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Abstract
Normalization and residual connections find exten-
sive application within the intricate architecture of
deep neural networks, contributing significantly to
their heightened performance. Nevertheless, the
precise factors responsible for this elevated perfor-
mance have remained elusive. Our theoretical in-
vestigations have unveiled a noteworthy revelation:
the utilization of normalization and residual con-
nections results in an enhancement of the orthog-
onality within the weight vectors of deep neural
networks. This, in turn, induces the Gram ma-
trix of neural network weights to exhibit a pro-
nounced tendency towards strict diagonal domi-
nance, thereby amplifying the neural network’s ca-
pacity for feature learning. Meanwhile, we have
designed the parameters independence index (PII)
to precisely characterize the orthogonality of pa-
rameter vectors. In tandem with our theoreti-
cal findings, we undertook empirical validations
through experiments conducted on prevalent net-
work models, including fully connected networks
(FNNs), convolutional neural networks (CNNs),
Transformers, pre-trained language models(PLMs)
and large language models (LLMs) composed of
Transformers. Finally, we have found that a fine-
tuning technique (LoRA) preserves the orthogonal-
ity of parameter vectors, a revelation that carries
importance within the framework of fine-tuning
techniques for LLMs.

1 Introduction
Normalization techniques, such as batch normalization[Ioffe
and Szegedy, 2015] and layer normalization[Ba et al., 2016],
belong to a class of widely used techniques for enhanc-
ing the training capabilities of deep neural networks(DNNs).
In general, normalization can be attributed to several ad-
vantageous properties for DNNs, such as reducing the
network’s dependence on initial parameter values[De and
Smith, 2020][Shao et al., 2020], improving the convergence
speed of the network[Karakida et al., 2019], auto-tuning of
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learning rates[Arora et al., 2018], and smoothing the loss
landscape[Yong et al., 2020]. The residual connection[He
et al., 2016] is a technique that involves adding skip con-
nections in the middle of network layers, aiming to alle-
viate the gradient vanishing and exploding issues encoun-
tered during the training of DNNs. Furthermore, residual
connections can significantly enhance training stability and
generalization accuracy. Consequently, it has become an es-
sential component in various domains, including biomedical
imaging and generative models like U-Net[Ronneberger et
al., 2015]. In natural language processing, it is exemplified
by the Transformer[Vaswani et al., 2017], and in reinforce-
ment learning, its effectiveness is demonstrated by AlphaGo
Zero[Silver et al., 2017].

In recent years, the combination of normalization
and residual connections has been widely applied in
DNNs. Almost all state-of-the-art models in recent
years have adopted the combination of normalization
and residual connections[Touvron et al., 2023][Chowdh-
ery et al., 2023][Achiam et al., 2023]. Particularly, the
Transformer[Vaswani et al., 2017] has become the fundamen-
tal building block of the most powerful large language mod-
els(LLMs) currently available. So, what is the origin of this
effect ?

In addressing this question, scholars have conducted theo-
retical studies. De and Smith proposed that batch normaliza-
tion tends to bias residual blocks towards the identity func-
tion in DNNs[De and Smith, 2020]. Balduzzi et al.[Balduzzi
et al., 2017] and Yang et al.[Yang et al., 2019] argued that
including identity skip connections and batch normalization
layers on the residual branch in ResNets helps maintain cor-
relations between various mini batches in deep networks. Liu
et al.[Liu et al., 2020] found that normalization can effec-
tively address the problem of spurious gradient exploding or
vanishing correlated with the depth of models resulting from
residual connections. However, the origin of this effect is still
poorly understood.

In DNNs that employ the combination of normalization
and residual connections, such as the Transformer and pre-
trained models(PLMs) composed of the Transformer, it has
been observed that the parameter vectors exhibit good orthog-
onality, meaning the cosine similarity between any two row
vectors (or column vectors) of the parameter matrix is close
to zero. Based on feature learning theory[Radhakrishnan et
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al., 2022][Beaglehole et al., 2023], the Gram matrix[Tanton,
2005] of network parameters is proportional to the average
gradient outer product with respect to patches of the input to
that layer. The Gram matrix and the average gradient outer
product contain the same feature information[Radhakrishnan
et al., 2022][Beaglehole et al., 2023]. In our perspective,
when the column vectors of network parameters are orthog-
onal, the Gram matrix becomes a diagonal matrix with di-
agonal elements being all the eigenvalues. Consequently, at
this point, the Gram matrix has the highest correlation with
the average gradient outer product, indicating the best fitting
capability of the trained network.

Moreover, some related studies have also demonstrated
that the orthogonality of vectors can enhance the fitting ca-
pability of DNNs[Xiao et al., 2018][Wang et al., 2020][Li
et al., 2019][Huang et al., 2018]. In generally, DNNs are
typically initialized using random or approximately random
methods[Glorot and Bengio, 2010][LeCun et al., 2002], en-
suring the orthogonality of initial network parameter vectors.
However, little attention is paid to incorporating optimiza-
tion or regularization conditions to maintain the orthogonality
of parameter matrices during the training process. The fac-
tors responsible for preserving the orthogonality of parame-
ter vectors are not well understood. To address this issue, we
conducted pertinent research, and the key contributions of our
study are summarized as follows.

