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Abstract

Self-supervised learning (SSL) aims to learn the in-
trinsic features of data without labels. Despite the di-
verse SSL architectures, the projection head always
plays an important role in improving downstream
task performance. In this study, we systematically
investigate the role of the projection head in SSL.
We find that the projection head targets the unifor-
mity aspect, which maps samples into uniform dis-
tribution and enables the encoder to focus on extract-
ing semantic features. Drawing on this insight, we
propose a Representation Evaluation Design (RED)
in SSL models in which a shortcut connection be-
tween the representation and the projection vectors
is built. Our extensive experiments with different
architectures (including SimCLR, MoCo-V2, and
SimSiam) on various datasets demonstrate that the
RED-SSL consistently outperforms their baseline
counterparts in downstream tasks. Furthermore, the
RED-SSL learned representations exhibit superior
robustness to previously unseen augmentations and
out-of-distribution data.

1 Introduction

Extracting meaningful representations from a large amount

of unlabeled data is a crucial task in self-supervised learning.

With the rapid progress in the SSL. [Chen er al., 2020a; He
et al., 2020; Wang et al., 2021; Caron et al., 2020; Grill et
al., 2020; Chen and He, 2021; Caron et al., 2021; He et al.,
2022; Chen et al., 1, simple classifiers learned from pre-trained
representations can achieve comparable performance to those
from supervised learning. Despite its empirical success, the

underlying mechanisms of SSL still require further exploration.

Many efforts have been devoted to studying the loss function
[Sohn, 2016; Oord et al., 2018; Wang and Isola, 2020; Li et
al., 2020; Khosla et al., 2020; Wang and Liu, 2021; Hu et
al., 2022], and the construction of positive pairs [Arora et
al., 2019; Wen and Li, 2021; Wang and Isola, 2020; Tian et
al., 2021; Wang and Liu, 2021; Wang et al., 2022al, while
less are paid on the investigation of the model architectural
components. Typically, the SSL architecture includes two
components: an encoder and a projection head. The encoder is
usually a discriminative model like ResNet [He et al., 2016]

or ViT [Dosovitskiy ef al., 2020] that aims to extract semantic
features; the projection head is a multi-layer perceptron used
in pre-training. After the pre-training, the projection head is
discarded, and the encoder outputs (representation vectors) are
used for the downstream tasks. The inclusion of projection
head during the pre-training significantly improves the SSL
method in downstream performance [Chen et al., 2020al,
leading to its widespread adoption in various SSL architectures
[Chen et al., 2020a; He et al., 2020; Chen et al., 2020b; Caron
et al., 2020; Grill et al., 2020; Zbontar et al., 2021; Chen and
He, 2021; He et al., 2022]. However, the mechanism behind
the contribution of the projection head during pre-training has
not been fully understood.

Through an in-depth analysis of the pre-training objective
values across the intermediate layers of SSL, we discover that
the projection head mainly promotes the uniformity objective,
i.e., mapping the samples closer to the uniform distribution.
In contrast, the encoder mainly serves to enhance alignment,
i.e., minimizing the distance between similar samples, such as
a training data point and its augmentations. We demonstrate
that this phenomenon widely exists in SSL methods, including
contrastive methods such as SimCLR and MoCo-V2, and non-
contrastive methods such as SimSiam. While augmentation
invariance (alignment) may relate more to extracting semantic
features [Purushwalkam and Gupta, 2020; Von Kiigelgen
et al., 2021; Wang et al., 2022a; Wang et al., 2022c¢], the
projection head can effectively prevent the SSL model maps
the inputs to the identical constant output, known as trivial
constant solution [Jing ef al., 2021; Li ef al., 2022].

Building on our understanding of the projection head, we
propose a novel approach called Representation Evaluation
Design (RED) for SSL methods. RED involves creating a
shortcut connection between the representation and projection
vectors, allowing the benefits (lower entropy, general aug-
mentation, and downstream guidance) of the representation
vector to bypass the projection head and guide the training
directly. As a result, RED-SSL strengthens the augmentation
invariance of representation (extracting semantic information
[Von Kiigelgen et al., 2021; Purushwalkam and Gupta, 2020;
Wang et al., 2022a]) without impairing the uniformity of the
projection head. Through comprehensive comparison experi-
ments between the baseline SSL methods (SimCLR, MoCo-
V2, SimSiam) and the RED-version (RED-SimCLR, RED-
MoCo-V2, and RED-SimSiam) in various datasets (CIFAR-
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Figure 1: Demonstration of SSL network architectures. "MA" stands
for moving average operation, "ProjH" for the projection head. The
dashed line stands for the stop gradient operation.

