→∞

PK−Zt+1 − E t+1

= lim
t→∞

(Yt+1
2 − Yt

2)/ρ
t = 0.

(24)

At the (t+ 1)-th iteration, according to the optimality condi-
tions of Q and E , we have the following equalities:

lim
t→∞

∂QL(Zt+1, Et+1,Q,Zt
0, w

t,Yt
1,Yt

2, ρ
t)|Qt+1

= lim
t→∞

{∂∥Q∥®/∂Q|Qt+1+ρt(Qt+1 −Zt+1) + Yt
1}

=∂∥Q∥®/∂Q|Q∗ + Y∗
1 = 0,

(25)

and

lim
t→∞

∂EL(Zt+1, E ,Qt,Zt
0, w

t,Yt
1,Yt

2, ρ
t)|Et+1

= lim
t→∞

{∂(α∥E∥Ⓢ)/∂E|Et+1−ρt(PK−Zt+1−E t+1)−Yt
2}

=α · ∂∥E∥Ⓢ/∂E|E∗ − Y∗
2 = 0. (26)

For ease of notation, we denote Gt+1 = ∂{ α
∑V

v=1 ∥Z0 −
wvZ(v)∥2F + β

∑V
i,j=1 wiwjTr((Z(i))TZ(j))}/∂Z|Zt+1 ,

which may be obtained by tensorizing the first three terms
of Eq. (9). Then, at the (t + 1)-th iteration, according to the
optimality condition of Z , and under the assumptions that
ρt(Qt+1 −Qt) → 0 and ρt(Et+1 − E t) → 0, it is clear that

lim
t→∞

{Gt+1+ρt(Zt+1−Qt+1)+ρt(Zt+1+Et+1 − PK)

− Yt
1 − Yt

2 + ρt(Qt −Qt+1) + ρt(Et − E t+1)}
(27)

= lim
t→∞

{Gt+1−Yt+1
1 −Yt+1

2 } = G∗ − Y∗
1 − Y∗

2 = 0,

where G∗ = limt→∞ Gt must exist according to Eq. (9) and
the boundedness of {Zt} and {wt}. Besides, since w and Z0

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4792



Datasets BBC-4view BBC-Sport Flowers
Methods ACC NMI AR F-Score ACC NMI AR F-Score ACC NMI AR F-Score

AWP 0.904±0.000 0.760±0.000 0.797±0.000 0.845±0.000 0.809±0.000 0.723±0.000 0.726±0.000 0.796±0.000 0.435±0.000 0.430±0.000 0.246±0.000 0.292±0.000
MvDSCN 0.495±0.019 0.247±0.022 0.224±0.023 0.437±0.015 0.931±0.001 0.935±0.000 0.909±0.001 0.860±0.000 0.276±0.012 0.285±0.012 0.108±0.010 0.182±0.008

OMVFC-LICAG 0.718±0.000 0.586±0.000 0.584±0.000 0.688±0.000 0.724±0.000 0.571±0.000 0.397±0.000 0.627±0.000 0.397±0.000 0.404±0.000 0.208±0.000 0.259±0.000
MLAN 0.853±0.007 0.698±0.010 0.716±0.005 0.783±0.004 0.721±0.000 0.779±0.000 0.591±0.000 0.714±0.000 0.501±0.008 0.532±0.003 0.331±0.010 0.373±0.009
GMC 0.693±0.000 0.563±0.000 0.479±0.000 0.633±0.000 0.807±0.000 0.760±0.000 0.722±0.000 0.794±0.000 0.177±0.000 0.247±0.000 0.020±0.000 0.125±0.000

UOMvSC 0.391±0.000 0.170±0.000 0.105±0.000 0.267±0.000 0.529±0.000 0.302±0.000 0.209±0.000 0.415±0.000 0.507±0.000 0.508±0.000 0.313±0.000 0.355±0.000
EOMSC-CA 0.425±0.000 0.090±0.000 0.090±0.000 0.365±0.000 0.384±0.000 0.083±0.000 0.058±0.000 0.375±0.000 0.374±0.000 0.418±0.000 0.221±0.000 0.281±0.000

LMSC 0.883±0.000 0.699±0.000 0.746±0.000 0.806±0.000 0.847±0.003 0.739±0.001 0.749±0.001 0.810±0.001 0.442±0.009 0.444±0.009 0.275±0.007 0.318±0.012
MCLES 0.819±0.000 0.637±0.000 0.662±0.000 0.742±0.000 0.921±0.000 0.802±0.000 0.795±0.000 0.945±0.000 0.469±0.000 0.516±0.000 0.337±0.000 0.390±0.000