• We propose the parameters independence index (PII)
to assess the orthogonality between network parameter
vectors, where a lower PII indicates better overall or-
thogonality of parameter vectors.

• We deduce that the combination of normalization and
residual connections can enhance the orthogonality of
parameter vectors, improve the feature learning capa-
bility of DNNs, and consequently, enhance the per-
formance of DNNs. Then, we validated the theoret-
ical correctness on network models including FNNs,
CNNs,Transformers,PLMs and LLMs composed of the
Transformer.

• We discovered that the LLM fine-tuning technique based
on LoRA[Hu et al., 2021] also maintains the orthog-
onality of parameter vectors during the adjustment of
network parameters. This discovery holds significance
in the context of LLMs fine-tuning techniques and also
prove the universality of theory in this study. The sup-
plementary materials and all implementation codes are
available on the Github1.

2 Related Works
Normalization and residual connections are widely applied
in DNNs, and researchers have conducted relevant theoreti-
cal research to explore the mechanisms through which they
enhance network performance.

2.1 Normalization Techniques
Normalization comes in various forms, and our research pri-
marily focuses on the widely used batch normalization and

1https://github.com/kinglzx2023/orthogonality-of-weight

layer normalization. Therefore, we will highlight relevant
studies related to these techniques. For example, batch nor-
malization divides the optimization task into optimizing the
length and direction of parameters separately[Kohler et al.,
2019]. Batch normalization orthogonalizes representations
in deep random networks[Daneshmand et al., 2021]. Batch
normalization is proven to avoid rank collapse for randomly
initialized deep networks[Daneshmand et al., 2020]. In con-
trast to batch normalization, layer normalization overcomes
the dependency on batch size, and empirical evidence shows
that it is more suitable for recurrent neural networks(RNNs)
and natural language processing tasks[Ba et al., 2016].

2.2 Residual Connections
Theoretical research on residual connections is also a hot
topic in the theory of the DNN. Katsman et al. extended resid-
ual connections to general Riemannian manifolds in a geo-
metrically principled manner[Katsman et al., 2023]. Orhan
et al. discovered that residual connections can eliminate
singularities[Orhan and Pitkow, 2017]. By employing prin-
ciples from linear algebra and random matrix theory, re-
searchers explore the reasons behind the enhanced ease of
optimization and improved generalization exhibited by DNNs
with residual connections[Oyedotun et al., 2022].

2.3 The Combination of Normalization and
Residual Connections.

Regarding the impact of the combination of normalization
and residual connections on DNNs, scholars have also con-
ducted research. For instance, studies indicate that resid-
ual connections and batch normalization can enhance data
separability[Furusho and Ikeda, 2019]. Batch normaliza-
tion reduces the scale of hidden activations in the resid-
ual branch by approximately the square root of the network
depth[De and Smith, 2020]. Furusho and Ikeda evaluated
the generalization gap and the convergence rate to demon-
strate why skip connections and batch normalization improve
performance[Furusho and Ikeda, 2020].

Researchers have extensively studied normalization and
residual connections, offering various explanations for how
they can enhance the capabilities of DNNs. However, the
internal mechanisms through which they profoundly impact
DNNs are far from being fully understood

3 Background and Preliminaries
3.1 Network Description
For a FNN, the forward propagation process is as follows:

zl = W lxl−1 + bl,xl = f
(
zl
)

(1)

Where xl−1 represents the output of the preceding layer, serv-
ing as the input to the current layer. f (·)denotes the activa-
tion function, zl is the pre-activation value of the neuron, W l

and bl are the weights and bias of the network, with our focus
being on W l, temporarily disregarding bl.Our research pri-
marily encompasses several widely used activation functions,
including ReLU[Nair and Hinton, 2010], GELU[Hendrycks
and Gimpel, 2016], Sigmoid[DeMaris, 1995], and Tanh[Fan,
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2000]. After incorporating residual connections and the batch
normalization

xl = BN
(
xl−1 + f

(
zl
))

(2)

Let x̂l = xl−1 + f
(
zl
)
, then xl = BN

(
x̂l
)
. Let

µ =
1

N

∑
i

x̂l
i, σ

2 =
1

N

∑
i

(
x̂l
i − µ

)2
(3)

Then xl
i =

x̂l
i−µ
σ .

3.2 Feature Learning
GW l =

(
W l
)T

W l is the Gram matrix of the weight W l

in the l-th layer of the DNN. Research shows that the struc-
ture of W l can characterize how features are updated in a
trained DNN[Radhakrishnan et al., 2022][Beaglehole et al.,
2023]. For a trained DNN, studying the importance of a par-
ticular feature, a natural approach is to examine the amplitude
of changes in that feature under perturbations. The ampli-
tude can be calculated through the outer product of the gra-
dients of the neural network with respect to the input, that is
(∇xf (x)) (∇xf (x))

T , where ∇xf (x) represents the gradi-
ent of the DNN f at point x.

