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Abstract
Recently, various deep denoising methods have
been proposed to solve the insufficient feature
problem in image denoising. These methods can
be mainly classified into two categories: (1) In-
jecting learnable tensors into denoising backbone
to supplement feature, which is effective to some
extent but may cause serious over-fitting. (2) Using
diverse natural images from large image datasets
to synthesize noisy images and pre-train denois-
ing models, which can bring model generaliza-
tion but require large model size and expensive
training costs. To address these issues, this pa-
per proposes Implicit Prompt Learning for Im-
age Denoising (IPLID) method to flexibly gener-
ate adaptive prompts without meticulously design-
ing them. Specifically, we first introduce an effi-
cient Linear Prompt (LP) block with ultra-few pa-
rameters to produce dynamic prompts for both dif-
ferent stages and samples in denoising procedure.
We further propose an efficient Compact Feature
Fusion (CFF) block to process previous multi-level
prompted denoising feature to reconstruct the de-
noising images. Finally, to further efficiently and
effectively produce satisfactory prompt and denois-
ing performance, a Gradient Accumulation (GA)
learning scheme is proposed. Experiments on mul-
tiple benchmarks showed that the proposed IPLID
achieves competitive results with only 1 percent
of pre-trained backbone parameters, outperforming
classical denoising methods in both efficiency and
quality of restored images.

1 Introduction
Image denoising is a fundamental low-level vision task,
which aims to reconstruct a noise-free image from a noisy im-
age. Meanwhile, it is also a challenging inverse problem task
[Jiang et al., 2022a]. To elegantly address the inverse prob-
lem, currently, the end-to-end image denoising methods us-
ing Convolutional Neural Networks (CNNs) and Transformer
structures [Liang et al., 2021; Zamir et al., 2021] solve this

∗Corresponding author

problem by learning the mapping between noisy and clean
images. However, due to the limited training data, the recon-
structed images may have insufficient feature, resulting in the
excessive smoothness of denoised images.

For the past few years, several methods have been proposed
for solving the problem of insufficient feature in the process
of image denoising. These methods are mainly classified
into two categories. (a) Learnable tensors are inserted into
the Deep Neural Networks (DCNNs) for image denoising to
supplement the feature within the image denoising process,
which is an effective method to some extent. However, the
information supplemented by this method is uncontrollable.
Hence, it may be prone to over-fitting. For instance, APD-Net
[Jiang et al., 2022b] supplements the denoised images with
prior information, while may cause the over-fitting. To effec-
tively suppress over-fitting, APD-Net equips a corresponding
regularization module. This results in the complex structure
of the overall denoising network. Therefore, such methods of
adding learnable tensors are inevitable to establish a difficult
trade-off between the performance and the complexity of the
DNNs for denosing. (b) Since the ImageNet dataset contains
more than 1 million natural images from 1,000 different cat-
egories, which are highly diverse. Therefore, these images
are used to manually synthesize noisy images using different
noise levels to pre-train the denoising model to provide the
initialization weights with abundant texture and color feature
[Chen et al., 2021]. Then, the denoising model is fine-tuned
on the widely used image denoising training datasets (e.g., in
total only 1200 images on DIV2K and BSD400 datasets) to
achieve image denoising performance correction.

Although these methods can bring generalization capabil-
ities to image denoising models, they severely suffer from
two main problems. (a) Compared to the methods that are
directly trained on the noisy image datasets, using the Im-
ageNet dataset to manually synthesize noisy images to pre-
train the model introduces additional training cycles, re-
sulting in greatly expensive training costs. (b) Due to the
large number of images within the ImageNet datasets, the
pre-trained model trained on such large dataset should have
enough capacity to retrieve the abundant feature. This will
introduce a huge number of model parameters and calcula-
tions in the fine-tune process.

In Natural Language Processing (NLP) tasks, prompt
learning makes better use of the knowledge from the pre-
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Figure 1: Overall structure of the proposed IPLID. Pink circles represent prompted denoising feature, and the gray squares represent feature
maps generated by the pre-trained model.

trained model by adding additional texts to the input [Lester
et al., 2021]. Since prompt learning uses a pre-trained model
with frozen weights, such a strategy does not retrain a pre-
trained text model for downstream tasks, and can greatly
shorten the training time and effectively improve the effi-
ciency of the model. Inspired by the prompt mechanism, this
paper applies the powerful prompt learning to image denois-
ing task based on the pre-trained vision models. However,
there are still some challenges in designing an effective and
efficient prompt learning for image denoising.

