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Abstract
Alzheimer’s disease (AD) leads to abnormalities in
various biomarkers (i.e., amyloid-β and tau pro-
teins), which makes PET imaging (which can de-
tect these biomarkers) essential in AD diagnosis.
However, the high radiation risk of PET imaging
limits its scanning number within a short period,
presenting challenges to the joint multi-biomarker
diagnosis of AD. In this paper, we propose a novel
unified model to simultaneously synthesize multi-
modal PET images from MRI, to achieve low-cost
and time-efficient joint multi-biomarker diagnosis
of AD. Specifically, we incorporate residual learn-
ing into the diffusion model to emphasize inter-
domain differences between PET and MRI, thereby
forcing each modality to maximally reconstruct its
modality-specific details. Furthermore, we lever-
age prior information, such as age and gender, to
guide the diffusion model in synthesizing PET im-
ages with semantic consistency, enhancing their di-
agnostic value. Additionally, we develop an intra-
domain difference loss to ensure that the intra-
domain differences among synthesized PET im-
ages closely match those among real PET images,
promoting more accurate synthesis, especially at
the modality-specific information. Extensive ex-
periments conducted on the ADNI dataset demon-
strate that our method achieves superior perfor-
mance both quantitatively and qualitatively com-
pared to the state-of-the-art methods. All codes
for this study have been uploaded to GitHub (https:
//github.com/Ouzaixin/ResDM).

1 Introduction
Alzheimer’s disease (AD) is a progressive and irreversible
neurodegenerative disorder, and early diagnosis is crucial for
effective disease management and improving the patient’s
life quality [Provost et al., 2021]. Given that AD causes
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changes in multiple biomarkers, the National Institute on Ag-
ing and Alzheimer’s Association proposed the joint multi-
biomarker (amyloid-β, tau, and neurodegeneration) diagnos-
tic approach, called ATN analysis [Jack Jr et al., 2018]. Con-
ducting ATN analysis requires collecting the patient’s Aβ-
PET, tau-PET, and MRI to acquire information on amyloid-β
(Aβ) deposition, tau proteins, and neurodegeneration, respec-
tively. However, the high costs (especially radiation risks) of
PET imaging limit the feasibility of conducting multiple PET
scans (i.e., Aβ-PET and tau-PET) within a short period, pos-
ing challenges to real-time ATN analysis and thus restrict-
ing diagnostic accuracy. To achieve cost-effective and real-
time ATN analysis, a feasible approach is to simultaneously
synthesize corresponding Aβ-PET and tau-PET images from
Magnetic Resonance Imaging (MRI).

Synthesizing multi-modal PET images from MRI is not a
straightforward task, as it is a one-to-many generative prob-
lem, especially when distinguishing similar modalities such
as Aβ-PET and tau-PET. The most direct approach for such
tasks is to use multiple models for different generative tasks
[Lan et al., 2021; Deng et al., 2022]. While simple, this
method overlooks the interdependencies inherent in the re-
lated generative tasks and incurs computational redundancy
due to the need to train multiple models. Consequently, re-
searchers are increasingly leaning towards using a unified
model to handle multiple generative tasks simultaneously.
One approach in unified model design is to have multiple
generative tasks share parts of the model architecture. For
instance, [Jiang et al., 2023] employs a shared encoder and
two task-specific decoders to simultaneously synthesize two
types of dual-energy CT images from single-energy CT im-
ages. This method effectively reduces the training burden and
captures the dependencies between different generative tasks
to some extent. To further enhance the performance of unified
models, some studies have explored leveraging text control,
enabling different generative tasks through the same model
pathway. This strategy significantly reduces model parame-
ters and adequately captures the dependencies between tasks.