(
W l
)T

W l has the following
relationship with (∇xf (x)) (∇xf (x))

T .
Theorem 1. [Radhakrishnan et al., 2022] Let f denote an
L-hidden layer network with ReLU activation, suppose we
sample weight ak′,W

l for l > 1 in an i.i.d manner so that

E
[
a2k′

]
= 1, E

[
W 2

l,k′′

]
= 1, E [ak′ ] = 0 and E

[
Wl,k′′

]
=

0. Suppose W 1 is fixed and arbitrary. Let {(xi, yi)}ni=1 ⊂
Rd ×R. If x ∼ N (0, Id), then

1

k1

(
W 1
)T

W 1 =

Ex

[
lim

k2,··· ,kL→∞
Ea

[
∇xf (x)∇xf (x)

T
]] (4)

N (0, Id) is the standard normal distribution, k1 is the num-
ber of neurons in the first layer, and W 1 is the network pa-
rameter of the first layer. The results of Theorem 1 can be
naturally extended to other network layers. Furthermore, for
DNNs with finite width(

W i
)T

W i ∝ 1

n

n∑
p=1

∇fi (hi (xp))∇fi (hi (xp))
T (5)

where hi (x) is the input into layer i, ∇fi (hi (xp)) denotes
the gradient of fi with respect to hi (xp). Therefore, the outer
product of gradients of the DNN with respect to the input data
hi (xp) is proportional to the Gram matrix of the weights.

In our study, We found that if GW i =
(
W i
)T

W i is a diag-
onal matrix or diagonally dominant matrix, the average outer
product of gradients is also a diagonal or diagonally domi-
nant matrix. The proportional relationship between them is
mainly concentrated on the diagonal elements. In this case,
the network can more fully learn the feature information of
the input data. Therefore, if the Gram matrix of the network
tends to be a diagonally dominant matrix after training, it will
enhance the DNN’s ability to fit the training data

3.3 Gram Matrix and Parameters Independence
Index

For the weight W l =
{
wl

1, w
l
2, · · · , wl

n

}
∈ Rm×n,

wl
i =

{
wl

1i, w
l
2i, · · · , wl

mi

}T
, i ∈ {1, 2, · · · , n}, the Gram

matrix[Tanton, 2005] of W l is GW l =
(
W l
)T (

W l
)

with el-
ements Gij =

〈
wl

i, w
l
j

〉
, where ⟨·⟩ is the inner product. The

diagonal elements of GW l are
〈
wl

i, w
l
i

〉
, i ∈ 1, 2, . . . , n, and

the off-diagonal elements are
〈
wl

i, w
l
j

〉
, i ̸= j. Therefore,

when GW l is a diagonal matrix, for any i and j, it is neces-
sary to satisfy

〈
wl

i, w
l
j

〉
= 0 for i ̸= j. In practical appli-

cations, cosine similarity is commonly used to characterize
the angle between vectors. When the cosine similarity is 0,
the vectors are orthogonal to each other. When the cosine
similarity is 1 or -1, the angle between vectors is 0 or 180
degrees, respectively. We focus on the orthogonality between
vectors, where a cosine similarity closer to 0 indicates a closer
approach to orthogonality. Therefore, we assess the orthog-
onality between vectors by computing the absolute value of
the cosine similarity. In most cases, the parameter size of the
DNN is large. To evaluate the overall orthogonality between
parameter vectors, we introduce the PII.
Definition 1. For the weight matrix W l ={
wl

1, w
l
2, · · · , wl

n

}
∈ Rm×n,

PII = average

(
abs

(
wl

i · wl
j∥∥wl

i

∥∥ ∥∥wl
j

∥∥
))

, (6)

for all i, j ∈ n, i ̸= j, where abs() denotes the abso-
lute value, and average() calculates the average of all data.
Specifically, the PII is the average absolute value of cosine
similarities between any two row vectors in the parameter
matrix. The PII ranges from [0, 1], where PII=0 indicates that
any two row vectors in the parameter matrix are independent,
and evidently, GW l is a diagonal matrix in this case. PII=1
signifies that the vectors are linearly dependent.

We conducted a study on the orthogonality of vectors by
examining vector angles. Negative cosine similarity values
lack practical significance. Therefore, we used the absolute
value of cosine similarity to represent vector orthogonality.
Concurrently, we calculated the cosine similarity between all
column vector pairs in a parameter matrix. For an M×N ma-
trix, there are N2 total results, which is a substantial quantity.
We need an indicator that can holistically reflect the orthogo-
nality of the parameter vectors. The mean, or expected value,
can represent the global orthogonality of the matrix vectors.
Moreover, using the absolute value function avoids canceling
out between positive and negative cosine similarities. This
ensures the mean accurately reflects the overall orthogonality
of the parameter vectors.