Current prompt for pure vision task is still unexplored, and
the noise within the real-word noisy images is very com-
plex. Furthermore, different input noisy samples contain
various noise. Therefore, (1) it is challenge to efficiently
produce appropriate and individulized prompt for denois-
ing pre-trained model without explicitly designing prompt
scheme. In the stage of reconstructing denosing images, since
the denoising feature generated using the denoising prompt
has multiple levels, (2) it is also critical to efficiently fuse
such multi-level prompted denoising information with ef-
fect to produce high-quality denoised images. In the learn-
ing process, due to the frozen pre-trained model in the entire
denoising framework, the injected learnable blocks may not
obtain satisfactory gradient. Thus, (3) it is also vital to effec-
tively optimize the learnable blocks employing more effica-
cious learning scheme.

To overcome above challenges, we propose the Implicit
Prompt Learning for Image Denoising (IPLID), as shown
in Fig. 1. Formally, different from explicit prompt learn-
ing, the implicit prompt learning generates prompt informa-
tion more flexibly and conveniently without meticulously de-
signing them. It is not necessary to feed hints and sample
data together in the pre-trained model. The prompt infor-
mation only needs to be generated according to the previ-
ous feature layer and adaptively acts on the subsequent lay-
ers. Specifically, we first propose the Linear Prompt (LP)
block for image denoising, which is efficiently equipped in
the pre-trained vision model with ultra-few training parame-
ters. It is powerful enough to produce satisfactory prompt by
transforming the feature retrieved from the pre-trained vision
model. Additionally, we further propose an efficient and flex-
ible Compact Feature Fusion (CFF) block as a decoder to

comprehensively process the multi-level prompted denoising
feature to reconstruct high-quality denoised images. Eventu-
ally, to effectively optimize the learnable modules, we pro-
pose the Gradient Accumulation (GA) learning scheme by
introducing multi-stage losses to update the trainable param-
eters. Extensive experimental results show that the proposed
IPLID can produce competitive performance using only 1%
of the backbone parameters, greatly outperforming traditional
deep denoising methods in both the quality and vision of re-
stored images with higher efficiency. The contributions of
this paper can be summarized as follows:

• We propose the Implicit Prompt Learning for Image
Denoising (IPLID) to implicitly and flexibly pro-
duce adaptive prompt information for pre-trained vision
model without meticulously design.

• We propose the Linear Prompt (LP) block, which is
light-weight but powerful enough to produce satisfac-
tory prompt using the retrieved pre-trained feature for
different noisy samples and different stages within de-
noising procedure.

• We propose the Compact Feature Fusion (CFF) block,
which is also efficient as a decoder to sufficiently re-
trieve multi-level prompted denoising feature to recover
high-quality denoised images.

• We propose the Gradient Accumulation (GA) learning
scheme to effectively update the trainable parameters
within frozen pre-trained model. Extensive experiments
validated the effectiveness and superiority of our IPLID.

2 Related Works
2.1 Image Denoising
With the development of CNNs, many efficient image de-
noising models based on CNNs have emerged, which signifi-
cantly improve the performance of the image denoising task.
Examples include DnCNN [Zhang et al., 2017], which intro-
duces a residual learning method to reconstruct noise maps
that are then subtracted from noisy images. MWCNN [Liu et
al., 2018] introduces a new form of down-sampling and up-
sampling layers in the discrete wavelet domain. Blind noise
settings can be handled with FFDNet [Zhang et al., 2018]
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by employing a customized noise level map. Although these
CNNs-based models improve image denoising to some ex-
tent, the vanilla convolution layer has a limitation in capturing
long-range pixel dependencies.

As an alternative to CNNs, transformers [Kolesnikov et al.,
2021] can capture dependencies over long-range patches us-
ing a self-attention mechanism. Examples of transformer-
based models for image denoising include Uformer [Wang
et al., 2021], SwinIR [Liang et al., 2021], Restormer [Zamir
et al., 2021], and SCUNet [Zhang et al., 2022]. Particularly,
IPT [Chen et al., 2021] and EDT [Li et al., 2021] are the prior
denoising neural networks built with transformer blocks, but
require pre-training on large-scale datasets to provide the ini-
tialization weights with rich texture and color feature for the
process of image denoising. However, this not only intro-
duces a large number of model parameters and calculations in
the fine-tune process, but also may limit the further improve-
ment of image denoising performance due to the designed
complex pre-trained structure.

2.2 Prompt Learning
The prompt learning is widely used in the field of Natural
Language Processing (NLP) and has a large potential appli-
cation to computer vision [Liu et al., 2023]. In NLP, a prompt
is a pre-defined statement or sequence of words that serves as
a starting point for generating text [Fan et al., 2017]. By re-
formulating NLP tasks as the text completion problems, it is
possible to solve a variety of NLP tasks without fine-tuning
the model on specific datasets [Su et al., 2021]. This ap-
proach, known as prompting, has been shown to be effec-
tive in solving a range of NLP tasks and benchmarks. More
recently, different approaches to prompting have been devel-
oped, including Prompt Engineering, which involves design-
ing prompts that are optimized for specific tasks, and Prompt
Ensembling, which uses a combination of multiple prompts
to improve performance [Wang et al., 2023]. Another Prompt
Prefix Tuning involves adjusting the prefix of a prompt to op-
timize performance of specific task [Zhou et al., 2022].