Diffusion models are a recently popular type of text-
controlled unified model. They consist of a process that
gradually adds noise to an input image until it becomes a
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pure noise, and also a denoising process that continuously re-
moves noise from the noised samples to recover the input im-
age. The diffusion-based models decompose the generative
task into a series of simple steps, allowing for precise con-
trol of the generation process using text information. How-
ever, they are often guided by simple textual forms, such as
“Aβ-PET” and “tau-PET”, neglecting some highly relevant
prior information associated with the images. Besides, our
task involves generating highly similar images (i.e., Aβ-PET
and tau-PET) within the same domain from MRI. Traditional
diffusion models struggle to differentiate between these two
PET modalities effectively, ultimately limiting their perfor-
mance of generation. Furthermore, despite using the same
network to synthesize PET images of different modalities,
they do not impose further constraints on the synthesized im-
ages of different PET modalities, i.e., their relationships and
discrepancy, resulting in suboptimal performance.

To tackle these issues, we propose a novel unified model
to simultaneously synthesize multi-modal PET images from
MRI. The core of our method is incorporating residual learn-
ing into the diffusion model to emphasize inter-domain differ-
ences between PET and MRI, rather than their nearly iden-
tical anatomical structures. The residual learning not only
helps the model differentiate two similar PET modalities but
also facilitates a meticulous exploration of distinctive features
between the PET domain and the MRI domain. To improve
the diagnostic value of synthesized PET images, we take the
subject’s age and gender as the prior information to guide
the diffusion model in synthesizing PET images with seman-
tic consistency. Besides, to constrain the PET images from
different modalities, we develop an intra-domain difference
loss to ensure that the intra-domain differences among syn-
thesized PET images closely match those among real PET
images. The proposed novel components and loss functions
can effectively synthesize multi-modal PET images and boost
the usability of our model in real-world clinical scenarios.

Our main contributions are summarized as follows:
• Incorporating residual learning into the diffusion model

to emphasize inter-domain differences between PET and
MRI, thereby forcing each modality to maximally recon-
struct its modality-specific details for AD diagnosis.

• Leveraging prior information, such as age and gender, to
guide the diffusion model in synthesizing PET images
with semantic consistency, enhancing their diagnostic
value.

• Developing an intra-domain difference loss to ensure
that the intra-domain differences among synthesized
PET images closely match those among real PET im-
ages, promoting more accurate synthesis.

2 Related Works
2.1 Multi-Model PET Synthesis from MRI
The high costs of acquiring PET images have limited their
clinical use, leading to research efforts aimed at reducing
these costs through image generation technologies. Among
these efforts, generating corresponding PET images from
MRI has garnered significant attention. This research can be

divided into three categories based on the modality of the tar-
get PET images: 1) Synthesis of FDG-PET from MRI [Li et
al., 2014; Wang et al., 2018; Lan et al., 2021; Pan et al., 2021;
Hu et al., 2021]; 2) Synthesis of Aβ-PET from MRI [Kang
et al., 2020; Kimura et al., 2020; Jin et al., 2023; Vega et al.,
2023]; 3) Synthesis of tau-PET from MRI [Sun et al., 2022;
Lee et al., 2022; Jang et al., 2023]. Current studies mainly fo-
cused on synthesizing a single modality of PET images, yet
accurate AD diagnosis (ATN analysis) requires multi-modal
PET images. Consequently, our objective is to develop a
method for synthesizing multi-modal PET images from MRI,
offering a rapid and cost-effective solution for precise multi-
biomarker joint AD diagnosis.

2.2 Residual Learning in Image Generation
Residual learning, initially developed to solve gradient explo-
sion in image recognition tasks [He et al., 2016], focuses on
enabling models to learn the differences (i.e., residuals) be-
tween inputs and outputs, rather than directly learning the
mapping relationship. Due to its effectiveness in making
model learning more efficient and targeted, researchers try
to apply residual learning to generative tasks as well. For
example, [Jifara et al., 2019] used it in autoencoders for the
image denoising task, allowing the network to more effec-
tively restore image details. [Gao et al., 2020] proposed a
two-level residual learning CNN for image super-resolution
tasks to achieve high-resolution images with high-frequency
components. [Duan et al., 2021] introduced a residual Gener-
ative Adversarial Network (GAN) for the cross-modal trans-
lation task to help the model more efficiently learn complex
image distributions. [Huang et al., 2023] incorporated the
residual learning into the Vision transformer (ViT) to ease the
training of deeper ViT and significantly alleviate the degrada-
tion problem. Inspired by these works, we incorporate the
concept of residual learning into the diffusion process of dif-
fusion models, by proposing a residual diffusion model that
can better differentiate similar data distributions.