10, CIFAR-100 [Krizhevsky, 2009], ImageNet [Deng et al.,
2009]), we observe a consistent performance improvement in
the downstream classification tasks using k-nearest neighbor
(KNN) [Wu et al., 2018] and linear classifier. Furthermore, the
RED-SSL learned representations exhibit stronger robustness
to augmentation in the downstream evaluation.

Our main contributions are summarized as follows.

* We uncover that the projection head mainly serves as a
uniform projector, regardless of whether the uniformity
appears explicitly in the loss function of SSL. Thus, the
projection head enables the encoder to focus on boosting
alignment without degenerating to a collapsed constant.
It explains the combination of the encoder and projection
head outperforms the individual encoder.

We reveal that the encoder outputs (representation vec-
tors) exhibit superiority in terms of augmentation robust-
ness, lower entropy, and better downstream task perfor-
mance than the outputs of the projection head (projection
vectors). It explains why the representation vectors are
used in the downstream tasks.

We propose a representation evaluation design (RED)
that bridges the representation information and the SSL
objective functions. Extensive experiments on different
SSL methods, various datasets, and different classifiers
demonstrate that our proposed design can consistently
improve the downstream task performance of the baseline
models and is more robust to unseen augmentations and
out-of-distribution data.

2 Related Works

The projection head in SSL. The projection head design was
initially introduced in SImCLR [Chen et al., 2020a], which
differentiates the pre-training and the downstream phase as
separate objectives for the projection vector z and represen-
tation vector r, respectively. This projection head design is
widely adopted by the later proposed methods [He et al., 2020;
Chen et al., 2020b; Grill et al., 2020; Caron et al., 2020;
Zbontar et al., 2021; Chen and He, 2021], where some ar-
chitectures are displayed in Figure 1. [Chen e al., 2020a]
indicates that the downstream classification does not increase
monotonically as the number of layers of projection head in-
creases. [Wang er al., 2022b] indicated that the projection
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head is the key to enhancing the transferability by measuring
the downstream supervised accuracy between different net-
work layers. However, for unlabeled SSL, assessing it solely
based on supervised performance may raise doubts. In con-
trast, we examine the SSL objective values among the layers,
which illustrates the benefits provided by the projection head
more directly. [Gupta et al., 2022] regarded the projection
head as a low-rank mapping such that the trained vectors can
be more style-invariant and generalize better. We think that
this does not capture the complete picture. For example, in
the ablation study conducted on SimCLR [Chen er al., 2020al,
altering the dimensionality of the non-linear projection head
does not significantly impact the downstream performance.
Additionally, in SimSiam [Chen and He, 2021], reducing the
projection dimension adversely affects the downstream per-
formance, indicating that low-rank projection substantially
deteriorates the performance of SimSiam. In contrast, our
interpretation of the projection head applies to various SSL ar-
chitectures (including SimCLR, MoCo-V2, and SimSiam) and
inspires designs that universally improve SSL performance.

Analysis of SSL. The theoretical understanding of SSL
has been the focus of many works [Arora er al., 2019;
Tosh et al., 2021; HaoChen et al., 2021; Wen and Li, 2021;
Ji et al., 2021; Tian, 2022]. The analysis of the SSL loss
and the architecture is relatively fewer. [Wang and Isola,
2020] split the InfoNCE loss as alignment and uniformity, and
demonstrate that uniformity stands for uniformly distribut-
ing on the hypersphere based on Gaussian potential kernel.
Compared with [Wang and Isola, 2020], our study integrates
alignment and uniformity concepts into the analysis of SSL
architectures. This integration enables a deeper exploration of
SSL network design. Importantly, our analysis goes beyond
contrastive SSL approaches and also includes non-contrastive
SSL methods, providing a more comprehensive understand-
ing. [Hu er al., 2022] relates contrastive SSL to the stochastic
neighbor embedding(SNE). [Wang et al., 2022a] considers
augmentation encourages the different intra-class samples to
be overlapped, and thus positive alignment could attract the
intra-class samples together. [Wang and Liu, 2021] states that
uniformity guides the contrastive model to learn separable fea-
tures, and proper temperature gives tolerance to semantically
similar samples. [Wen and Li, 2022] reveals that the identity-
initialized prediction head prevents BYOL from the training
collapse. [Saunshi et al., 2022] point out that the inductive
biases within the contrastive function class contribute to the
downstream success.