Despite prompt learning has been successful in NLP, it has
not been widely explored in the field of computer vision.
However, the idea of using prompt has a anticipating appli-
cation in various tasks such as image denoising. This paper
tries to explore the prompt potentiality in the image denois-
ing and propose a prompt scheme to produce the appropriate
prompt and employ them in image denoising.

3 Method
3.1 Overall Pipeline
As shown in Fig. 1, the overall framework of the pro-
posed IPLID is constructed based on classical but powerful
encoder-decoder pipeline, where the encoder is composed of
a pre-trained model with frozen weights and equipping with
Linear Prompt (LP) blocks, while the decoder is composed
of Compact Feature Fusion (CFF) blocks and up-sampling
layers. The input noisy image is first fed into the pre-
trained model with frozen weights for extracting initial fea-
ture. Specifically, given a noisy input image In ∈ RH×W×3,

the low-level feature map Fs ∈ RH×W×C is extracted by the
first layer of the pre-trained model:

Fs = Fi (In) , i = 1, (1)

where Fi denotes the ith layer of the pre-trained model with
frozen weights. C,H andW denote the numbers of channels,
height and width of the noisy image In, respectively.

Then, the captured feature maps are then fed into the LP
block to generate prompt information, which is then added to
the input feature maps to form the prompted denoising feature
maps, as shown in Eqn. 2:

Fp = H (Fs) + Fs, (2)

where, H represents the operation of the LP block, and Fp

is the generated prompted feature maps. The above process
constitutes one unit of the encoder. In the proposed IPLID,
the encoder is composed of four sets of such units.

Similarly, the image prompted denoising feature with dif-
ferent levels generated by the encoder is fed into the decoder.
The decoder consists of four sets of upsampling layers and
CFF blocks. The decoder gradually recovers high-resolution
image feature from the low-resolution prompted denoising
feature maps Fpe ∈ RH

16×
W
16×16C (i.e., the output prompted

denoised feature at the end of decoder) as they pass through
the upsampling layers. During the upsampling process, a de-
convolution operation with a stride of 2 and a kernel size of
2 × 2 is employed to expand the reconstructed denoised im-
age, concomitantly decreasing the number of channels and
augmenting the spatial resolution of the feature maps. Fi-
nally, the skip connection is employed to connect the gen-
erated prompted denoising feature between the encoder and
decoder with same scales, formulated in Eqn. 3:

Fd = C
(
cat

(
U i (Fpe) , F

i
p

))
, (3)

where U , cat, and C denote the up-sampling operation,
concatenation operation along the channel dimension of ten-
sors, and CFF block operation, respectively. Fi

p denotes the
prompted denoising feature maps generated in the ith en-
coder, and U i (Fpe) indicates the feature maps generated in
the decoder with same size to Fi

p. Finally, the feature maps
Flast ∈ RH×W×3 generated from the last layer within de-
coder are element-wise added to the input noisy image for
final denoised image Id, as shown in Eqn. 4:

Id = Flast + In. (4)

3.2 Linear Prompt (LP) Block
To implicitly generate adaptive prompts for different de-
noised samples and different stages in the denoising proce-
dure, an efficient transformation is introduced. For arbitrary
feature maps X ∈ RH×W×C generated by a frozen pre-
trained vision model ResNet-152 [He et al., 2016], we can
generally use the transformation P to produce the prompt Fp,
shown as the following equation:

Fp = P (X) . (5)

To preserve the high efficiency of the denoising process,
the transformation P employs separate linear transforma-
tion. Thus, Eqn. 5 can be further formulated as follows:
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Figure 2: Structure of the proposed Linear Prompt (LP) block.

Fp = W · (X) + β · (X) + λ, (6)

where W ∈ RH×W×C , β ∈ RC×1×1, and λ ∈ RC×1×1,
and · is the element-wise multiplication to decrease the com-
putation complexity. Hence, W and β separately process the
input on all dimensions and channel dimension, respectively.
To further promote the hierarchical richness of the produced
prompt information and decrease the number of parameters
within the proposed LP block, W is reformulated to follows:

W ≈
C−1∑
i=0

T θ
l (αi), (7)

where T θ
l is the general linear transformation with parameters

θ ∈ R1×1×C , αi ∈ RH×W×1 (αi ∈ A, A ∈ RH×W×C), and
β ∈ R1×1×C . Thus, the parameters decreases from C ×H ×
W + 2C to C ×H + 3C. Above transformation can make a
better trade-off between the prompt richness and efficiency.

According to the above strategies, it is critical to de-
sign suitable transformation coefficients αi, bias term β, and
scalar offset λ. Thus, these necessary coefficients can be
learned and optimized in training. Based on these principles,
the Linear Prompt (LP) block with ultra-few parameters to
generate adaptive denoising prompt is constructed in Fig. 2.