2.3 Text-Guided Synthesis
Text-guided synthesis is a flexible and effective method for
controlling image generation, aimed at producing images
that are highly consistent with the associated textual descrip-
tions. Early methods [Choi et al., 2018; Tang et al., 2018;
Duan et al., 2021] simply transform input texts into dis-
crete labels, which are then used to control image genera-
tion. Although this approach could control image generation
to some extent, much of the semantic information from the
original text was significantly lost in the process of convert-
ing to discrete labels. To address this, researchers have tried
to use convolutional network-based feature extraction mod-
ules [Rombach et al., 2022] to extract semantic features from
texts. However, due to the limited scale of the feature extrac-
tion modules, these methods could only handle simple texts
and lack flexibility. Fortunately, the development of large-
scale pre-trained language models [Radford et al., 2021;
Nichol et al., 2021; Ramesh et al., 2022] has recently made
it possible to extract semantic information from input texts
more effectively and flexibly. In this paper, we design a
prior-information-guided module based on the Contrastive
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Figure 1: Overview of our proposed method. (a) The pipeline of residual diffusion model, (b) The inter-domain differences, (c) Details of the
prior-information-guided module, and (d) The intra-domain difference loss.

Language-Image Pre-training model (CLIP [Radford et al.,
2021]), which efficiently and flexibly handles various infor-
mation such as image categories and individual attributes.
This module is then used to guide the image generation pro-
cess.

3 Methodology
The overview of our proposed method is shown in Figure 1
(a). Given an input PET image xi

0 (where i = 1 for Aβ-PET,
i = 2 for tau-PET), it first undergoes a series of transforma-
tions into noisy MRI xi

T through the residual diffusion pro-
cess, gradually merging inter-domain differences. The noisy
MRI xi

T then undergoes a series of reconstruction steps un-
der the control of the prior-information-guided module until
it is restored to the input PET image. We also design an intra-
domain difference loss to constrain the generation between
different PET modalities to improve generation performance.

3.1 Residual Diffusion Model
MRI and corresponding multi-modal PET images (i.e., Aβ
and tau-PET) have a substantial proportion of similarities, as
they are acquired from the same individual. Using traditional
diffusion models to learn the mapping from MRI to different
PET modalities can lead to significant redundancy, and the
model might struggle to learn the critical parts (i.e., the differ-
ences between MRI and different PET modalities, as shown
in Figure 1 (b)). Therefore, inspired by the concept of resid-
ual learning, we design a residual diffusion strategy to enable
the model to directly learn the differences between MRI and
different PET modalities.

In the forward process, we transform the input PET image
x0 into a noisy MRI xT through a series of transformations.
To achieve this, we first extract the inter-domain difference
e0 = y0 − x0 between MRI y0 and the input PET image
x0, and then apply a shifting sequence {ηt}Tt=1 to add this
difference e0 to the input PET image. Thus, the intermediate
version xt can be modeled as:

q(xt|x0, y0) = N (xt;x0 + ηte0,Σ) (1)

where η1 → 0, and ηT → 1.
In the reverse process, we progressively restore the noisy

MRI xT (i.e., the noisy version of MRI y0) back into the input
PET image x0 through a series of reconstruction steps. Rep-
resenting the posterior distribution as p(x0|y0), this process
can be formalized as follows:

p(x0|y0) =
∫

p(xT |y0)
T∏

t=1

pθ(xt−1|xt, y0)dx1:T (2)

where we assume the marginal distributions of xT converges
to N (xT ; y0,Σ), i.e., p(xT |y0) ≈ N (xT ; y0,Σ). Following
commonly used strategies in diffusion models [Dhariwal and
Nichol, 2021; Song et al., 2020], we adopt the assumption
of pθ(xt−1|xt, y0) = N (xt−1;µθ(xt, y0, t),Σθ(xt, y0, t)).
The Σθ(xt, y0, t) can be viewed as a fixed variance and
µθ(xt, y0, t) can be reparameterized as follows:

µθ(xt,y0,t) =
ηt−1

ηt
xt +

ηt − ηt−1

ηt
fθ(xt, y0, t) (3)

where fθ is a deep neural network with learnable parameter
θ, aiming to predict x0. Consequently, the reconstruction loss
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of our model is defined as follows:

Lrec = min
θ

∑
t

∥fθ(xt, y0, t)− x0∥22 . (4)

3.2 Prior-Information-Guided Module
In this work, we aim to accomplish the generation of both
Aβ-PET and tau-PET images by using a single model. To
achieve this, we guide each generation with corresponding
textual information to produce the expected PET modality.
Meanwhile, considering that our generated images are ulti-
mately for diagnostic tasks, we also wish to integrate clini-
cally relevant information, such as age and gender, into the
generation process to enhance the diagnostic value of the im-
ages. To this end, we utilize a large-scale pre-trained lan-
guage model, namely CLIP, to design a prior-information-
guided module. This module can effectively and flexibly pro-
cess these textual information to guide image generation.

The details of the prior-information-guided module are
provided in Figure 1 (c). Specifically, this module takes a
piece of text information as input and then tokenizes the text
into concept tokens with a length of 77. The concept tokens
are then processed through a text encoder based on ViT-B/32
CLIP to extract a textual vector. The extracted textual vector
is subsequently used to guide a series of image reconstruction
processes. Noting that considering the original pre-trained
CLIP model is designed for natural images and correspond-
ing texts, we employ fine-tuning techniques on the final trans-
former layer of CLIP to ensure that the model’s understand-
ing of the input clinical information can align with the target
image generation task.

During each reconstruction step, we guide the recon-
struction by fusing the textual vector and the image fea-
ture maps extracted from the bottleneck of each reconstruc-
tion network, serving as the input for the next layer. We
utilize cross-attention to fuse the textual vector and image
feature maps, which can be mathematically represented as
Attention(Q,K, V ) = softmax(QKT

√
d
) · V with

Q = W
(i)
Q · zimage,K = W

(i)
K · ztext, V = W

(i)
V · ztext (5)

where zimage is the flattened image feature maps from the
bottleneck layer, and ztext represents the textual vector.

3.3 Intra-Domain Difference Loss
Since Aβ-PET and tau-PET are highly similar, it’s quite
challenging for the model to accurately reconstruct different
modalities of PET images from noisy MRI using only the im-
age category information provided by the prior-information-
guided module. Thus, we further design an intra-domain dif-
ference loss to constrain the synthesis of PET images across
different modalities.

Specifically, in each reconstruction step, we employ the
intra-domain difference loss to ensure that the differences be-
tween predicted Aβ-PET and tau-PET images at multiple lev-
els align with the differences between the real Aβ-PET and
tau-PET images, as shown in Figure 1 (d). This can be for-
mulated as follows:

Lhigh = min
θ

∑
t

∥∥|x̂1
0 − x̂2

0| − |x1
0 − x2

0|
∥∥2
2

(6)

AD, N = 210 MCI, N = 656 CN, N = 608

Age 74.58±8.09 71.66±7.48 71.37±6.63
Sex (Female/Male) 85/125 297/359 357/251
Years of education 15.66±2.61 16.19±2.55 16.68±2.37
MMSE 23.01±2.35 27.96±1.81 29.09±1.13
Aβ SUVR 1.40±0.22 1.22±0.23 1.12±0.18
Tau SUVR 1.60±0.37 1.33±0.30 1.18±0.12

Table 1: Demographics for the collected dataset, with some data
being shown as mean±std.

where x̂1
0 and x̂2

0 are the synthesized Aβ-PET and tau-PET
images at each time step t, and x1

0 and x2
0 denote real Aβ-

PET and tau-PET images, respectively.
By combining the reconstruction loss (Lrec) and the intra-

domain difference loss (Lhigh), the comprehensive objective
function is formulated as:

L = Lrec + λLhigh (7)

where λ is a hyper-parameter to balance different loss terms.

