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Abstract
In Multi-View Multi-Label Learning, each instance
is described by several heterogeneous features and
associated with multiple valid labels simultane-
ously. Existing methods mainly focus on lever-
aging feature-level view fusion to capture a com-
mon representation for multi-label classifier induc-
tion. In this paper, we take a new perspective and
propose a new semantic-level fusion model named
Common-Individual Semantic Fusion Multi-View
Multi-Label Learning Method (CISF). Different
from previous feature-level fusion model, our pro-
posed method directly focuses on semantic-level
view fusion and simultaneously take both the com-
mon semantic across different views and the indi-
vidual semantic of each specific view into consid-
eration. Specifically, we first assume each view in-
volves some common semantic labels while owns
a few exclusive semantic labels. Then, the com-
mon and exclusive semantic labels are separately
forced to be consensus and diverse to excavate
the consistences and complementarities among dif-
ferent views. Afterwards, we introduce the low-
rank and sparse constraint to highlight the label co-
occurrence relationship of common semantics and
the view-specific expression of individual seman-
tics. We provide theoretical guarantee for the strict
convexity of our method by properly setting param-
eters. Extensive experiments on various data sets
have verified the superiority of our method.

1 Introduction
Multi-View Multi-Label Learning (MVML) learns from the
training data, where each object is represented by several het-
erogeneous feature representations and associated with mul-
tiple class labels simultaneously [Bickel and Scheffer, 2004;
Wu et al., 2019; Wu et al., 2020; Lyu et al., 2022a]. Recently,
such learning paradigm has been widely used in many real-
world applications. For example, in the task of news web-
page classification, one news webpage can be represented by
diverse channel information including video, image and text,

∗Zhen Yang and Songhe Feng are the corresponding authors.

Figure 1: An Example of Multi-View Multi-Label Learning. The
news webpage is represented by several different channels including
video, image and text, and associated with multiple class labels such
as FIFA World Cup, Sports and Lionel Messi simultaneously.

while at the same time it is annotated with multiple class la-
bels such as FIFA World Cup, Sports and Lionel Messi. Multi-
view multi-label learning provides an effective framework to
learn a desired multi-label classifier from such heterogeneous
data and predict proper labels for unseen examples.

The key to deal with multi-view multi-label data lies in
how to effectively integrate these heterogenous features while
ensuring all relevant labels can be characterized comprehen-
sively. A general strategy is to learn a latent multi-view sub-
space representation, which can characterize multiple seman-
tic labels as much intact as possible. [Zhang et al., 2018a]
proposes a matrix factorization based shared subspace repre-
sentation method, which employs Hilbert-Schmidt indepen-
dence criterion to strengthen its ability of consensus semantic
characterization. [Zhao et al., 2023] also seeks for a latent
low-dimensional representation, while it focuses on each spe-
cific view and employs the structural view-label consistency
information to enhance the expressions of view-specific se-
mantics. [Lu et al., 2023] proposes a bipartite graph based
multi-view embedding representation method, and it imposes
a joint low-rank constraint on both the embedding represen-
tation matrix and multi-label classifier matrix to enhance its
robustness toward the labels with dependencies. Obviously,
the above MVML methods just leverage the multi-view con-
sensus and complementary relationship in the feature space
and they formulate multi-view subspace as implicit semantic-
aware representation.
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In this paper, different from traditional feature-level multi-
view fusion MVML methods, we take the first attempt to con-
duct multi-view fusion under the guidance of semantic fusion,
and propose a Common-Individual Semantic Fusion Multi-
View Multi-Label Learning Method (CISF). Specifically, we
first assume each view corresponds to one view-specific label
set and each of them contains two different kinds of semantics
- Common Semantics & Individual Semantics. The common
semantics refers to the core semantic labels shared by mul-
tiple views, which reflects the consensus information across
different views. The individual semantics refers to the exclu-
sive semantic labels owned by each specific view, which char-
acterizes the complementary information of diverse views.
Afterwards, we separately introduce the low-rank and sparse
constraint to highlight the label co-occurrence relationship of
the common semantics and the exclusive semantic representa-
tion of the individual semantics. Finally, we embed an adap-
tive global label correlations to enhance the semantic integrity
for improving the performance of the final multi-label model.

