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Abstract

The existing self-supervised Multi-Source Domain
Adaptation (MSDA) methods often suffer an im-
balanced characteristic among the distribution of
pseudo-labels. Such imbalanced characteristic re-
sults in many labels with too many or too few
pseudo-labeled samples on the target domain, re-
ferred to as easy-to-learn label and hard-to-learn
label, respectively. Both of these labels hurt
the generalization performance on the target do-
main. To alleviate this problem, in this paper we
propose a novel multi-source domain adaptation
method, namely Self-Supervised multi-Source Do-
main Adaptation with Label-specific Confidence
(S®DA-LC). Specifically, we estimate the label-
specific confidences, i.e., the learning difficulties
of labels, and adopt them to generate the pseudo-
labels for target samples, enabling to simulta-
neously constrain and enrich the pseudo super-
vised signals for easy-to-learn and hard-to-learn la-
bels. We evaluate S’DA-LC on several benchmark
datasets, indicating its superior performance com-
pared with the existing MSDA baselines.

1 Introduction

Unsupervised Domain Adaptation (UDA) refers to the goal
of transferring the task knowledge from the labeled source
data to the unlabeled target data under a domain-shift, en-
abling to reduce the demand for costly labeled samples in
the target domain [Tan et al., 2018; Wang and Deng, 2018].
Commonly, the previous studies mainly focus on the Single-
Source Domain Adaptation (SSDA), which consists of only
one source domain and one target domain [Zhao er al.,
2020c]. However, the situation is often violated in real-
world scenarios, since the available labeled samples are of-
ten from different domains. Accordingly, only applying one
specific source domain may result in sub-optimal solutions
[Zhao et al., 2018]. Motivated by handling the problem, in-
creasingly more attention has been recently paid to the topic
of Multi-Source Domain Adaptation (MSDA) within the ma-
chine learning community [Zhao e al., 2020al.
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To our knowledge, the common framework of the exist-
ing MSDA methods consists of two key components: learn-
ing the models on the source domains and incorporating
target samples to fine-tune the models with various align-
ment strategies. Generally speaking, the alignment strategies
are key to improving the generalization performance of the
MSDA methods, and nowadays the representatives mainly in-
clude minimizing the statistical discrepancy between source
and target domains [Wen er al., 2020; Guo er al., 2020;
Feng et al., 2021], adversarial learning with a domain dis-
criminator [Zhao et al., 2018; Xu et al., 2018; Zhao et al.,
2020b], and incorporating auxiliary self-supervised learning
tasks [Venkat er al., 2020; Kang et al., 2022; Ahmed et al.,
2021]. Among them, the self-supervised methods are flex-
ible, straightforward, and easy-to-implement, thus receiving
increasing concern. For instance, a common way is to gener-
ate pseudo-labels for target samples by using ensemble clas-
sification confidences, e.g., Deep CockTail Network (DCTN)
[Xu er al., 2018] or nearest neighbor assignments, e.g., Data
frEe multi-sourCe unsuperviSed domain adaptatlON (DECI-
SION) [Ahmed et al., 2021] and Muti-Source Contrastive
Adaptation Network (MSCAN) [Kang et al., 2022]; and Self-
supervised Implicit Alignment (SImpAl) [Venkat et al., 2020]
generates pseudo-labels of target samples by the agreements
of a set of shared classifiers.

Unfortunately for self-supervised MSDA methods, the dis-
tribution of pseudo-labels often has an imbalanced character-
istic, where, specifically, on the target domain there are many
labels with too many or too few pseudo-labeled samples, for-
mally referred to as easy-to-learn labels and hard-to-learn
labels. As depicted in Fig.1, we illustrate several examples of
pseudo-label distributions learned by SImpAl [Venkat et al.,
2020]. Technically, the label whose proportion is above one
can be considered as an easy-to-learn label, while the label
whose proportion is below one can be considered as a hard-
to-learn label. Both of these labels hurt the generalization
performance on the target domain, especially the leftmost and
rightmost labels.