FPMVS-CAG 0.323±0.000 0.030±0.000 0.037±0.000 0.276±0.000 0.406±0.000 0.106±0.000 0.103±0.000 0.304±0.000 0.272±0.000 0.356±0.000 0.182±0.000 0.248±0.000
CLR-MVP 0.626±0.000 0.476±0.000 0.437±0.000 0.597±0.000 0.925±0.000 0.815±0.000 0.851±0.000 0.886±0.000 0.520±0.000 0.533±0.001 0.365±0.001 0.403±0.001

t-SVD-MSC 0.858±0.001 0.685±0.002 0.725±0.002 0.789±0.001 0.879±0.000 0.765±0.000 0.784±0.000 0.834±0.000 0.836±0.005 0.852±0.002 0.766±0.002 0.780±0.002
SM2SC 0.934±0.008 0.812±0.001 0.853±0.003 0.887±0.006 0.982±0.000 0.937±0.000 0.952±0.000 0.963±0.000 0.442±0.008 0.453±0.005 0.276±0.007 0.319±0.007

ETLMSC 0.872±0.094 0.826±0.028 0.811±0.082 0.855±0.063 0.959±0.086 0.972±0.058 0.949±0.107 0.961±0.081 0.811±0.066 0.874±0.025 0.763±0.057 0.778±0.054
LMVSC 0.480±0.000 0.242±0.000 0.403±0.000 0.380±0.000 0.517±0.000 0.382±0.000 0.151±0.000 0.394±0.000 0.360±0.000 0.385±0.000 0.198±0.000 0.246±0.000

E2OMVC 0.849±0.000 0.707±0.000 0.713±0.000 0.783±0.000 0.971±0.000 0.903±0.000 0.920±0.000 0.940±0.000 0.490±0.000 0.477±0.000 0.256±0.000 0.306±0.000
RMSL 0.943±0.009 0.831±0.005 0.862±0.004 0.894±0.002 0.972±0.002 0.905±0.005 0.931±0.002 0.947±0.004 0.511±0.006 0.490±0.007 0.332±0.010 0.372±0.005

CCL-MVC 0.984±0.000 0.951±0.000 0.962±0.000 0.971±0.000 0.996±0.000 0.986±0.000 0.991±0.000 0.993±0.000 0.890±0.053 0.892±0.019 0.832±0.052 0.852±0.048
Datasets UCI-3view StillDB MITindoor
Methods ACC NMI AR F-Score ACC NMI AR F-Score ACC NMI AR F-Score

AWP 0.806±0.000 0.842±0.000 0.759±0.000 0.785±0.000 0.306±0.000 0.093±0.000 0.058±0.000 0.223±0.000 0.499±0.000 0.629±0.000 0.317±0.000 0.329±0.000
MvDSCN 0.308±0.011 0.299±0.013 0.158±0.009 0.281±0.006 0.377±0.023 0.245±0.020 0.169±0.003 0.320±0.015 0.084±0.003 0.182±0.004 0.014±0.002 0.037±0.001

OMVFC-LICAG 0.833±0.000 0.811±0.000 0.731±0.000 0.759±0.000 0.376±0.000 0.129±0.000 0.087±0.000 0.273±0.000 0.319±0.000 0.453±0.000 0.157±0.000 0.171±0.000
MLAN 0.874±0.000 0.910±0.000 0.847±0.000 0.864±0.000 0.349±0.000 0.138±0.000 0.098±0.000 0.272±0.000 0.232±0.010 0.408±0.012 0.012±0.009 0.041±0.003
GMC 0.736±0.000 0.815±0.000 0.678±0.000 0.713±0.000 0.251±0.000 0.078±0.000 0.005±0.000 0.278±0.000 0.099±0.000 0.204±0.000 0.003±0.000 0.032±0.000

UOMvSC 0.981±0.000 0.956±0.000 0.958±0.000 0.962±0.000 0.328±0.000 0.131±0.000 0.084±0.000 0.246±0.000 0.344±0.000 0.506±0.000 0.064±0.000 0.088±0.000
EOMSC-CA 0.545±0.000 0.673±0.000 0.459±0.000 0.533±0.000 0.308±0.000 0.127±0.000 0.085±0.000 0.245±0.000 0.147±0.000 0.298±0.000 0.042±0.000 0.066±0.000

LMSC 0.893±0.000 0.815±0.000 0.783±0.000 0.805±0.000 0.327±0.003 0.136±0.003 0.084±0.011 0.269±0.005 0.384±0.006 0.506±0.005 0.243±0.005 0.254±0.004
MCLES 0.941±0.004 0.891±0.008 0.877±0.009 0.889±0.008 0.338±0.000 0.153±0.000 0.098±0.000 0.264±0.000 ————— ————— ————— —————