4 Main Results
4.1 Conformal Capability of The Optimizer
Theorem 1 stipulates that the network parameters must form
a matrix with zero mean and unit variance. Our investigation
reveals that even when the variance approximates 1, it does
not significantly alter the proportional relationship between
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GW l and the the average gradient outer product. Currently
prevalent network initialization methods, such as orthogonal
initialization, Xavier initialization[Glorot and Bengio, 2010],
and Lecun initialization[LeCun et al., 2002], all adhere to this
condition. The incorporation of normalization techniques in
network layers, such as batch normalization and layer nor-
malization, can satisfy the condition for each layer’s input
x ∼ N (0, Id). Consequently, it is advantageous for the net-
work’s training method to possess a certain conformal capa-
bility, ensuring that the angles between parameter vectors do
not undergo significant changes. Subsequent research sug-
gests that the SGD optimizer exhibits superior conformal ca-
pabilities when compared to the Adam optimizer.
Theorem 2. The SGD optimizer outperforms the Adam opti-
mizer in terms of conformal capability among parameter vec-
tors.

The proof is provided in the appendix. Here, we offer an
intuitive understanding. DNNs typically employ mini-batch
sample data for gradient computation and parameter updates.
Let the training set be D =

{(
x(n),y(n)

)}N
n=1

, where N is
the batch size. Each sample x(n) is the input of the network,
resulting in the network output ŷ(n). The loss on the dataset
D is given by:

R (W,b) =
1

N

N∑
n=1

L
(
y(n),

(
ŷ(n)

))
(7)

When using the SGD to update parameters,

wl
i,t+1 = wl

i,t − ηt∇wl
i,t (8)

ηt is the learning rate, wi,t is the parameter vector and ∇wl
i,t

the gradient with respect to wi,t . When updating parameters
using the Adam,

wl
i,t+1 = wl

i,t − αt
mt+1√
vt+1 + ϵ

bt+1 (9)

mt+1 = β1mt + (1− β1)∇wl
i,t (10)

vt+1 = β2vt + (1− β2)
(
∇wl

i,t

)2
(11)

bt+1 =

√
1− βt+1

2

1− βt+1
1

(12)

mt+1 and vt+1 are momentums obtainied by the ∇wl
i,t.

Therefore, when the gradients of the network are the same,
the SGD optimizer is closer to a translation transformation of
the parameter vector wl

i,t. Translation of a vector does not
change the angle between vectors before and after the trans-
formation, making it an conformal mapping. Hence, SGD
possesses better conformal capabilities than the Adam opti-
mizer.

To validate Theorem 2, we conducted the following exper-
iments about the FNN and CNN. The datasets are MNIST,
CIFAR-10 and CIFAR-100. Results of CIFAR-100 are pre-
sented in the appendix. We computed the PIIs of the parame-
ter matrix under both SGD and Adam optimizer. A PII closer
to the initial value indicates better conformal capability of the
optimizer.

Optimizers PII Layer 1↑ PII Layer 2↓ PII Layer 3↓ ACC %

SGD 1.0/0.996 0.035/ 0.049 0.035/ 0.048 93.59
Adam 1.0/0.432 0.035/ 0.153 0.035/ 0.109 98.22

AdamW 1.0/ 0.411 0.035/ 0.153 0.035/ 0.114 97.92
RMSprop 1.0/ 0.766 0.035/ 0.234 0.035/ 0.149 97.94

Table 1: Conformal capabilities of optimizers in FNNs.

Optimizers PII Layer 1↑ PII Layer 2↓ PII Layer 3↓ ACC %

SGD 1.0/0.795 0.070/0.195 0.050/0.149 84.04
Adam 1.0/0.328 0.070/0.217 0.050/0.242 85.94

AdamW 1.0/0.337 0.070/0.208 0.050/0.237 85.96
RMSprop 1.0/0.37 0.070/0.230 0.050/0.207 84.80

Table 2: Conformal capabilities of optimizers in CNNs.

Tables 1 and 2 present the conformal capabilities of opti-
mizer in FNNs and CNNs. We selected four common op-
timizers, adjusted the learning rates to achieve similar test
accuracy, and kept all other network parameters consistent.
Table 1 shows the results for a FNN with three network lay-
ers. To assess the optimizer conformal capabilities, different
initialization methods were used for the network layer. The
parameters in the ”Layer 1” were set to the same values, re-
sulting in PII=1. For ”Layer 2” and ”Layer 3”, the default
initialization was used, i.e., the values are initialized from
U
(
−
√
k,
√
k
)

, where k is the input width of the network.
Hence, PIIs are close to zero. In Table 1 and Table 2, an
upward arrow indicates that a higher value is better, while
conversely, a downward arrow signifies that a smaller value
is better.