3 Projection Head Is a Uniformity Projector

This section investigates the interplay between the encoder and
the projection head during the pre-training process. Specifi-
cally, we investigate the alignment & uniformity values within
the SSL architectures. We reveal that the projection head pri-
oritizes the uniformity objective, and the encoder focuses on
the alignment objective in the pre-training.

The InfoNCE loss [Sohn, 2016; Oord et al., 2018; Chen et
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sample 7. In (1), z; 7, ;" are referred to as positive pairs,

since they are from the same sample under different aug-

mentations, and z( ), ") are regarded as negative pairs. In

the InfoNCE loss Formulal, the first term corresponds to
the positive pair alignment loss: >, ( —zi(l) 2) /7), which
is minimized if the projection z is invariant to the training
augmentation. The second term represents uniformity loss:
S log Z?’:l exp(zgk)zj(.l)/T), which is minimized if the
projection z is distributed uniformly on the hypersphere [Wang
and Isola, 2020]. Inspired by the alignment and uniformity
formula in 1, we define the alignment and uniformity values
of given vector x in (2), respectively. In our subsequent anal-
ysis, we compute the alignment and uniformity values for
intermediate layer output vectors in various SSL networks.
Figures 2 depict the alignment and uniformity values using
Formula (2) for the intermediate layers of the SSL models:
(a) MoCo-V2; (b) SimSiam. (SimCLR analysis is placed in
Appendix B.1) All are trained for 200 epochs in CIFAR-10,
and the encoder is ResNet-18. In the encoder part of Figures 2,
the uniformity values fluctuate without showing a consistent
decrease, while the alignment values decrease across diverse
augmentation types (except for Gaussian augmentation, which
lacks semantic meaningfulness). Moving into the projection
head, there is a noticeable decrease in uniformity values, ac-
companied by an increase in alignment values. This phe-
nomenon in the projection head suggests that the samples are
mapped closer to a uniform distribution on the hyper-sphere,
albeit at the expense of losing some augmentation invariance.
Table 1 presents the explicit changes in alignment and uni-
formity values (computed using Formula (2)) within the en-
coder and projection head. In the encoder part, alignment
values decrease while uniformity values increase. Within the
projection head, the decrease in uniformity values coincides
with an increase in alignment values, indicating its role as a
uniformity projector. In fact, with the alignment and unifor-
mity values dropping within the encoder and projection head
separately, the encoder output (representation layer) owns the
lowest alignment value and possesses semantically meaning-
ful features. This SSL inner investigation helps explain why
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UNIFORMITY  ALIGNMENT
SIMCLR ENC +0.035 -0.356
PrRH -0.057 +0.266
MoCo-V2 ENC +0.049 -0.481
PrRH -0.028 +0.151
SIMSIAM ENC +0.019 -0.401
PrRH -0.025 +0.143

Table 1: Uniformity and alignment changes. For abbreviation, Enc
stands for Encoder part of SSL model, PrH for Projection Head.
The numbers in the Uniformity column and EnC row (based on
Formula(2)) are obtained by: (the uniformity value of the last layer of
encoder output) — (the uniformity value of the first layer of encoder
output); The numbers in the Uniformity column and PrH row (based
on Formula(2)) are obtained by:(the uniformity value of the last layer
of projection head output) — (the uniformity value of the first layer of
projection head output). The Alignment column is obtained similarly.

introducing the projection head can improve the downstream
performance of the encoder output (representation).

In SimSiam pre-training, uniformity terms are not included
in the training objective. Nevertheless, similar observations
found in contrastive SSL. methods like SimCLR and MoCo-
v2 can still be made. The significant decrease in uniformity
values within the projection head, as shown in the upper sub-
figure of SimSiam (b) in Figure 2 and the SimSiam row in
Table 1, indicates that the projection head implicitly promotes
uniformity and prevents the collapse of SimSiam pre-training.

After uncovering the projection head is a uniformity projec-
tor through SSL architectural analysis, we aim to understand
the effect on the encoder output layer (representation vectors)
in the following analysis.