In this paper, we aim to alleviate the aforementioned
problem of self-supervised MSDA methods, and then de-
velop a novel straightforward-yet-effective MSDA method,
namely Self-Supervised multi-Source Domain Adaptation
with Label-specific Confidence (S?DA-LC). The basic idea
of S3DA-LC is to consider the learning difficulty of each la-
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Figure 1: The examples of pseudo-label distributions learned by SImpAl. The vertical axis refers to the proportion between pseudo-label
distribution and true label distribution on the target domain, where label distribution is the proportions between the number of samples

per-label and all samples.

bel on the target domain when generating pseudo-labels of
target samples, so as to simultaneously constrain and en-
rich the pseudo supervised signals for easy-to-learn labels
and hard-to-learn labels. To be specific, our S3DA-LC con-
sists of two training stages, i.e., warm-up stage and adapta-
tion stage. In the warm-up stage, we mainly train domain-
specific classifiers for each source domain. In the adapta-
tion stage, we employ the pre-trained classifiers to compute
the ensemble predictions for target samples. We then com-
pute the label-specific confidences, i.e., learning difficulty
of each label on the target domain, by measuring the differ-
ence between the ensemble prediction distribution and the la-
bel distributions of all source domains. With them, we can
determine pseudo-labeled target samples and then formulate
a self-supervised objective to further fine-tune the classifiers
in a unified framework, where we alternatively update label-
specific confidences and fine-tune the classifiers. To empiri-
cally examine S?DA-LC, we compare it against the existing
MSDA methods on several benchmark datasets.
To sum up, we list the main contributions below:

e We propose a novel straightforward-yet-effective MSDA
method named S3DA-LC.

e We propose label-specific confidences to alleviate the
imbalanced characteristic of pseudo-label distribution.

e Empirical results indicate that S’DA-LC can outperform
the existing MSDA methods and achieves the state-of-
the-art results.

2 Related Work

Unsupervised domain adaptation. UDA methods aim at
learning a domain-agnostic model from the labeled source
domain and apply it to the unlabeled target domain. A com-
mon way is to minimize a distance measure in a domain-
invariant feature space [Long et al., 2015; Long et al., 20171,
and other existing methods learn a latent shared feature space
across domains by adversarial learning [Ganin and Lempit-
sky, 2015]. Recent studies jointly learn with the source do-
main and target domain with pseudo supervised signals in a
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self-supervised manner to reduce the domain shift [Saito er
al., 2020; Liang et al., 2020]. However, the aforementioned
methods mainly handle the single-source-single-target adap-
tation, which may result in sub-optimal solutions [Zhao et al.,
2018].

Multi-source domain adaptation. Beyond the typical
UDA, MSDA aims to incorporate task knowledge from mul-
tiple source domains. To our knowledge, the self-supervised
MSDA methods with pseudo-labeling are the representatives
in the community [Xu er al, 2018; Venkat er al., 2020;
Ahmed ef al., 2021]. For example, DCTN [Xu et al., 2018]
assigns pseudo-labels to target samples with high confidence
with a fixed threshold, and combines multi-way adversarial
learning to train the model. SImpAl [Venkat et al., 2020]
trains a set of shared classifiers on source domains and gener-
ates pseudo-labels of target samples by the prediction agree-
ments of shared classifiers, then alternately trains the model
on source domains and the target domain to align the dis-
tributions. DECISION [Ahmed et al., 2021] adopts self-
supervised clustering with the combinations of features and
predictions, and generates pseudo-labels by measuring the
distances between target samples and clustering prototypes.
However, those self-supervised MSDA methods take no ac-
count of the learning difficulties of different labels when gen-
erating pseudo-labels. In contrast, our SDA-LC alleviates
this problem by estimating the label-specific confidences to
generate more precise self-supervised signals.