FPMVS-CAG 0.722±0.000 0.744±0.000 0.645±0.000 0.683±0.000 0.328±0.000 0.124±0.000 0.089±0.000 0.251±0.000 0.204±0.000 0.390±0.000 0.085±0.000 0.108±0.000
CLR-MVP 0.965±0.000 0.920±0.001 0.924±0.001 0.932±0.001 0.337±0.002 0.127±0.003 0.095±0.001 0.273±0.002 ————— ————— ————— —————

t-SVD-MSC 0.830±0.000 0.884±0.005 0.786±0.003 0.800±0.004 0.347±0.010 0.130±0.004 0.088±0.003 0.255±0.004 0.684±0.005 0.750±0.007 0.555±0.005 0.562±0.008
SM2SC 0.961±0.001 0.914±0.001 0.914±0.001 0.923±0.001 0.452±0.002 0.336±0.002 0.312±0.002 0.370±0.002 0.477±0.009 0.583±0.006 0.321±0.006 0.332±0.006

ETLMSC 0.958±0.078 0.977±0.028 0.953±0.069 0.958±0.062 0.604±0.043 0.520±0.015 0.423±0.029 0.523±0.024 0.775±0.040 0.899±0.011 0.729±0.037 0.733±0.036
LMVSC 0.790±0.000 0.756±0.000 0.643±0.000 0.681±0.000 0.317±0.000 0.189±0.000 0.066±0.000 0.239±0.000 0.371±0.000 0.522±0.000 0.112±0.000 0.132±0.000

E2OMVC 0.974±0.000 0.941±0.000 0.943±0.000 0.949±0.000 0.321±0.000 0.130±0.000 0.089±0.000 0.265±0.000 0.404±0.000 0.550±0.000 0.173±0.000 0.191±0.000
RMSL 0.578±0.013 0.511±0.014 0.407±0.017 0.474±0.007 0.356±0.003 0.131±0.001 0.090±0.002 0.243±0.001 0.279±0.004 0.372±0.003 0.125±0.005 0.139±0.002

CCL-MVC 0.988±0.037 0.996±0.013 0.988±0.037 0.990±0.033 0.752±0.077 0.682±0.042 0.597±0.079 0.666±0.066 0.860±0.038 0.946±0.011 0.842±0.038 0.844±0.037

Table 1: Comparison of Clustering Performance of Different Methods on Benchmark Data Sets

are optimized using the standard convex programming tech-
niques, the corresponding Karush-Kuhn-Tucker (KKT) con-
ditions are satisfied by w∗ and Z∗

0.
Therefore, {Z∗, E∗,Q∗,Z∗

0, w
∗,Y∗

1 ,Y∗
2} satisfies KKT

conditions of Eq. (6) and thus {Z∗, E∗,Q∗,Z∗
0, w

∗} is a sta-
tionary point of the original problem Eq. (5).

6 Experiments
In this section, we conduct extensive experiments to evalu-
ate the proposed method. In particular, we use six bench-
mark data sets, including the BBC-4view, BBC-Sport, Flow-
ers, UCI-3view, StillDB, and MITindoor, and four evaluation
metrics, including the clustering accuracy (ACC), normal-
ized mutual information (NMI), adjusted rand index (AR),
and F-Score, of which the detailed descriptions can be found
in [Wu et al., 2019; Larson, 2019], respectively. Seventeen
state-of-the-art methods are adopted as baselines for compar-
ison, including the AWP [Nie et al., 2018b], MvDSCN [Zhu
et al., 2019], MLAN [Nie et al., 2018a], UOMvSC [Tang et
al., 2023], EOMSC-CA [Liu et al., 2022], LMSC [Zhang et
al., 2020], GMC [Wang et al., 2020], MCLES [Chen et al.,
2020], FPMVS-CAG [Wang et al., 2022], CLR-MVP [Kang
et al., 2023], t-SVD-MSC [Xie et al., 2018], SM2SC [Yang et
al., 2019], ETLMSC [Wu et al., 2019], LMVSC [Kang et al.,
2020], E2OMVC [Wang et al., 2023], RMSL [Li et al., 2019],
and OMVFC-LICAG [Zhang et al., 2024], among which six
are developed within the last two years.

For the baseline methods, we follow the parameters in the
original papers. For the proposed method, we set the param-
eters in the following way. For all balancing parameters, we
tune them within the set {0.001,0.01,0.1,1,10,100,1000}. For
ρ, κ, and N , we fix them to 0.001, 1.5, and 5 throughout the
paper. If not otherwise clarified, we use a third-order CCL-
MVC in the experiment. For all methods, the final clustering
step is repeated 10 times and we report the averaged results
with parameters tuned to the best.