In detail, the proposed LP block consists of three learn-
able parameters, three GELU activation layers [Hendrycks
and Gimpel, 2016], and one linear mapping function layer.
Specifically, given the extracted feature maps Fin ∈
RH×W×C by the pre-trained model with frozen weights, ac-
cording to the Eqn. 7, the proposed LP block generates the
denoised prompt information as the following formulation:

Fout = φ
(∑C−1

i=0 T θ
l (αi)

)
· Fin + φ (β) · Fin + φ (λ) + Fin, (8)

where Fout ∈ RH×W×C is the prompted denoising feature
map, φ denotes the GELU activation function.

3.3 Compact Feature Fusion (CFF) Block
To fully utilize guidance prompted denoising feature maps for
reconstructing denoised images, we propose an elegant and
efficient Compact Feature Fusion (CFF) block to build the
decoder. The decoder not only effectively fuses multi-level
guidance prompted denoising feature maps, but also strives
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Figure 3: Structure of the proposed Compact Feature Fusion (CFF)
block.

to be as efficient as possible, as shown in Fig. 3. The CFF
block is composed of convolutional layers with a kernel size
of 3 × 3, LeakyReLU activation function, and dilated con-
volutional layers (with dilation rates of d = 1, 2, and 3).
As multi-level prompted denoising feature has various scales,
the higher levels correspond to coarser scales and vice versa.
Thus, the effective multi-level learning is necessary for suf-
ficient feature fusion. Therefore, the CFF block employs a
multi-level learning strategy to enhance this fusion process.

Specifically, the input feature map is refined through con-
volutional and activation layers, as shown in Eqn. 9:

F0 = ψ
(
f3×3
conv (Fcin)

)
, (9)

where F0 ∈ RH×W×C is the refined feature map, ψ denotes
the LeakyReLU activation function, and fconv is the convo-
lutional layers with a kernel size of 3 × 3. To increase the
receptive field, the CFF block employs dilated convolutions
with a 3× 3 kernel, which can expand the effective receptive
field of the convolutional kernel without increasing the num-
ber of parameters, thereby capturing a wider range of contex-
tual information. As a result, the refined feature map is ob-
tained through dilated convolutions to obtain a broader range
of contextual feature, as shown in Eqn. 10:

F1 = cat
(
ψ
(
f3×3
d=1 (F0)

)
, ψ

(
f3×3
d=2 (F0)

)
, ψ

(
f3×3
d=3 (F0)

))
, (10)

where F1 ∈ RH×W×3C is the mixed feature map, f3×3
d=1 ,

f3×3
d=2 , and f3×3

d=3 correspond to atrous convolutions with di-
lation rates of d = 1, d = 2, and d = 3, respectively. Then,
the output feature map Fout ∈ RH×W×C of the CFF block
can be expressed as follows:

Fout = ψ
(
f3×3

conv

(
ψ
(
f3×3

conv (F1)
)
+ Fcin

))
, (11)

Eqn. 11 employs the F1 mixed contextual information to
readjust the fused feature maps.

3.4 Gradient Accumulation Learning Scheme
Owing to the frozen weights of the pre-trained vision model
in the learning process, the learnable LP block injected into
the pre-trained model may not achieve enough satisfactory
and dynamic optimization. To provide more effective prompt
information from pre-trained feature with frozen weights
layer by layer, we propose a gradient accumulation learning
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Figure 4: Schematic diagram of updating prompt parameters using
gradient accumulation.

scheme to effectively update the parameters of the LP block,
which is shown in Fig. 4.

In every level of reconstructed denoised image with differ-
ent scales, a loss supervision will be exerted. Specifically, a
3 × 3 convolutional layer is connected after each CFF block
to generate the denoised image of the corresponding size. To
obtain the ground-truth image of corresponding size, we use
bilinear interpolation to calculate the loss at different levels
(scales), which is calculated as shown in Eqn. 12:

L =
1

S + 1

1

N

S∑
s=0

∑√
∥Isd − Isgt∥2 + ϱ2. (12)

where N denotes the number of training samples, s is the
downsampling factor (s = 0, 1, · · · , S), which denotes the
loss calculation performed at a scale of image size 1

2s . Id de-
notes the denoised image produced from the proposed IPLID,
Igt represents the ground-truth corresponding to the input
noise image, and ϱ2 is a constant that is empirically set to
1× 10−6.

By updating the parameters of the LP blocks layer by layer
through backward gradient, the IPLID model can gradually
adapt to noisy images. This allows the model to first learn
more general lower-level representations before moving on
to higher-level representations. This can improve the model’s
ability to transfer knowledge from pre-trained feature to the
task of reconstructing denoised images.

4 Experiments
We use the Adam [Loshchilov and Hutter, 2017] optimizer
to train our IPLID with setting β1 and β2 to 0.9 and 0.999,
respectively. The learning rate is set to 1× 10−4 in training.