Pseudo-labeling with confidence threshold. The pseudo-
labeling is one prevalent methodology to solve learning tasks
with limited supervision [Xu et al., 2018; Li et al., 2020;
Li and Wang, 2020; Ahmed e al, 2021]. Kundu et al.
[Kundu ez al., 2020] select top-k percentile target instances
based on classifier confidence, and enforce the target pre-
dictions to match the pseudo-labels for these instances us-
ing cross-entropy. Confident-Anchor-induced multisource-
free Domain Adaptation (CAiDA) [Dong er al., 2021] de-
velops a confident-anchor-induced pseudo-label generator to
mine pseudo-labels for the unlabeled target data, by incor-
porating with the quantified source transferability contribu-
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tions. Besides DA, applying a fixed threshold to select un-
labeled samples with high confidence has been also studied
in semi-supervised learning [Sohn et al., 2020; Xie et al.,
2020]. Beyond applying a fixed threshold for all labels, a
recent work of [Zhang et al., 2021] proposes to use differ-
ent thresholds for different labels. For each label, its thresh-
old describes the learning difficulty, and it is estimated by
the number of predicted samples. To some extent, it is built
on a balanced assumption of labels, which may be violated
in many real applications. Our S?DA-LC also estimates dif-
ferent thresholds for labels, i.e., label-specific confidences.
But, inspired by ReMixMatch [Berthelot et al., 2020] where
it adjusts predict label distributions according to the ratio be-
tween the average model predictions on unlabeled data and
the empirical ground-truth label distribution, S?DA-LC em-
ploys the label distributions of all source domains, which are
exactly known, potentially leading to more precise estima-
tions of label-specific thresholds.

3 S?DA-LC

In this section, we introduce the proposed MSDA method
named S®DA-LC in more details.

Formulation. Generally, let X and Y = {1,...,C} de-
note the sample and label spaces, respectively. We are given
by K source domains {D%} | and one target domain D7,
where each source domain D% contains N}, labeled sam-
ples denoted by DE = {(x¥,y*) € & x Y}k, and the
target domain includes N7 unlabeled samples denoted by
Dy = {x! € X}N7. The target domain shares a same label
set ) with the source domains. The objective of MSDA is to
learn a predictive model on the target domain by transferring
the knowledge from source domains.

Overview. The main idea of S?DA-LC is to estimate label-
specific confidences to describe the learning difficulty of
each label on the target domain, and then use them as adap-
tive thresholds to generate more precise pseudo-labels for tar-
get samples. Specifically, SDA-LC consists of two train-
ing stages, i.e., warm-up stage and adaptation stage. In
the warm-up stage, we jointly train a shared feature ex-
tractor g(x;®) : X — R? and K domain-specific clas-
sifiers {h*(g(x); WF) : R? — RE}E  on source do-
mains. We then initialize the transferability weights {w*} £
of domain-specific classifiers on the target domain and the
weighted ensemble predictions {p(x!) € AC~1}N7 for tar-
get samples. In the adaptatlon stage, we estimate the label-
specific confidences {6.}< — on the target domain. We
generate pseudo-labels {yz} , for target samples by us-
ing {p(x)}¥7 and {6.}<,, and then continue to train
the feature extractor g(x; ®) and domain-specific classifiers
{h*¥(g(x); WF)}X_| in a self-supervised paradigm. For each
test sample, we predict it by using the ensemble prediction of
those classifiers.

3.1 Warm-up

In the warm-up stage, we first train a feature extractor
g(x; ©) shared by all source domains and K domain-specific
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classifiers {h*(g(x); W¥)}_ | simultaneously. For each do-
main Dg, its classifier objective is formulated below:

et [ o (g ))] @

where £(-) is the cross-entropy loss and o (+) denotes the soft-
max function.

Combining with the classifiers of all source domains, the
overall training objective of the warm-up stage is:

LEO, W) =E

1 K
T D L(O, W) )

Initialization of {w*}5 | and {p( H}NT.  After a warm-

up learning with Eq (2) we are given by pre-trained g(x; ©)
and {h*(g(x); W*)}H< | With them, we can predict target
samples and further use the ensemble predictions to generate
pseudo-labels.