4 Experiments
4.1 Dataset and Metric
To validate our proposed method, we collect 1274 sets of
Aβ-PET, tau-PET, and T1-weighted MRI from the pub-
lic Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset, with 1020 sets used for training and 254 sets for
testing. Each set of images is acquired from the same in-
dividual, along with corresponding AD diagnostic labels,
and aligned to a common space by affine registration. To
eliminate anisotropy, we resample all images to a size of
128×128×128 with a voxel spacing of 1.5 mm3. Additional
details about the collected dataset can be found in Table 1.

We comprehensively evaluated the experimental results
from both the reconstruction and diagnosis aspects. In the re-
construction evaluation, we evaluated the quality of the syn-
thesized images using Mean Absolute Error (MAE), Struc-
tural Similarity Index (SSIM), and Peak Signal-to-Noise Ra-
tio (PSNR). As for the diagnosis evaluation, we assess the AD
diagnostic value of the synthesized images through the AD
diagnosis task using the pre-trained disease diagnosis model
in [Pan et al., 2021], and quantify the diagnostic outcomes
using Accuracy (ACC), F1 Score (F1S), and the Area Under
the Receiver Operating Characteristic Curve (AUC).

4.2 Comparison with State-of-the-Art Methods
We compare our proposed method with five state-of-the-art
generative approaches, including: 1) Pix2Pix [Isola et al.,
2017], 2) SC-GAN [Lan et al., 2021], 3) TransUNet [Chen
et al., 2021], 4) ResViT [Dalmaz et al., 2022], and 5) DDPM
[Ho et al., 2020]. In our experiments, Pix2Pix, SC-GAN,
and TransUNet use two structurally identical models to sep-
arately synthesize Aβ-PET and tau-PET images, whereas
ResViT and DDPM employ a single model with control mod-
ules to generate different modality PET images. Specifi-
cally, ResViT utilizes an availability condition module to ran-
domly mask the target modality for learning, enabling the
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Figure 2: Top two rows: Ground-truth images and synthesized Aβ-PET images with error maps by six models on a typical subject from the
test set. Bottom two rows: Ground-truth images and synthesized tau-PET images with error maps by the same six models.

Synthetic Aβ-PET Synthetic tau-PET
MAE(%)↓ PSNR(dB)↑ SSIM(%)↑ MAE(%)↓ PSNR(dB)↑ SSIM(%)↑

Pix2Pix 3.11±1.15 23.50±2.52 87.70±2.57 3.02±1.55 24.49±3.59 86.02±3.18
SC-GAN 2.75±0.95 24.37±2.38 89.76±2.36 2.76±1.74 25.49±3.95 88.15±3.62
DDPM 2.79±1.08 24.85±2.66 88.19±2.83 2.42±1.78 26.59±4.38 89.84±3.68
TransUNet 2.63±0.98 24.86±2.74 90.87±2.49 2.41±1.70 26.66±4.17 90.17±3.87
ResViT 2.54±0.92 25.20±2.51 91.05±2.28 2.37±1.89 26.91±4.46 90.19±4.19
Ours 2.11±0.71 26.38±2.18 92.49±2.27 1.90±1.18 27.78±3.21 91.44±3.05

Table 2: Quantitative evaluation of the synthetic images by six models. Results are listed as mean±std calculated across the test dataset.

synthesis of diverse target modalities during the inference
stage. DDPM is modified by aligning MRI with noisy PET
through channel concatenation and integrating text informa-
tion (represented as discrete vectors) into the denoising pro-
cess for multi-model PET synthesis, using a common ap-
proach as described in [Xie et al., 2022; Lyu and Wang, 2022;
Özbey et al., 2023]. The quantitative and qualitative results
are provided in Table 2 and Figure 2, respectively.