REPR PRroJ

TRAIN TEST TRAIN TEST
TRAIN AUGMENTATION  0.823 0.802 0.894 0.857
ANGLE ROTATE 0.559 0.558 0.479 0.470
GAUSSIAN BLUR 0.951 0.947 0.965 0.958
CENTER CROP 0.219 0.221 0.134 0.130
RANDOM POSTERIZE 0.509 0.509 0.422 0.413
RANDOM PERSPECTIVE 0.730 0.728 0.704 0.698

Table 2: Augmentation robustness. The cosine similarity between
positive sample pairs under different types of augmentations. The
"train augmentation" row stands for the augmentation types used
during the pre-training. The "Repr" column stands for Representation
and "Proj" stands for projection vectors.

4 Representation Vector Analysis

Having revealed the projection head’s role as a uniformity
projector through SSL architectural analysis, we conduct a
detailed analysis of the encoder output layer (representation
vectors) in this section. Specifically, we demonstrate that
the representation vectors exhibit superiority in augmentation
robustness, lower entropy, and better downstream task perfor-
mance compared to the projection vectors.
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Figure 2: Layer-wise uniformity and alignment value analysis. Conducting the alignment and uniformity values calculation using Formula (2)
for each intermediate layer in the SSL architectures. (a) MoCo-V2 (b) SimSiam.

4.1 Robustness to Unseen Augmentations

Augmentation invariance plays a crucial role in guiding
the extraction of semantic features in SSL [Von Kiigel-
gen et al., 2021; Purushwalkam and Gupta, 2020; Wang
et al., 2022a] and contributes to the achievements of non-
contrastive models [Grill et al., 2020; Chen and He, 2021;
He et al., 2022]. However, in the pre-training process, only a
limited number of augmentation types are typically applied,
while the invariance to unseen augmentation types can also be
advantageous in extracting additional semantic information.
To study the robustness to unseen augmentations of the
representation and projection vectors, we compare the cosine
similarity of the positive pairs based on the representation and
the projection vectors. Table 2 records the cosine similarity
under different augmentations, calculated with representation
and projection vectors, respectively. The "train augmentation”
row in Table 2 refers to the augmentation types used during
the training (random combination of RandomResizedCrop,
HorizontalFlip, Colorlitter, and RandomGrayscale, specified
in [Chen er al., 2020al). The projection vectors exhibit a
greater cosine similarity for the training augmentation, but for
all other unseen augmentation types, the cosine similarity of
the representation vectors is significantly higher than that of
the projection vectors. The exception to this is Gaussian blur,
which is not a semantically meaningful augmentation. This
superior augmentation robustness indicates that the represen-
tation vectors are capable of extracting meaningful semantic
information beyond the predetermined augmentation types.

4.2 Entropy Analysis

Uniformity is crucial in preventing a model from collapsing
into a trivial constant state [Wang and Liu, 2021]. However,
promoting uniformity can lead to increased entropy, as shown
in Proposition 1. In this section, we demonstrate that the en-
tropy of representation vectors (encoder output) is lower than
that of projection vectors (projection head output). This is be-
cause the projection head prioritizes the uniformity objective,
while the encoder focuses on the alignment objective.

Proposition 1. Encouraging uniformity is equivalent to re-
ducing the KL divergence towards the uniform distribution,
and approaching closer to the uniform distribution results in
an entropy increase.

The proof of Proposition 1 is based on the derivation in
(A.2) and (A.3) of Appendix A. Intuitively, since the uniform
distribution is the distribution that has the largest entropy for
bounded variables, and the projection head encourages uni-
formity, the output distribution of the projection head has
a higher entropy than its original distribution. To provide
a quantitative comparison, we use the discrete entropy es-
timator [Beirlant et al., 1997; Lombardi and Pant, 2016]
defined as the following Formula, b refers to the m non-
overlapping sub-regions that constitute all samples. Defined
as: H = Ly, Zﬁbel:l —P{b,label} 108 Pyp 1aver}» Where:
Db, (1abe1 =i} = (labeled i sample counts in region b) / (sam-
ple counts in region b).

Table 3 compares the estimated entropy calculated using
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representation and projection vectors from SimCLR, MoCo-
V2, and SimSiam, all trained for 200 epochs on the CIFAR-10
dataset using ResNet-18 as the encoder. The results verify
that the estimated entropy of representation vectors is consis-
tently lower than that of projection vectors, indicating that
the encoder implicitly transfers the burden of uniformity to
the projection head. Consequently, the representation vectors
enjoy a smaller entropy and contain a wealth of information
useful for downstream tasks. Our quantitative analysis of
entropy provides a formal and comprehensive illustration, of-
fering a contrast to the visually-oriented T-SNE scatter plots
presented in [Wang et al., 2022b]. Figure B.3 in Appendix
B.2 presents a visual evaluation of the entropy.