To achieve more precise ensemble predlctlons we first esti-
mate the transferability weights {w" k 1 of domain-specific
classifiers, which describe the transfer difficulty of each
source-target pair. We take inspiration from the information
theory, where, for each domain-specific classifier, its trans-
ferability weight can be measured by the entropy of its pre-
dictions on the target domain, specifically formulated below:

1
k

" Baeny A0 (5x)) (3)
where #(+) is the Shannon entropy. Shannon entropy can re-
flect the confidence of a classifier on the target samples where
the more certain the classifier is, the lower the entropy. When
the classifier of a source domain is more certain about the tar-
get samples, this source domain can be seen as more similar
to the target domain, and vice versa. Its final transferability
weight can be measured by the inverse of Shannon entropy
which is as follows:

k n*
e (7)1, @
Given those transferability weights, we can compute a
weighted ensemble prediction for each target sample x! as
follows:

—o(% éw HEE]) )

3.2 Adaptation with Pseudo-labeled Samples

In the adaptation stage, we generate pseudo-labels for target
samples by using label-specific confidences, and then update
the model with them in a self-supervised manner.

Label-specific confidences. The existing self-supervised
MSDA methods generate pseudo-labeled target samples by
measuring whether their ensemble predictions are greater
than a fixed confidence threshold, so as to maintain target
samples with high confidences [Xu e al, 2018; Sohn et
al., 2020; Xie et al., 2020]. However, such way neglects
the learning difficulties of different labels, resulting in many
easy-to-learn and hard-to-learn labels as illustrated in Fig.1.
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To alleviate this problem, we propose label-specific confi-
dences used as an adaptive pseudo-labeled confidence thresh-
old for each label on the target domain.

During the warm-up stage, we train a unified feature ex-
tractor across multiple source domains. This stage aligns the
features from the source domains, enabling the extractor to
capture domain-invariant feature, which alleviates the distri-
bution shift between the source and target domains. And,
since in the scenario of MSDA the source domains and target
domain share a same label set )/, the label distribution of all
source domains can serve as a guide for generating pseudo-
labels in target domain.

The mean of label distributions of source domains G is:

nk
g:{EkNjc, cey} (©)
where n* denotes the number of samples belonging to label ¢
in the source domain D¥.

In parallel, we can estimate the distribution of ensemble
prediction over the target domain as follows:

S ep, Largmax(p(x')) = c)
VY= { N ,C € y} @)

where 1(-) is the indicator function.

Accordingly, we can measure the learning difficulty of
each label, i.e., label-specific confidence, by the difference
between G and V, specifically formulated below:

Ve/Ge
A }orce)y 8)

where 7 is a scaling parameter used to adjust the confidence;
and ® = Q3 + A - (Q3 — Q1) is the upper range of Tukey’s
fences [Tukey, 19771 '. We use @ to normalize VV/G to avoid
the potential negative effect of outliers, where 1 and Q3
represent the lower and upper quartile of V/G respectively
and A is a coefficient.

From the label-specific confidence §., the labels with lower
(or higher) values of V../G. correspond to lower (or higher)
thresholds, so as to generate pseudo-labeled target samples
with high-confidences.

0. = min{1,

Self-supervised training. Given the label-specific confi-
dences {6.}<_,, we determine whether a target sample x’ is
associated with a pseudo-label with the following formula:

Ax" = 1<max (p(x")) > 59t> )

where y' = argmax (p(xt)) is treated as the pseudo-label
and A(x") denotes the corresponding pseudo-label indicator.

We then formulate a self-supervised objective with pseudo-
labeled target samples as follows:

Ly (97 {Wk}é(:l) = Exten, {A(Xt) : g(ytap(xt))} (10)

By combining Eq.(10) and the cross-entropy losses on
source domains, the overall objective of the adaptation stage
is given by:

K
1
Lo(© W' L) + 2 D L{©@WH  an
k=1
'"Tukey’s fences is a statistical method for pinpointing outliers by
setting up thresholds, or “fences”.
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Algorithm 1 The full training process of S?DA-LC

Input: K source domains {D%} | and target domain Dr;
scaling parameter 7.