4.1 Architecture Scales
To illustrate the effectiveness of the proposed IPLID archi-
tecture scale in image denoising, our experiments used three
different scale parameters for IPLID. Therefore, we adjust
different IPLID architectural scales by changing the number
of feature channels C, and other settings remain unchanged.
The three specific parameters of different scales are set as fol-
lows: IPLID-T (Tiny, C = 16), IPLID-S (Small, C = 32),
and IPLID-B (Basic, C = 64).

Dataset SIDD Nam PolyU
Methods PSNR SSIM PSNR SSIM PSNR SSIM

DnCNN-B 38.56 0.910 36.08 0.903 35.74 0.878
FFDNet 38.60 0.909 37.85 0.938 37.19 0.939
TWSC 35.89 0.838 38.37 0.952 37.63 0.954

CBDNet 38.68 0.909 38.51 0.957 37.85 0.956
RIDNet 38.71 0.913 38.72 0.960 38.07 0.957

VDN 39.29 0.911 39.16 0.965 38.43 0.960
GCDN 38.93 0.910 38.96 0.962 38.21 0.958

PAN-Net 39.33 0.912 40.18 0.978 39.91 0.971
AINDNet 39.45 0.915 39.21 0.966 38.78 0.963
APD-Nets 39.75 0.959 40.36 0.989 N/A N/A
MIRNet 39.71 0.959 39.88 0.973 39.25 0.971
HPDNet 39.72 0.958 40.26 0.979 39.89 0.970
Uformer 39.77 0.959 N/A N/A N/A N/A

Restormer 40.02 0.960 N/A N/A N/A N/A

IPLID-T 39.73 0.959 39.80 0.971 39.72 0.966
IPLID-S 39.88 0.959 39.92 0.975 39.81 0.968
IPLID-B 40.05 0.960 40.39 0.989 39.92 0.971

Table 1: Average PSNRs and SSIMs of the denoised real noisy im-
ages from Nam, PolyU and SIDD datasets. The values of PSNRs
and SSIMs are positively correlated with visual quality.

4.2 Evaluation on Real-world Noisy Images
This section focuses on evaluating the effectiveness of the
proposed IPLID in dealing with real-world noisy images with
complex and unknown sources, which is crucial for practical
applications. Table 1 presents the denoising results of the
proposed IPLID on real noisy images from the SIDD [Ab-
delhamed et al., 2018], PolyU [Xu et al., 2018], and Nam
[Nam et al., 2016] datasets. The performance of the pro-
posed IPLID is compared with that of fourteen state-of-the-
art denoising methods. The obtained results indicate that
the proposed IPLID generally outperforms the other fourteen
state-of-the-art methods in terms of PSNR/SSIM on all three
real noisy image datasets. Notably, on all real noisy image
datasets, IPLID-B surpasses MIRNet with an PSNR of 1.52
dB, which confirms the effectiveness of the proposed IPLID
structure in denoising real noisy images. These results fur-
ther suggest that IPLID can more effectively remove complex
real-world noise and produce superior denoising performance
compared to all other methods.

To visually demonstrate the superior performance of the
proposed IPLID method, we present a comparison of differ-
ent denoising methods on various datasets using real noisy
images in Figure 5. The results clearly show that our IPLID
outperforms all other methods in terms of noise removal and
detail preservation. Notably, Uformer and Restormer fail to
preserve the fine details of the letterform, whereas our pro-
posed IPLID-B successfully reconstructs and preserves the
letterform. This exemplifies the efficacy of generating the
prompted denoising feature and seamlessly fusing feature
across multiple levels using multi-scale learning, which fa-
cilitates complex noise removal while preserving crucial de-
tails, thereby enhancing the image denoising performance
both quantitatively and qualitatively.

Efficiency Comparison. This section is dedicated to con-
trasting our IPLID with the most recent cutting-edge image
denoising methods in terms of their denoising efficiency. To
ensure equitable comparisons of efficiency, we utilize FLOPs,
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Figure 5: Visual comparisons between the proposed method and its competitors in the evaluation of real noisy image denoising.

Method DRUNet SwinlR Uformer SCUNet Restormer IPLID-T(Ours) IPLID-S(Ours) IPLID-B(Ours)

Runtime 0.092 s 0.132 s 0.254 s 0.098 s 0.153 s 0.014 s 0.016 s 0.018 s
FLOPs 143.63 G 503.95 G 84.76 G 79.84 G 140.9 G 23.75G 24.88G 28.98G
Params. 32.64 M 7.77 M 39.56 M 17.95 M 26.13 M 0.70 M 2.08 M 6.84 M

Table 2: Runtime, FLOPs, and trainable Parameters. comparisons on image sizes of 256 × 256 on an Nvidia RTX Titan GPU with state-of-
the-art methods. The results from all the compared methods in this table are obtained by inferring an image with the size of 256× 256 on the
same GPU device (i.e., an Nvidia RTX Titan GPU).