Each pair of values in the Table 1 and the Table 2 con-
sists of the initial and post-trained PII, such as 1.0/0.996,
it indicates that the initial PII is 1.0, and the post-trained is
0.996. After training, PIIs of each layer of SGD are closest to
the initial values,the conformal capability of the SGD is the
best. It is noteworthy that PIIs between Adam and AdamW
are the closest. Table 2 presents the experimental results of
a CNN network, with each convolutional layer containing a
Max Pooling layer. Compared to the FNN, the CNN has a
more complex structure, but these results consistent with Ta-
ble 1. In summary, the experimental findings suggest that
SGD exhibits a notably superior conformal capability com-
pared to other optimization algorithms with momentum, how-
ever, the momentum leads to a higher accuracy than SGD.

Figure 1 illustrates the distribution of cosine similarity and
Gram matrix of parameter vectors following initialization us-
ing U

(
−
√
k,
√
k
)

. The cosine similarity matrix’s diagonal
signifies the similarity of a vector with itself, consistently
equal to 1, while other entries tend to be close to zero. And
the PII is 0.035, also close to zero. The Gram matrix ex-
hibits strict diagonal dominance, ensuring that data features
in the matrix are predominantly concentrated in the diagonal
elements.
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Figure 1: The cosine similarity and Gram matrix in the initialization
of the DNN.

4.2 The Conformal Capability of The Optimizer
with Normalization and Residual Connections

The earlier results indicate that, under the same conditions,
the conformal capability of the SGD is the best. However,
the SGD optimizer tends to trap DNNs in local optimum, pre-
venting the network from achieving a better testing capabili-
ties. Optimizers like Adam and AdamW overcome this issue
by introducing momentum mechanisms. However, previous
research suggests that these optimizers have poor conformal
capability. The subsequent research suggests that adding nor-
malization and residual connections in the middle of network
layers can enhance the conformal capability of all the opti-
mizers.

Additionally, our research has found that only normaliza-
tion or residual connections cannot guarantee a definite im-
provement in the conformal capability of optimizers. Due
to space constraints, relevant studies are presented in the ap-
pendix.
Theorem 3. The combination of normalization and residual
connections can enhance the conformal capability of the op-
timizer.

The proof is provided in the appendix. Here, we also of-
fer an intuitive understanding. We take batch normalization
as an example, the result are the same for layer normaliza-
tion. When DNNs do not incorporate batch normalization
and residual connections, the gradient of the parameter W l is

∇W l = f ′ (zl)⊙ (W l+1
(
zl+1

)′) (
xl−1

)T
= δl

(
xl−1

)T
(13)

where ⊙ represents element-wise multiplication, and δl =

f ′ (zl)⊙(W l+1
(
zl+1

)′)
has the same form across different

network layers, we refer to δl as the error term of the neuron.
After incorporating batch normalization and residual connec-
tions, the gradient of the parameter W l is

∇W l =
1

σl
f ′ (zl)⊙ P1⊥Pxl⊥ (14)[

1

σl+1

(
1+ f ′ (zl+1

))
⊙W l+1P1⊥Pxl+1⊥

(
xl+1

)′]
(15)

·
(
xl−1

)T
= δlNR

(
xl−1

)T
(16)

δlNR represents the error term of the l-th layer neuron
after incorporating normalization and residual connections,

(
xl+1

)′
= ∂R

∂xl+1 , P1⊥ (·) and Pxl⊥ (·) indicate the projec-
tion onto the directions of vectors 1 and xl respectively. σl

and σl+1 represent the variances of neurons in the l-th and
l + 1-th layers, respectively. It can be observed that nor-
malization and residual connections modify the error term
of neurons. Compared to Equation (13), the addition of the
vector 1 with the activation function prevents the problem of
gradient vanishing in ∇W l. In the computation of the error
term δlNR, division by the variance of each layer’s neurons
is required. Therefore, for neurons with distributions having
variances greater than 1 and sparser gradients, this approach
reduces the sparsity of the gradients. In summary, the param-
eter gradient δlNR

(
xl−1

)T
in Equation (14) is a product of

a unit-norm vector and a more uniformly distributed vector.
During optimizer updates, this tends to map towards transla-
tions along the gradient direction, displaying better isotropy
characteristics.

4.3 Experiments
To validate the correctness of the theory, we conducted ex-
tensive experiments. The neural network comprise FNNs,
CNNs, Transformers, PLMs, and LLMs. The datasets con-
sist of MNIST, CIFAR-10, CIFAR-100, WikiText-2. For
PLMs and LLMs, calculating the PII of their parameters is
sufficient, and there is no need to retrain the models. More-
over, to confirm whether the fine-tuning process of LLMs pre-
serves the orthogonality of parameter vectors, we conducted
LoRA[Hu et al., 2021] fine-tuning on the Qwen model[Bai et
al., 2023] and assessed changes of the PII before and after the
fine-tuning.