Output: feature extractor g(x;®) and domain-specific
classifiers {h*(g(x); W*)}H<_ .

/I Warm-up stage
: while not converge do
Update © and {W*}X_| by optimizing Eq.(2).
: end while
: Initialize {w*}X | by using Eqs.(3) and (4), and

{p(x})}7, by using Eq.(5).

/I Adaptation stage
: Initialize {0.}$_; by using Eq.(8).
: while not converge do
Update © and {W*}X_ by optimizing Eq.(11).
Update {w*} | and {6.}¢_; by using Eq.(12) every
epoch.
9: end while

A WN —

Training summary. We now review and summarize the
full training process of SDA-LC where the full training pro-
cess of SDA-LC is outlined in Algorithm 1. In the warm-
up stage, we train the shared feature extractor g(x; ®) and
K domain-specific classifiers {h*(g(x); W¥)}5_| on the
source domains by optimizing Eq.(2) until convergence (lines
1-3), and then initialize the transferability weight {w"}£ |
by using Eqgs.(3) and (4) and the weighted ensemble predic-
tions {p(xt)}Y7 by using Eq.(5) (line 4). In the adaptation
stage, we initialize the label-specific confidences {d.}< ;
by using Eq.(8) (line 5). With them, we generate the
pseudo-labels of target samples and fine-tune g(x;®) and
{h*(g(x); W¥)}E_| in a self-supervised manner by optimiz-
ing Eq.(11) (line 7). At each epoch, we update {w"*}%_ and
{6.}¢_, using a moving average formula (line 8):

wh —a-wh 4+ (1 —a)-w”

12
5cga'5cold+(17a) de (12)

where @« = Np/Np is a scaling parameter, and Np =

2xieny AX).

4 Experiments

Datasets. In the experiments, we evaluate S3DA-LC on 3
benchmark datasets: (1) Office-31 [Saenko et al., 2010] con-
tains 31 classes and 4,652 images unevenly spreading in three
visual domains Amazon (A), DSLR (D), Webcam (W); (2)
Office-Home [Venkateswara er al., 2017] contains 65 classes
and about 15,500 images from 4 domains: Art (Ar), Cli-
part (CI), Product (Pr) and Real-World (Rw); (3) DomainNet
[Peng er al., 2019] contains 345 classes and over 600K im-
ages from 6 domains: Clipart (Clp), Infograph (Inf), Painting
(Pnt), Quickdraw (Qdr), Real (Rel) and Sketch (Sk?).