In summary, the main contribution of our paper lie in the
following aspects:

• We propose a new Common-Individual Semantic Fusion
Multi-View Multi-Label Learning Method (CISF). To
the best of our knowledge, it is the first attempt to di-
rectly leverage multi-view fusion on the semantic space.

• Considering that single common semantics cannot char-
acterize all relevant labels, we simultaneously consider
the commonality and individuality of multi-view data,
and introduce an adaptive global label correlations to en-
hance the semantic integrity of the final model.

• We provide theoretical guarantee for the strict convexity
of CISF by properly setting parameters and develop an
alternative optimization algorithm to solve it. Extensive
results have verified the superiority of our method.

2 Related Work
2.1 Multi-View Learning (MVL)
Multi-View Learning aims to learn a desired multi-view rep-
resentation from different views by leveraging the consen-
sus and complementary information across heterogeneous
features [Bickel and Scheffer, 2004; Wang et al., 2016;
Zhang et al., 2017; Gu et al., 2023]. A core purpose of
multi-view learning is to encapsulate multi-view informa-
tion of different views to learn a share or common repre-
sentation for clustering. Based on the way to exploit multi-
view information, existing multi-view learning methods can
be roughly divided into the following categories: canoni-
cal correlation analysis [Andrew et al., 2013; Wang et al.,
2015], multi-view subspace clustering [Gao et al., 2015;
Cao et al., 2015; Kang et al., 2020; Wang et al., 2021],
multi-view matrix factorization [Liu et al., 2013; Zhao et
al., 2017], and deep multi-view clustering [Li et al., 2019;
Xu et al., 2023]. Besides, there are also many other multi-
view learning methods for different tasks, such as retrieval
[Yan et al., 2020], recommendation [Flanagan et al., 2021]
and classification [Han et al., 2022; Lyu et al., 2022a], etc.

2.2 Multi-Label Learning (MLL)
In Multi-Label Learning, each instance is represented by a
single feature vector and annotated with multiple valid labels
[Wen et al., 2022]. Label correlation is a fundamental chal-
lenge to be utilized for improving the performance of multi-
label learning. Based on the order of label correlations be-
ing exploited for model training, existing MLL methods can
be roughly grouped into three categories: first-order correla-
tions [Zhang et al., 2018b], second-order correlations [Mad-
jarov et al., 2010; Li et al., 2017] and high-order correlations
[Burkhardt and Kramer, 2018]. The above methods mainly
are formulated under full supervised settings while such phe-
nomenon may not hold in real-world scenarios due to expen-
sive annotation efforts. Recently, some weakly supervised
MLL frameworks are proposed and have been widely used
in many applications, such as semi-supervised MLL [Wang
et al., 2020], MLL with missing labels [Zhu et al., 2018],
partial multi-label learning [Lyu et al., 2020; Li et al., 2021;
Lyu et al., 2022b; Wang et al., 2023], etc.

2.3 Multi-View Multi-Label Learning (MVML)
In Multi-View Multi-Label Learning, each instance is rep-
resented by several heterogeneous features and associated
with multiple valid labels [Lyu et al., 2024]. Obviously,
such paradigm can be regard as an integration of multi-
view learning and multi-label learning, and the key to deal
with MVML data lies in how to integrate heterogeneous fea-
tures effectively while realize multi-label classification accu-
rately. [Zhang et al., 2020] propose a sparse feature selection
MVML method, which exploits both view relations and la-
bel correlations to select discriminative features for further
multi-label model training. [Wu et al., 2019] propose a view-
specific MVML method named SIMM, which simultaneously
leverages shared subspace exploitation and view-specific in-
formation extraction to enhance the performance of multi-
label classifier. Except for the above MVML methods, there
are also some weakly supervised MVML methods, includ-
ing MVML with missing labels [Huang et al., 2019], MVML
with missing views [Tan et al., 2018], non-aligned MVML
[Zhao et al., 2023; Zhong et al., 2024], etc.