Quantitative Comparison: As shown in Table 2, our pro-
posed method outperforms others, showcasing robust per-
formance in generating both Aβ-PET and tau-PET images.
Meanwhile, compared to the traditional diffusion model (i.e.,
DDPM), we achieve substantial improvements across all met-
rics. Specifically, for Aβ-PET generation, the improvements
in MAE, PSNR, and SSIM are respectively 0.43%, 1.18dB,
and 1.44%. For tau-PET generation, the improvements in
MAE, PSNR, and SSIM are respectively 0.53%, 0.87dB, and
1.25%. This demonstrates the effectiveness of our targeted
improvements to the design of the traditional diffusion model.

Qualitative Comparison: The visual results are provided in
Figure 2. From the figure, it is evident that methods based on
GAN, including ResViT, TransUNet, SC-GAN, and Pix2Pix,

tend to synthesize overly smooth images. In contrast, the PET
images generated by our proposed method exhibit the clearest
critical details. Moreover, the PET images reconstructed by
our approach show the smallest difference from the ground
truth, as indicated by the lightest colors in the correspond-
ing error maps. These findings collectively demonstrate that
our method achieves superior performance to state-of-the-art
methods.

4.3 Ablation Studies
To validate the different components of our proposed method,
we use the residual diffusion model as a baseline and selec-
tively incorporate intra-domain difference loss and a prior-
information-guided module to form several variants. The re-
sults are provided in Table 3 and Figure 3. As indicated in
Table 2, the baseline (1st row) shows improvements upon the
addition of either intra-domain difference loss (2nd row) or
prior-information-guided module (3rd row), and it achieves
the best synthetic results when both are applied simulta-
neously (4th row). This validates the benefit of our de-
signed intra-domain difference loss and prior-information-
guided module in synthesizing PET images. Additionally,
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Synthetic Aβ-PET Synthetic tau-PET
MAE(%)↓ PSNR(dB)↑ SSIM(%)↑ ACC(%)↑ MAE(%)↓ PSNR(dB)↑ SSIM(%)↑ ACC(%)↑

Base 2.52±0.92 25.27±2.54 91.41±2.10 80.31±2.19 2.38±1.73 26.82±4.32 90.30±3.85 81.84±4.80
w Lhigh 2.14±0.98 25.78±2.51 92.07±2.47 80.66±1.54 2.12±1.82 27.49±3.93 90.92±3.71 82.04±4.74
w prior 2.17±0.86 25.98±2.70 92.18±2.32 81.74±1.59 2.00±1.83 27.57±3.73 91.10±3.56 82.68±5.08
Ours 2.11±0.71 26.38±2.18 92.49±2.27 81.90±1.74 1.90±1.18 27.78±3.21 91.44±3.05 83.06±6.16

Table 3: Quantitative evaluation of the synthetic images by our proposed model and its variants.

Figure 3: Top two rows: Ground-truth and synthesized Aβ-PET im-
ages with error maps by our proposed model and its variants on a
typical subject from the test set. Bottom two rows: Ground-truth
and synthesized tau-PET images with error maps by our proposed
model and its variants.

the incorporation of the prior-information-guided module re-
sulted in significant improvements in the positive and nega-
tive diagnoses of Aβ and tau proteins. This demonstrates that
the utilized prior information enhances the synthesis of PET
images with greater diagnostic value. Figure 3 illustrates that
the synthesized PET images by integrating both intra-domain
difference loss and prior-information-guided module matches
best with the ground truth, further proving the effectiveness
of each proposed component.

5 Discussions
5.1 The Role of Prior Information
To further explore the role of prior information in PET im-
age generation, we design two experimental groups to eval-
uate the impact of two common types of prior information
(namely, gender, and age) on PET image synthesis. For gen-
der information, we create texts with correct gender, no gen-
der, and incorrect gender, and then use these texts to guide the
synthesis of PET images. The synthesized PET images are
subjected to a gender classification task by using the classifi-
cation model proposed in [Pan et al., 2021]. The diagnostic
results are provided in Figure 4. It can be observed that PET
images synthesized with guidance from the correct gender in-
formation exhibit the strongest gender classification capabil-
ity, followed by those synthesized with no gender information
and incorrect gender information. This indirectly indicates
the sensitivity of image synthesis to the guiding gender infor-

Figure 4: Conditioning analysis of gender information. (a) Perfor-
mance metrics for synthetic Aβ-PET images under different condi-
tions. (b) Performance metrics for synthetic tau-PET images under
different conditions.

mation, where correct gender guidance leads to images with
greater diagnostic value.