ENTROPY REPRESENTATION  PROJECTION
SiIMCLR 1.7476 1.850
MoCo0-V2 1.5131 2.0315
SIMSIAM 1.8611 1.8940

Table 3: Compare the entropy of representation and projection vectors
in SimCLR, MoCo-V2, and SimSiam, all of which were trained for
200 epochs using ResNet-18 as the encoder on the CIFAR-10 dataset.

4.3 Relationship to Downstream Task

With the projection head targeting the uniformity objective,
SSL models allow the representation vectors to have higher
alignment and therefore, contain more semantic information
and are more closely related to downstream performance than
projection vectors, as demonstrated in this subsection.

We calculate the mean of the pair-wise cosine similarity of
representation r and projection vectors z in Formula 3

j=n j=n
n_ 1N, oINS, 3
anZTJ’Sl nzz’sz7 (3)

jl=i jl=i

where r; and z; refer to representation and projection vectors
of sample i. Define y; as the downstream misclassification
of sample ¢. Specifically, y; = 1 represents misclassification
while y; = 0 represents correct classification in the down-
stream task. The correlation between the sample average of
pairwise cosine similarity s("), s(*) and misclassification re-
sult y is denoted as p(s("),y) and p(s(*),y). Intuitively, a
sample with higher similarity to others is more difficult to
differentiate and is thus more likely to be misclassified.
Table 4 displays the correlations p(s(),y), p(s*),y) for
the representation and projection vectors, respectively. The
results indicate that representation vectors are more closely
related to downstream task performance, as they exhibit a
higher correlation. To further verify that the quality of the
representation vectors can influence the downstream task per-
formance more directly, we compute the error rate split for the
representation and projection vectors. Specifically, we split
the samples into two groups according to the pair-wise cosine
similarity of representation vectors r, as follows:
— {Z

) > median of s, Q(T) ={1,.. n}\gir)-

CIFAR-10 REPRESENTATION  PROJECTION
CORRELATION 0.1482 0.021
ERROR RATE SPLIT 14.1% | 6.7% 11.1% ] 9.7%
CIFAR-100 REPRESENTATION  PROJECTION
CORRELATION 0.1746 0.0642

ERROR RATE SPLIT 46.1%|32.2% 42.1%|36.2%

Table 4: Downstream error rate. The correlations p(s(T), Y),
p(s(z)7 y) for the representation and projection vectors. The error
rate, defined in (4), stands for the two groups of error rate comparison,
divided by 50% percentile of the sample average of pair-wise cosine
similarity s. (representation—based and projection-based error rates

com (r) d e el
parison are: e, |e2 and e;”’|ey”

The error rate for each group is defined as

el = Z yi, J=12. @)
card(¢") Q icg™"

The split and the error rates of the projection vectors z:
g (Z), e(®*) | can be obtained similarly. Intuitively, the error
rate of QY) (or QY:)) is larger than that of QéT) (or géz)), since
the samples in the former group are harder to be differentiated.
The gap between the error rates of the two groups should be
large if the cosine similarity accurately represents the difficulty
of the downstream task. Table 4 exhibits that the gap in error
rates for representation vectors is much larger than that for
projection vectors, suggesting that the sample pair-wise simi-
larity based on representation vectors is more closely related
to downstream task performance.

5 Representation Evaluation Design in SSL

In Section 4, we demonstrate that representation exhibits supe-
rior robustness to universal augmentations, lower entropy, and
stronger relevance to downstream tasks compared to projection
vectors. These merits motivate us to propose Representation
Evaluation Design (RED) in the SSL pre-training, which is
applicable for both the contrastive and non-contrastive SSL.