3 The Proposed Method
3.1 Notations
Formally speaking, we denote X = Rd1 × Rd2 . . .× RdV as
the feature space with V views and Y = {c1, c2, . . . , cq} as
the label space with q class labels, where dt (1 ≤ t ≤ T )
is the feature dimension of t-th view. Given the multi-view
multi-label training data D = {(Xi,yi)|1 ≤ i ≤ n} with
n instances, where each Xi ∈ X is represented by V fea-
ture vectors [x(1)

i ;x
(2)
i ; . . . ;x

(V )
i ] and yi ∈ {0, 1}q×1 is the

label vector associated with Xi, our proposed CISF aims to
integrate these heterogeneous representations from different
views to construct a robust multi-label classifier f : X 7→ 2Y

and further predicts some proper labels for unseen instances.

3.2 Formulation
Consistences and complementarities are two key ingredi-
ents for boosting multi-view multi-label learning. Existing
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Figure 2: The overview architecture of our proposed CISF method. The semantic label matrix contains two different kinds of semantics
information: Common Semantics and Individual Semantics. The common semantics reflects the consensus information across different
views and the individual semantics characterizes the complementary information of diverse views.

MVML methods generally advocates different view to predict
the same label results to use consistent information across dif-
ferent views and simultaneously considers the different con-
tribution weights of each specific view to learn the comple-
mentary information among different views. Eq. (1) illus-
trates a general MVML framework:

min
W (i)

V∑
i=1

µ(i)
∥∥∥Y −W (i)X(i)

∥∥∥2

F
+ Γ(W (i)), (1)

where Y ∈ Rq×n is the label matrix, X(i) ∈ Rdi×n is the
feature matrix of i-th view, W (i) ∈ Rq×di is the mapping
matrix from features to semantics, Γ(·) is the regularization
term and µ(i) is the weight of i-th view.

According to Eq.(1), we can easily see that existing
MVML methods mainly formulate multi-view consistent and
complementary information in the feature space. Basically,
they target to seek one or several good view that can char-
acterize all relevant labels as completely as possible. Obvi-
ously, such multi-view fusion strategy cannot respect every
view sufficiently and even lead the semantic representation of
some rare labels to be overwhelmed by the core labels.

Hence, in this paper, we directly take the multi-view fusion
in the semantic space and explicitly measure multi-view con-
sistences and complementarities in objective fusion model.
Specifically, we assume that each view corresponds to a view-
specific label set Y (i) ∈ Rq×n and each label set con-
tains two different kinds of semantics - Common Semantics
C(i) ∈ Rq×n and Individual Semantics D(i) ∈ Rq×n, i.e.,

min
C,D

V∑
i=1

µ(i)
∥∥∥Y (i) −

(
C(i) +D(i)

)∥∥∥2

F
+Φ(C) + Ψ(D). (2)

The common semantics C(i) ∈ Rq×n×V refers to the shared
semantic labels represented by all V views and it reflects the

consensus semantic information across different views. In
our model, we introduce Hilbert-Schmidt Independence Cri-
terion [Gretton et al., 2005] to constrain the semantic consis-
tence of the V different views, i.e.,

Φ(C) = −
V∑

i,j=1

µ(i)µ(j)HSIC(C(i),C(j)). (3)

The individual semantics D(i) ∈ Rq×n×V refers to the exclu-
sive semantic labels owned by each specific view, which char-
acterizes the diversities and complementarities among differ-
ent views. Based on the assumption that the individual se-
mantics is exclusive for each specific view and the diversity
is also sparse across different views, we measure such seman-
tic diversities and complementarities by minimizing the sum
of the product of each pair of individual semantics, i.e.,

Ψ(D) =

V∑
i,j=1

µ(i)µ(j)Tr
(
D(i) ·D(j)⊤

)
. (4)

Except for the above semantics consistences and comple-
mentarities, another inherent property of learning from multi-
view multi-label data is how to utilize label correlations. Dif-
ferent from previous fixed label co-occurrence relationships,
we try to leverage a dynamic label correlations S ∈ Rq×q

and recover all relevant labels by minimizing

min
S

V∑
i=1

µ(i)
∥∥∥Y − SY (i)

∥∥∥2

F
. (5)