Similar to the assessment with gender information, we
evaluate the sensitivity of synthesized images to age infor-
mation under two scenarios, i.e., with and without age guid-
ance. Specifically, we use a prediction model [Cole et al.,
2017] to estimate the actual age based on the generated PET
images, with results presented in Figure 5. The results reveal
that, under age-guided conditions, whether using generated
Aβ-PET or tau-PET images for age prediction, the correla-
tion between predicted and actual ages is significantly higher
compared to the non-age-guided scenario. This result fur-
ther demonstrates that our designed prior-information-guided
module effectively enables the model to synthesize PET im-
ages highly semantically related to the corresponding textual
information.
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Figure 5: Conditioning analysis of age information. (a) Correlation between conditioning brain age and predicted brain age from real Aβ-PET
(Top) and tau-PET (Bottom) images, respectively. (b) Correlation using Aβ-PET (Top) and tau-PET (Bottom) images with age conditioning.
(c) Correlation using synthetic Aβ-PET (Top) and tau-PET (Bottom) images without age conditioning.

Aβ status classification tau status classification
AUC (%)↑ ACC (%)↑ F1S (%)↑ AUC (%)↑ ACC (%)↑ F1S (%)↑

SC-GAN 71.20±3.62 63.92±2.66 66.04±4.42 75.44±6.08 76.52±6.62 61.90±6.08
ResViT 83.12±1.97 76.82±1.79 75.34±4.11 82.92±3.10 77.80±5.26 63.28±3.76
TransUNet 85.76±1.24 77.52±0.70 77.34±2.43 87.08±2.48 79.46±5.77 66.98±8.35
Pix2Pix 87.96±1.96 78.86±2.61 79.40±3.72 85.66±4.99 81.46±5.15 69.24±6.05
DDPM 89.20±1.43 80.68±1.85 80.66±4.97 88.42±2.62 82.30±7.06 71.42±7.60
Ours 90.74±1.50 81.90±1.74 82.74±3.68 90.02±1.88 83.02±6.16 76.67±6.00
Real modality 98.96±0.22 94.18±0.77 94.12±1.19 96.90±0.22 92.32±4.20 86.44±7.83

Table 4: Quantitative evaluation of Aβ status and tau status classification. Results are listed as mean±std through five-fold cross-validation.

5.2 Diagnostic Value of Synthetic Images

Furthermore, we evaluate the diagnostic value of the gener-
ated images by diagnosing the status of Aβ and tau proteins
using the generated Aβ-PET and tau-PET images. The diag-
nostic results using PET images generated by different meth-
ods are presented in Table 4. The statistical results show that
diagnoses made using PET images generated by our method
achieve results close to those using real images, with accura-
cies (ACC) of 81.90% and 83.02% for the positive and neg-
ative diagnoses of Aβ and tau proteins, respectively. More-
over, compared to other methods, our method achieves the
best diagnostic results. These results suggest that our pro-
posed method can synthesize PET images with exceptionally
high diagnostic value, showing potential for application in
clinical diagnosis.

6 Conclusions

In this paper, we propose a prior-information-guided resid-
ual diffusion model to simultaneously generate multi-modal
PET images from MRI, addressing the challenge of acquiring
multi-modal PET images within a short time. We specifically
design three strategies tailored to this task, including 1) uti-
lizing residual diffusion to enable the model to focus only
on the inter-domain differences between MRI and PET, 2)
embedding a prior-information-guided module for integrating
image modality and subject attributes into the generation pro-
cess, and 3) designing an intra-domain difference loss to con-
strain the differences among different PET modalities. Ex-
periments on the ADNI dataset demonstrate that our method
outperforms state-of-the-art approaches and shows potential
for application in clinical auxiliary diagnosis.
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