Figure 2 illustrates the impact of normalization and resid-
ual connections on the orthogonality of neural network pa-
rameter vectors. The left side presents results without nor-
malization and residual connections, while the right side
showcases results after their inclusion. Both result sets in-
dicate a significant enhancement in the orthogonality of net-
work parameter row and column vectors through the incorpo-
ration of normalization and residual connections.

Figures 2 (a)-(d) depict the distribution of cosine similarity
matrices, where a closer proximity of non-diagonal elements
to yellow signifies improved vector orthogonality. The re-
sults suggest that, upon integrating normalization and resid-
ual connections, the values of non-diagonal elements in the
matrix notably decrease, indicating a pronounced tendency
toward orthogonality for parameter vectors. Figures 2 (e)-(h)
portray the distribution of Gram matrices, with larger values
in the diagonal elements indicating superior vector orthogo-
nality. The results indicate that, following the introduction
of normalization and residual connections, the Gram matri-
ces of parameters distinctly trend towards being diagonally
dominant. Particularly noteworthy are the outcomes in Fig-
ure (e) and Figure (f), where, despite minimal changes in the
color of non-diagonal elements, the values of diagonal ele-
ments significantly increase. This suggests that, with the ad-
dition of normalization and residual connections, more data
features converge in the diagonal elements, thereby enhanc-
ing the neural network’s capability for feature learning.

Moreover, Figure 2 demonstrates that the combination of
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Figure 2: The cosine similarity and Gram matrix with and without
normalization and residual connections in FNNs.

normalization and residual connections leads to a significant
decrease in PII. PII accurately captures the orthogonality of
parameter vectors. The combination of normalization and
residual connections can simultaneously enhance the orthog-
onality of row vectors and column vectors, while the Gram
matrix focuses primarily on column vectors. Therefore, in
the subsequent experiments, we only present the results for
column vectors.

In Table 3, the term ’Original’ denotes the scenario where
normalization and residual connections are excluded, while
’Norm Res’ signifies the inclusion of normalization and

Functions/ PII PII ↓ ACC %
Optimizers Original Norm Res Original/Norm Res

Sigmoid/Adam 0.278 0.139 97.88/98.13
Tanh/Adam 0.136 0.118 98.01/98.14
ReLU/Adam 0.138 0.09 98.23/98.45
GELU/Adam 0.141 0.081 98.16/98.24
GELU/SGD 0.053 0.036 97.54/98.13

Table 3: The influence of the combination of and residual connec-
tions on the orthogonality of parameter vectors and testing accuracy
in FNNs.

Functions/ PII PII ↓ ACC %
Optimizers Original Norm Res Original/Norm Res

GELU/Adam 0.196 0.176 95.34/98.66
GELU/SGD 0.206 0.155 85.48/90.22

Table 4: The influence of the combination of normalization and
residual connections on the orthogonality of parameter vectors and
testing accuracy in CNNs.

residual connections. The initial four rows of data in the Ta-
ble present PIIs for different activation functions under the
Adam optimizer. The curves of ReLU and GELU functions
display similar distributions, and their PIIs before and after
incorporating normalization and residual connections are also
comparable. The last two rows of data showcase results for
various optimizers under the same activation function. The
SGD inherently exhibits a good conformal capability, evident
in the already relatively low PIIs even without normalization
and residual connections. Nevertheless, the combination of
normalization and residual connections still succeeds in fur-
ther reducing its PII.

Table 3 illustrates that, under various activation functions
and optimizer conditions, the integration of normalization
and residual connections enhances the orthogonality of pa-
rameter vectors. Furthermore, as PII decreases, there is a gen-
eral improvement in the overall test accuracy of the network.
This implies that, for FNNs, improving the orthogonality of
parameter vectors indeed enhances the network’s fitting ca-
pability.

Table 4 delineates the influence of normalization and resid-
ual connections on the PII and test accuracy of CNNs on
CIFAR-10, results of CIFAR-100 are presented in the ap-
pendix . The network adheres to a ResNet, incorporating
normalization and residual connections between each con-
volutional layer. The ’Original’ outcomes represent the sce-
nario where normalization and residual connections are omit-
ted, consequently transforming the network into a fully con-
nected convolutional network. We have extracted experimen-
tal outcomes from a single convolutional layer, with other
network layers exhibiting comparable characteristics, a com-
prehensive set of experimental results is available in the ap-
pendix. The findings in Table 4 showcase that normalization
and residual connections have the potential to improve both
the orthogonality of parameter vectors and the test accuracy
of CNNs.