In addition, in order to construct the direct correspondences
from features to semantics and obtain a desired multi-label
classifier for unseen examples prediction simultaneously,
we introduce two feature mapping matrices W

(i)
C ,W

(i)
D ∈

Rq×di that correspond to the common semantics C(i) and
the individual semantics D(i) respectively, i.e., C(i) =
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W
(i)
C X(i) and D(i) = W

(i)
D X(i). By integrating the above

functions (2)-(5), we can obtain the final framework of our
proposed CISF method as follows:

min
W

(i)
C

,W
(i)
D

,S

V∑
i=1

µ(i)
∥∥∥Y − S(W

(i)
C +W

(i)
D )X(i)

∥∥∥2

F

+ α

V∑
i,j=1

µ(i)µ(j)
(
−HSIC(SW

(i)
C X(i),SW

(j)
C X(j))

)

+ β

V∑
i,j=1

µ(i)µ(j)Tr

(
W

(i)
D X(i) ·

(
W

(j)
D X(j)

)⊤
)

+ γ

V∑
i=1

∥W (i)
C ∥∗ + η

V∑
i=1

∥W (i)
D ∥

2

F
.

(6)

Here, the common feature mapping matrix W
(i)
C is con-

strained with nuclear norm to preserve its low-rank property,
since its represented shared semantic labels tend to have sta-
tistical co-occurrence. The exclusive feature mapping matrix
is constrained with F-norm, since the diversities of exclusive
semantics are always expressed as sparse. The weights µ(i)

are defined by inverse distance weighting strategy to avoid
undesired hyperparameters [Nie et al., 2016].

3.3 Optimization
To optimize (6) conveniently, we introduce an additional vari-
able constraint A(i) = SW

(i)
C X(i) and convert (6) to its

Augmented Lagrange Multiplier (ALM) form as follows:

min
W

(i)
C

,W
(i)
D

,A(i),S

V∑
i=1

µ(i)∥Y − S(W
(i)
C +W

(i)
D )X(i)∥

2

F

− α

V∑
i,j=1

µ(i)µ(i)HSIC(A(i),A(j)) + γ

V∑
i=1

∥W (i)
C ∥∗

+ β

V∑
i,j=1

µ(i)µ(j)Tr
(
W

(i)
D X(i) · (W (j)

D X(j))
⊤)

+

V∑
i=1

λ(i)

2

∥∥∥A(i) − SW
(i)
C X(i)

∥∥∥2

F
+ η

V∑
i=1

∥W (i)
D ∥

2

F

+

V∑
i=1

Tr
(
M (i)⊤

(
A(i) − SW

(i)
C X(i)

))
.

(7)

Obviously, the above function involves four variables W
(i)
C ,

W
(i)
D , A(i) and S, which cannot be optimized simultane-

ously. Therefore, we adopt the alternating minimization strat-
egy and update these variables iteratively.

Update W (i)
C with other variables fixed. We can calculate

W
(i)
C by minimizing the following objective function:

min
W

(i)
C

V∑
i=1

ζ(i)
∥∥∥∥ Θ

ζ(i)
− SW

(i)
C X(i)

∥∥∥∥2

F

+ γ

V∑
i=1

∥W (i)
C ∥∗ (8)

where Θ = 2µ(i)(Y − SW
(i)
D X(i)) + (λ(i)C(i) + M (i))

and ζ(i) = (2µ(i) + λ(i))/2. According to [Zhu et al., 2010],
(8) has the closed form solution and the variable W

(i)
C can

Algorithm 1 The Training Process of CISF
Inputs:
D : MVML training data {(x(v)

i ,yi)|i ∈ [n], v ∈ [V ]};
α, β, γ and η: the trade-off parameters;
Imax : the number of maximum iterations;
x(i)∗ : the unseen example.