αi % % % " % " " "

β % % " % " % " "

λ % " % % " " % "

↑ PSNR(in dB)
SIDD 38.95 39.53 39.69 39.74 39.86 39.92 39.97 40.06

CBSD68 33.73 34.02 34.26 34.28 34.35 34.39 34.47 34.51

Table 3: Parameter effect of the LP Block on image denoising.

inference time, and trainable parameters as metrics. In par-
ticular, we perform the comparisons on identical computer
equipment (i.e., an Nvidia RTX Titan GPU) for efficiency.
The results of image inference testing on a 256 × 256 image
size, using the same GPU device across all compared meth-
ods, are reflected in the data presented in Table 2. For all the
compared methods, the proposed IPLID stands out with the
lowest FLOPs, which is in stark contrast to DRUNet. Despite
its self-attention mechanism, SCUNet yields high FLOPs and
long inference times. SwinIR and Uformer also exhibit intri-
cate network structures that result in high FLOPs and long
inference time. In contrast, our IPLID strikes an optimal bal-
ance between the performance and inference time with ultra-
few learnable parameters (only about 1% parameters of pre-

trained ResNet-152, i.e., 0.7M Vs. 60.19M), making it stand-
out in both efficiency and denoising performance.

4.3 Ablation Study
This section is to conduct a thorough examination and anal-
ysis of the image denoising effectiveness of the proposed
IPLID, with particular emphasis on the ensuing three fun-
damental aspects: (1) the impact of the LP block, as imple-
mented in the proposed IPLID framework, on the augmenta-
tion of image denoising performance. (2) The effect of the
CFF block, as incorporated in the proposed IPLID frame-
work, on the improvement of image denoising performance.
(3) The validation of the IPLID learning scheme, i.e., the im-
pact of the layer-by-layer parameter updation with backward
gradient accumulation. Our empirical experiment and analy-
ses are conducted on real noisy datasets.

Ablation Study of the LP Block. From Table 3, it shows
the performance effect of the learnable parameters includ-
ing coefficient αi, bias term β, and scalar offset λ in the
LP block on image denoising. The results demonstrate that
adding learnable parameters to the proposed LP block, in-
cluding the transform coefficient αi, bias term β, and scalar
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dilation ratio dr = 1 " % % %

dilation ratio dr = 2 % " % %

dilation ratio dr = 3 % % " %

CFF block % % % "

PSNR (in dB)

SIDD 39.62 39.70 39.75 40.06

CBSD68 34.12 34.18 34.21 34.51

Table 4: Impact of CFF on the performance of image denoising.

L0 % % % % "

L1 % % % " "

L2 % % " " "

L3 % " " " "

L4 " " " " "

↑ PSNR(in dB)
SIDD 39.84 39.87 39.93 39.99 40.06

CBSD68 34.39 34.42 34.46 34.49 34.51

Table 5: Impact of layer-wise parameter updation with backward
gradients on the performance of image denoising.

offset λ, generally leads to improving performance in image
denoising. The best performance is achieved when all learn-
able parameters are utilized. This indicates that the learnable
parameters in the LP block can effectively generate prompted
denoising feature and improve image denoising performance.

Ablation Study of the CFF Block. Since three branches
are widely used to retrieve and fuse multi-level feature in vi-
sion tasks, we only conduct an ablation study on the dila-
tion rates of the dilated convolutions within CFF block. To
investigate the impact of dilation rates on image denoising
performance, we set the dilation rates d of the dilated con-
volutions in all three branches to be the same. From Table
4, when different dilation rates in the CFF block are replaced
with the same dilation rate (i.e., the dilation rates d are the
same in all branches), the image denoising performance sig-
nificantly decreases. On the contrary, using branches with
different dilation rates within our CFF block results in a no-
ticeable improvement in image denoising performance. This
suggests that capturing effective receptive fields of different
sizes without increasing the number of parameters can cap-
ture abundant contextual information to enhance image de-
noising performance.

Ablation Study of GA learning scheme. As shown in
Table 5, the image denoising performance of the proposed
IPLID method improves with an increase in the loss func-
tions applied to the decoder. The best denoising performance
is achieved when the supervision signal is applied to all CFF
blocks (L0 to L4), with PSNR values of 40.06 dB for the
SIDD dataset and 34.51 dB for the CBSD68 dataset. This
indicates that the proposed IPLID method is already learning
more general lower-level representations and is now focus-
ing on refining higher-level representations. To visually ob-
serve the differences between the predicted denoised images
and ground-truth images resulting from different layer-wise
parameter updation and backward gradients, we marked the
difference values with green pixels for better illustration, as

(a) Noisy image (b) L0 (c) L0+ L1

(d) L0+ L1+L2 (e) L0+ L1+L2 +L3           (f) L0+L1+L2 +L3 +L4

Figure 6: Influence of layer-wise parameter updation and backward
gradients on the visualization of image denoising. Green pixels are
used to highlight the differences between the denoised and ground-
truth images, visually demonstrating the effects of parameter upda-
tion and backward gradients.

shown in Figure 6. As the number of loss functions on the de-
coder increases (from L0 to L4), the number of green pixels
(indicating differences) will gradually decrease. This means
the difference between the predicted denoised image and the
ground-truth image is reduced, demonstrating the effective-
ness of the GA learning scheme.