The Transformer[Vaswani et al., 2017] stands out as one of
the most prevalent neural network architectures in natural lan-
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Models Query↓ Keys↓ Values↓ Atten Output↓ Linear 1.weight↓ Linear 2.weight↓
Transformer[Vaswani et al., 2017] 0.085 0.066 0.026 0.025 0.091 0.162

Bert[Kenton and Toutanova, 2019] 0.046 0.045 0.037 0.039 0.055 0.021
Roberta[Liu et al., 2019] 0.035 0.044 0.036 0.040 0.059 0.023

GPT-2[Radford et al., 2019] 0.043 0.033 0.045 0.045 0.030 0.036
T5/Encoder[Raffel et al., 2020] 0.032 0.036 0.034 0.033 0.043 0.019
T5/Decoder[Raffel et al., 2020] 0.032 0.033 0.034 0.033
LLama[Touvron et al., 2023] 0.023 0.024 0.013 0.013 0.013 0.011

LLama 2[Touvron et al., 2023] 0.025 0.026 0.013 0.013 0.012 0.013
Qwen[Bai et al., 2023] 0.022 0.021 0.015 0.015 0.009 0.014
LoRA[Hu et al., 2021] 0.022 0.021 0.017 0.024 0.012 0.019

Table 5: The influence of the combination of normalization and residual connections on the orthogonality of parameter vectors in the Trans-
former, PLMs and LLMs.

guage processing. Within the Transformer framework, both
Pre-trained Language Models (PLMs) and Language Mod-
els (LLMs), which are composed of the Transformer, utilize
normalization and residual connections to link attention and
fully connected layers. In order to assess their influence on
the orthogonality of parameter vectors in PLMs and LLMs,
we conducted the following experiments.

The content of Table 5 consists of three sections. The PII
for each section includes the attention’s queries, keys, and
values matrices, the output layer parameter matrix of the at-
tention, and the two parameter matrices of the fully connected
layer. The first section presents the experimental results for
the Transformer, which is composed of six Transformers and
trained on the WikiText-2 dataset. The initial five PIIs are all
close to zero, suggesting a high level of orthogonality among
parameter vectors. However, the last PII is notably greater
than zero. This discrepancy arises from the fact that, in our
designed Transformer, the final fully connected layer in the
last segment did not integrate the combination of normaliza-
tion and residual connections. Consequently, this experiment
confirms that it is the combination of normalization and resid-
ual connections that improves the orthogonality of parameter
vectors in the Transformer.

The second section of Table 5 showcases the experimental
outcomes for well-known PLMs. All of their PIIs are close
to zero, signifying exceptional orthogonality among their pa-
rameter vectors. It’s noteworthy that the T5/Decoder omits a
FFN layer, leading to empty data entries for Linear1.weight
and Linear2.weight, denoted by ’-’.

The third section of Table 5 showcases the experimen-
tal outcomes for LLMs. Their PIIs are smaller than those
of PLMs, suggesting superior orthogonality in the parame-
ter vectors of LLMs. Moreover, to investigate whether fine-
tuning LLMs preserves vector orthogonality, we calculated
the PIIs before and after LoRA fine-tuning. The fine-tuning
experiment was conducted using the Qwen model, with the
PII for Qwen in the table representing the result before LoRA
fine-tuning, and the corresponding PII for LoRA indicating
the result after fine-tuning. The findings indicate that LoRA
adjusts network parameters while upholding the orthogonal-
ity of parameter vectors. Our study contributes to an en-
hanced understanding of LLM fine-tuning techniques.

5 Conclusion
The combination of normalization and residual connections
is commonly employed in DNNs, and it often enhances the
network’s stability and fitting capability. However, there has
been a lack of theoretical explanations for this phenomenon.
We have identified that the combination of normalization and
residual connections maintains robust orthogonality between
parameter vectors, leading to a Gram matrix that tends to be
diagonal or diagonally dominant. The Gram matrix of pa-
rameters is proportionate to the outer product of the network’s
gradient vector concerning input data. Diagonal or diagonally
dominant matrices concentrate effective data features in the
diagonal elements, thereby improving the neural network’s
ability to learn data features. To validate the correctness of the
theory, we conducted experiments on various network mod-
els suitable for the combination of normalization and residual
connections. These models encompass FNNs, CNNs, Trans-
formers, PLMs, LLMs, and networks fine-tuning based on
LLMs. All the results confirm that the combination of nor-
malization and residual connections significantly improves
the orthogonality between parameter vectors after training.

Our research explains from the perspective of parameter
vector orthogonality why normalization and residual connec-
tions can enhance the performance of DNNs, contributing to
improve the interpretability of DNNs. Additionally, we have
uncovered a novel insight that LoRA does not compromise
the orthogonality of parameter vectors. This discovery holds
significance in the context of LLMs fine-tuning techniques.
Moving forward, our next phase of research will focus on
investigating the influence of orthogonality on LLMs fine-
tuning methods and exploring more efficient, resource-saving
LLMs fine-tuning techniques.

Acknowledgements
This work is supported by the National Key Research and De-
velopment Program of China (No. 2022YFC3301801), Nat-
ural Science Foundation of China (No. 62276043).

References
[Achiam et al., 2023] Josh Achiam, Steven Adler, Sandhini

Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4693



Aleman, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

[Arora et al., 2018] Sanjeev Arora, Zhiyuan Li, and Kaifeng
Lyu. Theoretical analysis of auto rate-tuning by batch nor-
malization. arXiv preprint arXiv:1812.03981, 2018.