Process:
1. Initialized W

(i)
C , W (i)

D , A(i), S and µ(i);
2. while t < Imax do
3. for i = 1, 2, . . . , V do
4. Update W

(i)
C by solving (8);

5. end for
6. for i = 1, 2, . . . , V do
7. Update W

(i)
D by solving (9);

8. end for
9. for i = 1, 2, . . . , V do
10. Update A(i) by solving (10);
11. end for
12. Update S by solving (11);
13. for i = 1, 2, . . . , V do
14. Update M (i) and λ(i) by Eq. (12);
15. end for
16. if converge then
17. break;
18. end if;
19. end while;
Output:

y∗: the predicted label
∑V

i=1 µ
(i)S(W

(i)
C +W

(i)
D )x(i)∗.

be optimized following W
(i)
C = S γ

2ζ(i)
( Θ
2ζ(i) ), where S is the

singular value thresholding.

Update W
(i)
D with other variables fixed. The variable

W
(i)
D can be updated following:

min
W

(i)
D

V∑
i=1

µ(i)∥Y − S(W
(i)
C +W

(i)
D )X(i)∥

2

F
+ η

V∑
i=1

∥W (i)
D ∥

2

F

+β

V∑
i,j=1

µ(i)µ(i)Tr
(
W

(i)
D X(i) · (W (j)

D X(j))
⊤)

.

(9)
We take the derivative of (9) with respect to W

(i)
D to 0. After-

wards, based on KKT conditions, we can easily update W
(i)
D

in an iterative manner [Tan et al., 2021].

Update A(i) with other variables fixed. The optimization
subproblem with regard to A(i) can be reformulated as:

min
A(i)

V∑
i=1

λ(i)

2

∥∥∥∥A(i) − SW
(i)
C X(i) +

1

λ(i)
M (i)

∥∥∥∥2

F

− α

V∑
i,j=1

µ(i)µ(i)HSIC(A(i),A(i)).

(10)

Here, HSIC(A(i),A(j)) = (n− 1)
−2

Tr
(
HK(i)HK(j)

)
,

K(i) = A(i)⊤A(i) is the Gram matrix and H centers it to
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have zero mean. Theorem 1 (in section 5.3) guarantees the
subproblem (10) to be convex and the optimal solution could
be obtained by setting its derivative with respect to A(i) to 0.
Update S with other variables fixed. The variable S can
be updated by solving the following sub-problem:

min
S

V∑
i=1

µ(i)
∥∥∥Y − S(W

(i)
C +W

(i)
D )X(i)

∥∥∥2

F

+

V∑
i=1

λ(i)

2

∥∥∥A(i) − SW
(i)
C X(i)

∥∥∥2

F

+ Tr
(
M (i)⊤

(
A(i) − SW

(i)
C X(i)

))
(11)

Similar to (9), we also take the derivative of (11) with respect
to S to 0, and then we can obtain its closed-form solution.
Update M (i) and λ(i) with other variables fixed. Finally,
we update the Lagrange multiplier matrices M (i) and penalty
scalars λ(i) following:

M (i)t+1
= M (i)t + λ(i)t

(
A(i)t − SW

(i)
C

t
X(i)t

)
λ(i)t+1

= min
(
λmax, τλ

(i)t
) (12)

During the process of model training, we first initialize
the required variables, and then repeat the above steps until
the algorithm converges or reaches the maximum iterations.
Finally, we make prediction for unseen instance following
y∗ =

∑V
i=1 µ

(i)S(W
(i)
C + W

(i)
D )x(i)∗. Algorithm 1 sum-

marizes the whole procedure of our proposed CISF method.

4 Experiments
4.1 Experimental Setting
To evaluate the performance of our proposed CISF method,
we implement experiments on seven widely-used MVML
data sets, including Emotions, Scene, Corel5k, Espgame, Pas-
cal, Iaprtc12 and Mirflickr data sets. Table 1 summarizes the
detailed characteristics of the above data sets.

Data sets Instances Views Dmin−max Labels

Emotions 593 2 8 - 64 6
Scene 2407 2 98 - 196 6

Corel5k 4999 4 100 - 3895 260
Pascal 9963 5 512 - 4086 20

Iaprtc12 19627 6 100 - 3985 291
Espgame 20770 4 100 - 4096 268
Mirflickr 25000 5 100 - 4096 457

Table 1: Characteristics of our employed data sets. Dmin−max is
the smallest-largest dimensions of features.