4.4 Further Study of the Implicit Prompt
To explore what our LP block prompts for image denois-
ing, we visually compare the distributions of the ground-truth
noisy maps, feature maps generated by pure pre-trained back-
bone and the denoised prompt information produced by our
LP block, shown in Fig. 7. It is obvious that, compared to
the shallow and deep feature maps (Fig. 7(b) and (C)) gener-
ated by the pre-trained model, the shallow and deep denoised
prompt feature maps (Fig. 7(e) and (f)) both have closer dis-
tributions to the ground-truth noisy maps. This implies that
our LP block may provide the noise distribution information
in the denoising process for better denoising performance.

5 Conclusion
This paper proposed the Implicit Prompt Learning for Image
Denoising (IPLID) method to implicitly generate adaptive
prompt information conveniently without manual design,
which can improve the visual effect and denoising perfor-
mance. The proposed Linear Prompt (LP) block with ultra-
few parameters is significantly efficient to produce denoising
prompt feature for the pre-trained vision model. To fully uti-
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Figure 7: Visualization of distribution differences between noise
maps, feature maps from pre-trained vision models, and the prompt
feature maps from the proposed LP block. (a) Noisy image; (b) Shal-
low feature maps of backbone (1st stage); (c) Deep feature maps of
backbone (3rd stage); (d) Ground-truth noisy maps; (e) Prompt in-
formation (1st stage); (f) Prompt information (3rd stage).

lize the multi-level guidance prompt feature maps for recon-
structing denoised images, we have also proposed a Compact
Feature Fusion (CFF) block. The CFF block employs a multi-
level learning strategy to enhance the fusion process and im-
proves the model’s ability to transfer knowledge from pre-
trained feature to the task of recovering denoised images. Fi-
nally, a Gradient Accumulation (GA) learning scheme was
introduced to comprehensively impose the supervision in the
optimization process. Experiment results showed that our
IPLID can achieve satisfactory performance using only 1% of
the backbone pre-trained parameters in both the quality of the
denoised images and the practical efficiency. Further explo-
ration also suggests that it is promising to introduce or learn
the noise intrinsic attributes within the denoising prompt, pro-
viding an inspirational way for future denoising prompt.

Acknowledgements
This work was supported in part by the NSFC fund
(NO. 62176077, 62206073), in part by the Shenzhen
Key Technical Project (NO. JSGG20220831092805009,
JSGG20220831105603006, JSGG20201103153802006,
KJZD20230923115117033), in part by the Guangdong Inter-
national Science and Technology Cooperation Project (NO.
2023A0505050108), in part by the Shenzhen Fundamental

Research Fund (NO. JCYJ20210324132210025), in part by
the Guangdong Provincial Key Laboratory of Novel Secu-
rity Intelligence Technologies (NO. 2022B1212010005),
and in part by the Guangdong Shenzhen joint Youth
Fund under Grant 2021A151511074, in part by the
Natural Science Foundation of Guangdong Province
under Grant 2023A1515010893, in part by the Shen-
zhen Doctoral Initiation Technology Plan under Grant
RCBS20221008093222010.

References
[Abdelhamed et al., 2018] A. Abdelhamed, Stephen Lin,

and M. S. Brown. A high-quality denoising dataset for
smartphone cameras. 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 1692–
1700, 2018.

[Chen et al., 2021] Hanting Chen, Yunhe Wang, Tianyu
Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma,
Chunjing Xu, Chao Xu, and Wen Gao. Pre-trained image
processing transformer. 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
12294–12305, 2021.

[Fan et al., 2017] Xiangmin Fan, Wencan Luo, Muhsin
Menekse, Diane Litman, and Jingtao Wang. Scaling re-
flection prompts in large classrooms via mobile interfaces
and natural language processing. In Proceedings of the
22nd International Conference on Intelligent User Inter-
faces, pages 363–374, 2017.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[Hendrycks and Gimpel, 2016] Dan Hendrycks and Kevin
Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

[Jiang et al., 2022a] Bo Jiang, Yao Lu, Jiahuan Wang,
Guangming Lu, and David Zhang. Deep image denois-
ing with adaptive priors. IEEE Transactions on Circuits
and Systems for Video Technology, 32:5124–5136, 2022.

[Jiang et al., 2022b] Bo Jiang, Yao Lu, Jiahuan Wang,
Guangming Lu, and David Zhang. Deep image denois-
ing with adaptive priors. IEEE Transactions on Circuits
and Systems for Video Technology, 2022.