Our motivation is to enhance the performance of SSL by
targeting samples that are difficult to differentiate from the
others. Building on our discovery that representation vectors r
offer benefits including better augmentation invariance, lower
entropy, and stronger downstream relevance than the projec-
tion vectors, we propose the representation evaluation weights
w in (5) for usage in SSL pre-training loss.

w; = (percentile, (exp(rir; /n), k%) ™", (5)

In (5), r is the representation vector, 7 is the representation
temperature parameter, and k is the percentile parameter. The
weight w measures the reciprocal of the percentile of cosine
similarity of each sample to others within a training batch.
With re-weighting w; included in SSL (RED-SSL), the objec-
tive functions of RED-Contrastive and RED-Non-Contrastive
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are the following (where 7 is the temperature hyperparameter):

n
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LRED-Contrastlve
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=— Zlog w; — Zlo exp /T)
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== Xn: log w; — Z A0,
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Incorporating w into the SSL loss in (6) and (7) assigns a
higher loss to the sample with greater similarities to others in
the batch, since this sample tends to be more challenging for
the model in downstream tasks. Additionally, as representation
vectors are more related to the downstream performance, the
representation-based w actively guides the training to boost
downstream accuracy. Furthermore, we leverage the superior
augmentation robustness of representation vectors to adjust
the alignment term of projection vectors, thereby equipping
features with stronger augmentation robustness in RED-SSL.

With the logarithm expansion of RED-SSL losses in For-
mula (6) and (7), RED-SSL essentially establishes a shortcut
connection between the representation based w and projection-
based SSL loss, illustrated in Figures 3. During the batch
stochastic gradient descent, the gradients of log w; can bypass
the projection head and reach the representation vector di-
rectly. This approach also implicitly helps to avoid vanishing
gradients of the representation vector.

Remark 1. batch optimization is important in RED-SSL. In
(6) and (7), RED-SSL essentially adds w term with the SSL
loss and does not reweigh samples within the batch. Instead,
the w of RED updates the model training in a batch-wise
manner in batch optimization.

It should be noted that w; in (5) is defined by
the k% percentile of the exponential pairwise prod-
uct: percentile; (exp(r;r; /1), k%) instead of the average:
iy j exp(rir;/n). The percentile approach allows us to fo-
cus on more similar samples without considering other sam-
ples that are already well separated, resulting in a better as-
sessment of sample-wise similarity within a training batch. In
contrast, the average operation considers all samples equally
in the calculation. Table 5 compares the downstream clas-
sification accuracy of MoCo-V2 trained with the baseline
contrastive loss (InfoNCE) versus the percentile, and average-
based RED-contrastive loss. The model was trained for 200
epochs on the CIFAR-10/100 using ResNet-18 as the encoder.

6 Experiments

In this section, we compare the existing SSL models: Sim-
CLR, MoCo-V2, and SimSiam, with our representation evalua-
tion design SSL (RED-SSL): RED-SimCLR, RED-MoCo-V2,
and RED-SimSiam, respectively. Our results demonstrate
that RED consistently improves downstream performance

LOSS TYPE CIFAR-10 CIFAR-100
BASELINE 83.0% 62.1%
PERCENTILE BASED w 86.4% 63.5%
AVERAGE BASED w 85.1% 62.6%

Table 5: Percentile and average design comparison. Linear evaluation
of MoCo-V2 based on percentile-based w and average-based w.

across diverse architectures, datasets, and out-of-distribution
(OOD) settings. Similar to the superior robustness of short-
cut connections to perturbations [Cazenavette ef al., 2021;
Reshniak and Webster, 20201, we show that RED-SSL models
also gain more robustness against unseen augmentations. We
conduct an ablation study on the two hyperparameters within
the re-weighting term w in RED, namely the percentile param-
eter k% and the representation temperature 7). The ablation
results exhibit that RED can steadily boost downstream per-
formance. However, due to space limitations, we include the
ablation study in Appendix B.6.

CIFAR-10 CIFAR-100

KNN|LINEAR  KNN|LINEAR

SIMCLR 81.4%|83.0% 52.1%|56.3%
RED-SIMCLR 84.6%86.4% 56.6%|58.6%
MoCo-V2 83.2%|85.1% 55.7%62.1%

RED-MoCo0-V2

SIMSIAM
RED-SIMSIAM

85.4%|87.2%
81.8%]|82.9%
84.6%|85.7%

58.5%|63.5%
50.7%]|52.0%
51.7%|52.7%

Table 6: Downstream comparison between the SimCLR, MoCo-V2,
SimSiam, and their Representation evaluation (RED-) counterparts.

IMAGENET 1000
KNN|LINEAR

MoCo-V2 44.9%67.5%
RED-MoCo0-V2 54.4%|68.0%
SIMSIAM 52.3%|68.1%

RED-SIMSIAM 53.4%|68.3%

Table 7: Downstream classification comparison in ImageNet1000.