Meanwhile, we compare our proposed CISF with the fol-
lowing five state-of-the-art MVML methods, including LSPC
[Szymanski et al., 2016], FIMAN [Wu et al., 2020], ICM2L
[Tan et al., 2021], BEMVL [Lu et al., 2023] and NAIM3L
[Li and Chen, 2022]. The configured parameters of the above
methods are set according to the suggestions in their corre-
sponding literature.

In addition, five popular multi-label evaluation metrics are
employed to measure the performance of each comparing
method, including Hamming Loss (H-L), Ranking Loss (R-L),
One Error (O-E), Coverage (COV) and Average Precision (A-
P) [Zhang and Zhou, 2013]. For each dataset, we randomly
select 70% examples for training, 10% examples for param-
eter tuning and 20% examples for evaluation, where each al-
gorithm is run 5 times independently. The codes and data sets
are provided in https://gengyulyu.github.io/homepage/.

4.2 Experimental Results
Table 2 illustrates the experimental comparisons between our
proposed CISF and other five comparing methods on all eval-
uation metrics, where the average metrics results and stan-
dard deviations are recorded respectively. According to Table
2, out of 210 (7 data sets × 6 methods × 5 metrics) statistical
comparisons can make the following observations:

• Among all five comparing methods, our proposed CISF
method is superior to LSPC, FIMAN and ICM2L in
almost all cases, and it also outperforms BEMVL and
NAIM3L in 91.42% and 88.57% cases, respectively.

• Among all employed evaluation metrics, our proposed
CISF achieves the best performance in 97.14% cases
on Hamming Loss, Ranking Loss and Average Precision
metrics. And on One Error and Coverage metrics, it is
also superior to other methods over 94% cases.

• Among all employed datasets, CISF outperforms al-
most all comparing methods on Emotions, Scene, Pas-
cal, Iaprtc12 and Mirflickr datasets. And it also achieve
superior performance against other comparing methods
over 82% cases on Corel5k and Espgame data sets.

• Overall, our proposed CISF method can achieve com-
petitive performance against other feature-fusion based
MVML methods, which demonstrates the effective of
our proposed multi-view semantic-fusion strategy.

In order to comprehensively evaluate the superiority of
CISF, Friedman test [Demšar, 2006] is utilized as the statis-
tical test to analyze the relative performance among the com-
paring algorithms. According to Table 3, the null hypothesis
of distinguishable performance among the comparing algo-
rithms is rejected at 0.05 significance level. Thus, we further
employ the post-hoc Bonferroni-Dunn test [Demšar, 2006]
to show the relative performance among the comparing algo-
rithms. Figure 3 illustrates the CD diagrams on each eval-
uation metric, where the average rank of each algorithm is
marked along the axis. According to Figure 3, it is observed
that CISF always ranks 1st on all evaluation metrics.

5 Further Analysis
5.1 Ablation Study
In order to evaluate the effect of the each components of our
proposed CISF, we conduct the Ablation Study between CISF
and its three degenerated algorithms CISFnC, CISFnI and
CISFnL, where each degenerated algorithm ignores the com-
mon semantics, individual semantics and label correlations,
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H-L Emotions Scene Corel5k Pascal Iaprtc12 Espgame Mirflickr

CISF 0.203±0.020 0.169±0.003 0.029±0.000 0.073±0.000 0.019±0.000 0.017±0.000 0.005±0.000
LSPC 0.263±0.017 0.253±0.011 0.028±0.001 0.239±0.005 0.036±0.000 0.029±0.000 0.018±0.002

FIMAN 0.240±0.015 0.313±0.009 0.019±0.000 0.123±0.000 0.035±0.000 0.036±0.000 -
ICM2L 0.306±0.026 0.279±0.016 0.055±0.005 0.153±0.004 0.054±0.000 0.020±0.000 0.010±0.000
BEMVL 0.386±0.019 0.219±0.004 0.025±0.000 0.130±0.008 0.031±0.000 0.028±0.000 0.013±0.000
NAIM3L 0.242±0.044 0.178±0.021 0.013±0.000 0.087±0.007 0.019±0.000 0.017±0.000 0.006±0.000