[Ba et al., 2016] Jimmy Lei Ba, Jamie Ryan Kiros, and Ge-
offrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[Bai et al., 2023] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu
Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv
preprint arXiv:2309.16609, 2023.

[Balduzzi et al., 2017] David Balduzzi, Marcus Frean,
Lennox Leary, JP Lewis, Kurt Wan-Duo Ma, and Brian
McWilliams. The shattered gradients problem: If resnets
are the answer, then what is the question? In International
Conference on Machine Learning, pages 342–350. PMLR,
2017.

[Beaglehole et al., 2023] Daniel Beaglehole, Aditya-
narayanan Radhakrishnan, Parthe Pandit, and Mikhail
Belkin. Mechanism of feature learning in convolutional
neural networks. arXiv preprint arXiv:2309.00570, 2023.

[Chowdhery et al., 2023] Aakanksha Chowdhery, Sharan
Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra,
Adam Roberts, Paul Barham, Hyung Won Chung, Charles
Sutton, Sebastian Gehrmann, et al. Palm: Scaling lan-
guage modeling with pathways. Journal of Machine
Learning Research, 24(240):1–113, 2023.

[Daneshmand et al., 2020] Hadi Daneshmand, Jonas Kohler,
Francis Bach, Thomas Hofmann, and Aurelien Lucchi.
Batch normalization provably avoids ranks collapse for
randomly initialised deep networks. Advances in Neural
Information Processing Systems, 33:18387–18398, 2020.

[Daneshmand et al., 2021] Hadi Daneshmand, Amir
Joudaki, and Francis Bach. Batch normalization or-
thogonalizes representations in deep random networks.
Advances in Neural Information Processing Systems,
34:4896–4906, 2021.

[De and Smith, 2020] Soham De and Sam Smith. Batch
normalization biases residual blocks towards the identity
function in deep networks. Advances in Neural Informa-
tion Processing Systems, 33:19964–19975, 2020.

[DeMaris, 1995] Alfred DeMaris. A tutorial in logistic re-
gression. Journal of Marriage and the Family, pages 956–
968, 1995.

[Fan, 2000] Engui Fan. Extended tanh-function method and
its applications to nonlinear equations. Physics Letters A,
277(4-5):212–218, 2000.

[Furusho and Ikeda, 2019] Yasutaka Furusho and Kazushi
Ikeda. Resnet and batch-normalization improve data sepa-
rability. In Asian Conference on Machine Learning, pages
94–108. PMLR, 2019.

[Furusho and Ikeda, 2020] Yasutaka Furusho and Kazushi
Ikeda. Theoretical analysis of skip connections and batch

normalization from generalization and optimization per-
spectives. APSIPA Transactions on Signal and Informa-
tion Processing, 9:e9, 2020.

[Glorot and Bengio, 2010] Xavier Glorot and Yoshua Ben-
gio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth in-
ternational conference on artificial intelligence and statis-
tics, pages 249–256. JMLR Workshop and Conference
Proceedings, 2010.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[Hendrycks and Gimpel, 2016] Dan Hendrycks and Kevin
Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

[Hu et al., 2021] Edward J Hu, Yelong Shen, Phillip Wallis,
Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large
language models. arXiv preprint arXiv:2106.09685, 2021.

[Huang et al., 2018] Lei Huang, Xianglong Liu, Bo Lang,
Adams Yu, Yongliang Wang, and Bo Li. Orthogonal
weight normalization: Solution to optimization over mul-
tiple dependent stiefel manifolds in deep neural networks.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 32, 2018.

[Ioffe and Szegedy, 2015] Sergey Ioffe and Christian
Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In
International conference on machine learning, pages
448–456. pmlr, 2015.

[Karakida et al., 2019] Ryo Karakida, Shotaro Akaho, and
Shun-ichi Amari. The normalization method for alle-
viating pathological sharpness in wide neural networks.
Advances in neural information processing systems, 32,
2019.

[Katsman et al., 2023] Isay Katsman, Eric Ming Chen, Sid-
hanth Holalkere, Anna Asch, Aaron Lou, Ser-Nam Lim,
and Christopher De Sa. Riemannian residual neural net-
works. arXiv preprint arXiv:2310.10013, 2023.

[Kenton and Toutanova, 2019] Jacob Devlin Ming-
Wei Chang Kenton and Lee Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of naacL-HLT,
volume 1, page 2, 2019.

[Kohler et al., 2019] Jonas Kohler, Hadi Daneshmand, Au-
relien Lucchi, Thomas Hofmann, Ming Zhou, and Klaus
Neymeyr. Exponential convergence rates for batch nor-
malization: The power of length-direction decoupling in
non-convex optimization. In The 22nd International Con-
ference on Artificial Intelligence and Statistics, pages 806–
815. PMLR, 2019.

[LeCun et al., 2002] Yann LeCun, Léon Bottou,
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