6.1 Clustering Performance
We compare the CCL-MVC with the baseline methods and
report the clustering results in Section 5. In general, the CCL-
MVC has the best performance among all methods, where it
obtains the best results in all 24 cases. Among the baseline
methods, the RMSL, SM2SC, ETLMSC and t-SVD-MSC
are among the most competitive ones, which obtain the top
three results in 5, 11, 19, and 8 out of a total number of 24
cases, respectively. Compared with the baseline methods, the
CCL-MVC has significantly improved performance, where
it improves the performance by about 0.04-0.12, 0.01-0.04,
0.02-0.07, 0.01-0.03, 0.14-0.17, and 0.05-0.11 in different
metrics on the BBC-4view, BBC-Sport, Flowers, UCI-3view,
StillDB, and MITindoor data sets, respectively. Among these
data sets, the StillDB data set is considered as a “difficult”
one, on which the baseline methods rarely obtain results
higher than 0.4. On this data set, the CCL-MVC improves
the performance by about 0.14-0.17 and 0.29-0.35 in different
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(a) BBC-Sport (b) StillDB

Figure 1: Comparison of the CCL-MVC models to show the signif-
icance of cross-view diversity embedding.

metrics, compared with the top second and third methods, i.e.,
the ETLMSC and SM2SC, respectively. Such improvements
are indeed significant. Moreover, the CCL-MVC has supe-
rior performance in terms of its stability. In particular, the
CCL-MVC has the best performance on all data sets, while
none of the baseline methods have the top three performance
on all data sets. For example, as the most competitive method
among the baselines, the ETLMSC is not among the top three
on the BBC-4view data set; although the RMSL has the top
second performance on the BBC-4view data set, it fails on
several other data sets. These observations confirm the effec-
tiveness and stability of the CCL-MVC on these data sets.

6.2 Ablation Study
We conduct ablation study from two perspectives, using the
BBC-Sport and StillDB data sets without loss of generality.
First, we validate the significance of adopting cross-view di-
versity and present the results in Fig. 1. In particular, we test
how the CCL-MVC performs when the cross-view diversity
embedding is eliminated from the model, for which we set
β = 0 and tune the other parameters in the same way as de-
scribed in Section 6.1. From Fig. 1, we may observe that
the performance of the CCL-MVC is significantly degraded
when the diversity is not considered, which confirms the sig-
nificance of cross-view diversity embedding.

Then, we verify the significance of adopting cross-
order neighbor information and show the results in Fig. 2.
Compared with the first-order CCL-MVC, the second and
third-order models have significantly improved performance,
which confirms the significance of adopting cross-order
neighbor information in our model. Moreover, when the order
is higher than 3, the CCL-MVC cannot be further improved,
or may even degrade. This may be explained by the fact that
a very high order may introduce redundancy or noise to the
relationships. Given the difficulty in finding a suitable K, and
considering the significance of incorporating the third-order
information, it is reasonably convincing to recommend utiliz-
ing a third-order CCL-MVC in practical applications.

6.3 Convergence Study
Besides the theoretical results about convergence provided
in Section 5, we further show some empirical results to il-
lustrate the convergent behavior of the CCL-MVC. Without
loss of generality, we show the results on the BBC-4view and
StillDB data sets in Fig. 3. Due to space limit, rather than

(a) BBC-Sport (b) StillDB

Figure 2: Comparison of the CCL-MVC models to show the signif-
icance of cross-order neighbor relationship preservation.

ploting the curves for each variable, we plot the curve of er-
ror sequence, where at the t-th iteration the error is defined
as max{∥Zt−Zt−1∥F , ∥Et−Et−1∥F , ∥Qt−Qt−1∥F , ∥Zt

0−
Zt−1
0 ∥F , ∥wt−wt−1∥2, ∥PK−Zt−E t∥F , ∥Zt−Qt∥F }. From

the results, it is seen that the curves converge to zero within
about 50 iterations, which is quite efficient. Similar observa-
tions can be found on other data sets as well, which is con-
vincing to claim the convergent behavior of the CCL-MVC.

Figure 3: Error curves of the CCL-MVC on BBC-4view and StillDB
data sets, with parameters fixed to λ = 0.01, α = 0.001, and β = 1.

7 Conclusion
In this paper, we propose a novel CCL-MVC method for
multi-view clustering. The CCL-MVC incorporates cross-
view diversity to learn a consensus affinity matrix by fus-
ing a low-rank essential tensor recovered from a fine-grained
neighbor tensor that encompasses comprehensive and com-
plementary cross-order information of multi-view data. We
develop an effective optimization algorithm for the CCL-
MVC, which is proved to converge with theoretical guaran-
tee. Extensive experimental results show the superiority of
the CCL-MVC.
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