R-L Emotions Scene Corel5k Pascal Iaprtc12 Espgame Mirflickr

CISF 0.164±0.010 0.115±0.008 0.081±0.000 0.123±0.008 0.104±0.001 0.184±0.006 0.218±0.014
LSPC 0.199±0.026 0.251±0.022 0.889±0.015 0.881±0.004 0.995±0.001 0.992±0.000 0.721±0.008

FIMAN 0.185±0.007 0.241±0.013 0.141±0.004 0.149±0.002 0.138±0.003 0.186±0.004 -
ICM2L 0.330±0.048 0.349±0.067 0.115±0.064 0.216±0.033 0.179±0.004 0.204±0.005 0.284±0.002
BEMVL 0.408±0.036 0.126±0.008 0.394±0.012 0.355±0.062 0.272±0.006 0.281±0.004 0.469±0.036
NAIM3L 0.244±0.090 0.173±0.052 0.113±0.008 0.180±0.037 0.144±0.011 0.174±0.010 0.266±0.006

O-E Emotions Scene Corel5k Pascal Iaprtc12 Espgame Mirflickr

CISF 0.253±0.018 0.326±0.018 0.591±0.252 0.450±0.020 0.495±0.005 0.549±0.023 0.837±0.044
LSPC 0.308±0.037 0.429±0.033 0.912±0.018 0.936±0.009 0.992±0.001 0.989±0.003 0.944±0.004

FIMAN 0.279±0.013 0.547±0.028 0.602±0.020 0.468±0.005 0.559±0.005 0.659±0.008 -
ICM2L 0.439±0.064 0.665±0.061 0.746±0.143 0.585±0.011 0.652±0.022 0.709±0.029 0.873±0.007
BEMVL 0.334±0.072 0.151±0.011 0.602±0.018 0.599±0.061 0.272±0.007 0.867±0.032 0.873±0.007
NAIM3L 0.500±0.471 0.333±0.235 0.842±0.036 0.525±0.244 0.829±0.039 0.873±0.054 0.978±0.010

COV Emotions Scene Corel5k Pascal Iaprtc12 Espgame Mirflickr

CISF 1.791±0.118 0.724±0.053 101.8±4.736 3.100±0.155 93.44±0.995 120.2±1.426 131.5±9.822
LSPC 2.182±0.129 1.398±0.117 279.2±9.160 19.57±0.089 286.1±0.036 281.3±0.109 331.3±2.831

FIMAN 1.948±0.123 1.298±0.076 83.26±1.928 4.069±0.059 116.2±1.673 113.5±1.892 -
ICM2L 2.700±0.177 1.852±0.328 113.96±6.985 5.625±0.790 139.7±2.300 128.6±2.223 226.1±1.326
BEMVL 2.944±0.197 0.777±0.046 185.9±3.660 8.385±1.268 193.6±2.313 167.6±1.329 320.5±15.61
NAIM3L 2.173±0.389 0.950±0.270 65.59±4.159 4.650±0.828 112.7±6.610 110.9±6.533 154.9±3.200

A-P Emotions Scene Corel5k Pascal Iaprtc12 Espgame Mirflickr

CISF 0.805±0.005 0.789±0.010 0.355±0.205 0.620±0.016 0.314±0.003 0.366±0.001 0.132±0.020
LSPC 0.741±0.022 0.618±0.023 0.059±0.005 0.109±0.006 0.020±0.000 0.021±0.005 0.168±0.008

FIMAN 0.783±0.004 0.649±0.017 0.332±0.009 0.605±0.004 0.309±0.003 0.267±0.003 -
ICM2L 0.658±0.049 0.546±0.051 0.221±0.114 0.486±0.031 0.230±0.007 0.221±0.014 0.102±0.001
BEMVL 0.590±0.026 0.786±0.008 0.146±0.006 0.376±0.047 0.232±0.004 0.227±0.004 0.055±0.010
NAIM3L 0.726±0.083 0.729±0.066 0.328±0.017 0.547±0.075 0.267±0.020 0.253±0.009 0.101±0.005

Table 2: Experimental comparisons of our proposed CISF with other comparing methods on six evaluation metrics, where the best perfor-
mances on each metric are shown in bold face. “-” indicates that FIMAN needs over 128G of RAM on Mirflickr data set.