[Kolesnikov et al., 2021] Alexander Kolesnikov, Alexey
Dosovitskiy, Dirk Weissenborn, Georg Heigold, Jakob
Uszkoreit, Lucas Beyer, Matthias Minderer, Mostafa
Dehghani, Neil Houlsby, Sylvain Gelly, et al. An image is
worth 16x16 words: Transformers for image recognition
at scale. 2021.

[Lester et al., 2021] Brian Lester, Rami Al-Rfou, and Noah
Constant. The power of scale for parameter-efficient
prompt tuning. arXiv preprint arXiv:2104.08691, 2021.

[Li et al., 2021] Wenbo Li, Xin Lu, Jiangbo Lu, X. Zhang,
and Jiaya Jia. On efficient transformer and image pre-
training for low-level vision. ArXiv, abs/2112.10175,
2021.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4685



[Liang et al., 2021] Jingyun Liang, Jiezhang Cao, Guolei
Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir:
Image restoration using swin transformer. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pages 1833–1844, 2021.

[Liu et al., 2018] Pengju Liu, Hongzhi Zhang, K. Zhang,
Liang Lin, and Wangmeng Zuo. Multi-level wavelet-
cnn for image restoration. 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 886–88609, 2018.

[Liu et al., 2023] Pengfei Liu, Weizhe Yuan, Jinlan Fu,
Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. ACM
Computing Surveys, 55(9):1–35, 2023.

[Loshchilov and Hutter, 2017] Ilya Loshchilov and Frank
Hutter. Fixing weight decay regularization in adam. ArXiv,
abs/1711.05101, 2017.

[Nam et al., 2016] Seonghyeon Nam, Youngbae Hwang, Ya-
suyuki Matsushita, and Seon Joo Kim. A holistic ap-
proach to cross-channel image noise modeling and its ap-
plication to image denoising. 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
1683–1691, 2016.

[Su et al., 2021] Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-
Min Chan, Yankai Lin, Huadong Wang, Kaiyue Wen,
Zhiyuan Liu, Peng Li, Juanzi Li, et al. On transferability
of prompt tuning for natural language processing. arXiv
preprint arXiv:2111.06719, 2021.

[Wang et al., 2021] Zhendong Wang, Xiaodong Cun, Jian-
min Bao, and Jianzhuang Liu. Uformer: A general u-
shaped transformer for image restoration. arXiv preprint
arXiv:2106.03106, 2021.

[Wang et al., 2023] Jiaqi Wang, Zhengliang Liu, Lin Zhao,
Zihao Wu, Chong Ma, Sigang Yu, Haixing Dai, Qiushi
Yang, Yiheng Liu, Songyao Zhang, et al. Review of
large vision models and visual prompt engineering. arXiv
preprint arXiv:2307.00855, 2023.

[Xu et al., 2018] Jun Xu, Hui Li, Zhetong Liang, David C.
Zhang, and Lei Zhang. Real-world noisy image denoising:
A new benchmark. ArXiv, abs/1804.02603, 2018.

[Zamir et al., 2021] Syed Waqas Zamir, Aditya Arora,
Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,
and Ming-Hsuan Yang. Restormer: Efficient transformer
for high-resolution image restoration. arXiv preprint
arXiv:2111.09881, 2021.

[Zhang et al., 2017] K. Zhang, W. Zuo, Yunjin Chen, Deyu
Meng, and Lei Zhang. Beyond a gaussian denoiser: Resid-
ual learning of deep cnn for image denoising. IEEE Trans-
actions on Image Processing, 26:3142–3155, 2017.

[Zhang et al., 2018] K. Zhang, Wangmeng Zuo, and Lei
Zhang. Ffdnet: Toward a fast and flexible solution for
cnn-based image denoising. IEEE Transactions on Image
Processing, 27:4608–4622, 2018.

[Zhang et al., 2022] K. Zhang, Yawei Li, Jingyun Liang,
Jiezhang Cao, Yulun Zhang, Hao Tang, Radu Timofte, and
Luc Van Gool. Practical blind denoising via swin-conv-
unet and data synthesis. ArXiv, abs/2203.13278, 2022.

[Zhou et al., 2022] Kaiyang Zhou, Jingkang Yang,
Chen Change Loy, and Ziwei Liu. Learning to prompt
for vision-language models. International Journal of
Computer Vision, 130(9):2337–2348, 2022.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4686


	Introduction
	Related Works
	Image Denoising
	Prompt Learning

	Method
	Overall Pipeline
	Linear Prompt (LP) Block
	Compact Feature Fusion (CFF) Block
	Gradient Accumulation Learning Scheme

	Experiments
	Architecture Scales
	Evaluation on Real-world Noisy Images
	Ablation Study
	Further Study of the Implicit Prompt

	Conclusion