6.1 Downstream Task Performance

We evaluated the classification accuracy of SimCLR, MoCo-
V2, SimSiam, and their corresponding representation eval-
uation design models, RED-SimCLR, RED-MoCo-V2, and
RED-SimSiam, on downstream classification tasks. Table 6
presents the classification accuracy of different SSL models
on CIFAR-10 and CIFAR-100 data using k-nearest neighbors
(KNN) and linear classifiers as downstream classifiers [Wu
et al., 2018]. Additionally, we compared the downstream
classification performance on ImageNet1000 in Table 7 and
mixed-Gaussian simulated data in Appendix C. We list the
training settings in AppendixB.3. Our results demonstrate
that RED consistently improves the downstream task perfor-
mance of popular SSL models, regardless of whether they are
contrastive (e.g., SImCLR, MoCo-V2) or not (e.g., SimSiam).
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Figure 3: RED-SimCLR demonstration.

6.2 Robustness to (Unseen) Augmentations

In Section 4.1, we discussed how representation vectors are
more robust to unseen augmentations. By introducing re-
weights w; that establish a shortcut connection between the
representation and projection vectors, we expect RED-SSL
models to be more robust to diverse (unseen) augmentations
and verify it in this subsection.

We used MoCo-V?2 as the base model and compared its per-
formance with RED-MoCo-V2. After training both models,
we applied (unseen) augmentations to the test samples and
evaluated the kNN classification accuracy of the augmented
test data. The results are reported in Table 8 and training
settings in Appendix B.4. Compared to the original MoCo-
V2, RED-MoCo-V2 consistently exhibits stronger robustness
to diverse augmentations, whether they are specified during
training (train augmentation) or unseen. These results demon-
strate that RED-SSL captures more semantic information that
is invariant to augmentations.

MoCo0-V2 RED-MoCo0-V2
TRAIN AUGMENTATION 77.27% 79.58%
ANGLE ROTATE 36.20% 38.61%
GAUSSIAN BLUR 78.41% 80.60%
CENTER CROP 15.41% 18.83%
RANDOM POSTERIZE 46.68% 47.57%

Table 8: Classification accuracy on augmented data. The "Train
Augmentation" row stands for the augmentation types used during
the pre-training. The SSL model is MoCo-V?2 trained for 200 epochs
in CIFAR-10 with ResNet-18 as the encoder.

6.3 Other Experiments

SSL methods could suffer from out-of-distribution shift [Hu
et al., 2022]. The results in Table 9 indicates that RED can
improve the out-of-distribution generalization and training
details in Appendix B.5. The ablation study in Appendix B.6
verifies that RED can steadily boost downstream performance.
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CIFAR-10 CIFAR-100
KNN|LINEAR KNNJ|LINEAR
MoCo-V2 - 48.05%|55.46%
RED-MoCo-V2 - 48.87%|57.27%
MoCo-V2 73.39%]|79.39% -

RED-Mo0CO-V2  74.29%|79.86% -

Table 9: Transfer learning. In the first and second rows, the models
are trained with CIFAR-10, and in the third and fourth rows, the
models are trained with CIFAR-100.

7 Discussion

This paper presents a comprehensive analysis of the projec-
tion head design in SSL, revealing that it promotes uniformity
and allows the encoder to focus on alignment. This explains
why combining the encoder and projection head outperforms
using the encoder alone. The projection head also ensures
non-collapsed training in non-contrastive models like Sim-
Siam. The encoder & projection head combination enables
the encoder to spotlight boosting alignment without worrying
about uniformity; thus, the representation vectors enjoy more
robustness to augmentation, lower entropy, and better down-
stream task performance than the projection vectors. Drawing
on these insights, we introduce the Representation Evaluation
Design (RED), an adaptable approach to diverse SSL mod-
els. Our experiments demonstrate that RED-SSL outperforms
baseline models in downstream tasks and exhibits greater ro-
bustness to augmentation and out-of-distribution data. Our
research sheds light on SSL model structure and can inspire
further research in this area.

We think our work can be extended in several ways. First,
it will be meaningful to explore ways to further simplify the
RED while preserving its effectiveness. Second, exploring
the performance of RED on different architectures, such as
NLP: SimCSE [2021] or multi-modalities architecture: CLIP
[Radford er al., 2021], is an interesting topic for future ex-
ploration. We hope our work can inspire more effective and
generalizable SSL methods.
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