Figure 3: Experimental Comparisons of all comparing algorithms with the Bonferroni-Dunn test (CD = 2.576 at 0.05 significance level).
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Figure 4: The parameter analysis of CISF on Emotions data set, where the Coverage results are normalized by the number of class labels (q).
(Red: Hamming Loss, Brown: Ranking Loss, Pink: One Error, Green: Coverage, Blue: Average Precision.)

Evaluation Metric τF critical value

Hamming Loss 5.536
Ranking Loss 10.705 2.533

One Error 6.927
Coverage 10.924 Methods: 6, Data sets: 7

Average Precision 7.125

Table 3: Friedman statics τF in terms of each evaluation metric.

Methods H-L R-L O-E COV A-P

CISFnC 0.296 0.174 0.293 1.905 0.778
CISFnI 0.264 0.172 0.286 1.895 0.789
CISFnL 0.208 0.175 0.290 1.852 0.785

CISF 0.203 0.164 0.253 1.791 0.805

Table 4: The ablation study of CISF on Emotions data set.

respectively. Table 4 reports the experimental comparison be-
tween these methods on Emotions data set. According to Ta-
ble 4, we can find that CISFnI achieves better performance
than CISFnC method, which shows that common semantics
has greater contribution than individual semantics to the ef-
fectiveness of learning model. Besides, our proposed CISF is
superior to both CISFnC and CISFnI methods, which demon-
strates that the common semantics and individual semantics
can jointly improve the performance of MVML model.

5.2 Parameter Sensitivity
We study the sensitivity analysis of our proposed CISF with
respect to its four employed parameters α, β, γ and η. Fig-
ure 4 shows the performance of CISF under different param-
eter configurations on Emotions data set. According to Fig-
ure 4, we can find that α and γ usually have great influence
on the performance of the proposed model, and we select
the optimal values of them from {10−3, 10−2, . . . , 102} and
{0.01, 0.05, . . . , 10}, respectively. Meanwhile, other param-
eters often follow the optimal configurations β = 0.1 and
η = 100 but vary with minor adjustments on different data
sets. In addition, in our experiments, the value of λmax is set
to 1e6 and the maximum iterations Imax is set to 50.

5.3 Complexity Analysis
At each iteration, the computational cost mainly comes from
the derivative calculation and singular value decomposition
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Figure 5: The convergence curves on Emotions and Scene data sets.

(SVD) operations, and the complexity of our optimization
procedure mainly comes from the optimization of three sub-
problems with regard to W

(i)
C , W (i)

D and A(i). For simplic-
ity, we suppose the dimensionality of each view is d. And the
complexity of these sub-problems are O(dnr), O(Tnqd) and
O(q2d+ qdn+ q3) respectively, where r is the rank of W (i)

C

and T is the iteration number for updating W
(i)
D .

5.4 Convergence Analysis
The convergence of the whole optimization problem (6) de-
pends on how to guarantee the subproblem (10) is convex,
especially its HSIC term is negative. Theorem 1 provides the
theoretical guarantee for the convexity of (10) under proper
parameter setting. Besides, Figure 5 illustrates the conver-
gence curves on Emotions and Scene data sets, which also
empirically demonstrates the convergence of our model.
Theorem 1: The problem (10) is convex given the parame-
ter λ(i) ≥ 8q(V − 1)αµiµj , where V is the number of views.
Proof: Due to the page limitation, we provided the proof of
Theorem 1 in https://gengyulyu.github.io/homepage/.

6 Conclusion
In this paper, we proposed a Common-Individual Semantic
Fusion Multi-View Multi-Label Learning Method. Different
from previous feature-fusion based MVML methods, it is the
first attempt to conduct multi-view fusion under the guidance
of the semantic fusion, where both common semantics and
individual semantics are simultaneously incorporated into the
multi-view fusion process to learn a desired multi-label clas-
sification model. Extensive experimental results on various
MVML datasets has demonstrated the effectiveness of our
proposed multi-view semantic-fusion strategy.
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