Implementation details. We adopt ResNet-50 [He er al.,
2016] as the backbone network for Office-31 and Office-
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Office-31 Office-H.
Standard  Method Wice fice-Home
—A —-W —=D Avg —Ar —ClI —Pr —Rw Avg
Sinele DAN [Long et al., 2015] 66.7 968 995 877 682 565 803 759 702
Beit D-CORAL [Sun and Saenko, 2016] 653 98.0 99.7 877 670 536 803 763 693
MCD [Saito et al., 2018] 69.7 985 100.0 894 69.1 522 796 751 69.0
Sinele DAN [Long et al., 2015] 67.6 978 996 883 685 594 790 825 724
Comiine D-CORAL [Sun and Saenko, 2016] 67.1 98.0 993 88.1 68.1 586 795 827 722
MCD [Saito et al., 2018] 685 993 994 890 678 599 792 809 719
SImpAl [Venkat et al., 2020] 70.6 974 992 89.0 708 563 802 815 722
Multi- CAIiDA [Dong et al., 2021] 758 989 998 916 752 605 847 842 762
Source DECISION [Ahmed et al., 2021] 754 984 996 911 745 594 844 836 T55
SPS [Wang et al., 2022] 73.8 993 100.0 91.0 751 660 844 842 774
S3DA-LC 781 990 1000 924 781 700 874 87.2 80.7
Table 1: Experimental results on Office-31 and Office-Home. The best scores are indicated in bold.
Standard Method —Clp —Inf —Pnt —Qdr —Rel —Skt Avg
DAN [Long et al., 2015] 39.1 11.4 333 16.2 42.1 29.7 28.6
Sinele Best MCD [Saito et al., 2018] 42.6 19.6 42.6 3.8 50.5 33.8 322
J CAN [Kang et al., 2019] 63.8 24.0 55.7 27.1 67.7 519 484
DAN [Long et al., 2015] 45.4 12.8 36.2 15.3 48.6 340 321
Sinele Combine MCD [Saito et al., 2018] 543 22.1 45.7 7.6 58.4 435 385
§ CAN [Kang er al., 2019] 67.4 25.3 56.2 26.3 72.5 56.2  50.7
DCTN [Xu et al., 2018] 48.6 23.5 48.8 7.2 53.5 473 382
SImpAl [Venkat ef al., 2020]  66.4 26.5 56.6 18.9 68.0 55.5 48.6
MSCAN [Kang et al., 2022] 69.3 28.0 58.6 30.3 73.3 59.5 532
Multi-Source KD3A [Feng et al., 2021] 72.5 23.4 60.9 16.4 72.7 60.6 51.1
STEM [Nguyen er al., 2021] 72.0 28.2 61.5 25.7 72.6 60.2 534
SPS [Wang et al., 2022] 70.8 24.6 55.2 19.4 67.5 57.6 492
S3DA-LC 71.9 313 61.3 27.8 75.7 61.2 54.8

Table 2: Experimental results on DomainNet. The best scores are indicated in bold.

Home, and adopt ResNet-101 [He et al., 2016] as the back-
bone network for DomainNet. We employ a single fully con-
nected layer as the classifier, i.e., domain specific classifier,
for each source domain. We use the Adam optimizer with
the learning rate 10~° and weight decay 5 x 10~%. For
S®DA-LC, we set 7 to 0.9 for all datasets and the sensitiv-
ity analysis of parameters will be discussed later. We follow
the common setting for Tukey’s fences [Tukey, 1977] and set
A to 1.5 for all datasets. The implementation is available at
https://github.com/MengKang98/S3DA-LC.

4.1 Comparing against Existing Baselines

We verify the effectiveness of S’DA-LC by comparing it with
existing MSDA methods. The results are shown in Tables 1
and 2, where we take the averages of 3 independent runs as
the final results.

For fair comparisons, we adopt 3 evaluation standards de-
fined in [Venkat et al., 2020]: (1) Single Best: the best per-
formance of SSDA methods among all source domains; (2)
Source Combine: all source domains are combined into a sin-
gle source domain to perform SSDA; (3) Multi-source: adap-

tation from all source domains to the target domain. For the
first two settings, we compare S3DA-LC with previous SSDA
methods, e.g., DAN [Long et al., 2015], D-CORAL [Sun and
Saenko, 2016], MCD [Saito et al., 2018] and CAN [Kang
et al., 2019]. For the Multi-source setting, we select 9 ex-
isting MSDA methods for comparison, including DCTN [Xu
et al., 2018], SImpAl [Venkat et al., 2020], KD3A [Feng et
al., 2021], MSCAN [Kang et al., 2022], CAiDA [Dong et
al., 2021], STEM [Nguyen et al., 2021], DECISION [Ahmed
et al., 2021] and SPS [Wang et al., 2022]. The results of
baselines under Single Combine setting are cited from STEM
[Nguyen et al., 2021] and SPS [Wang et al., 2022] and the
results under Single Best and Multi-Source settings are cited
from corresponding papers.

As shown in Tables 1 and 2, S*DA-LC achieves competi-
tive results on all datasets averagely. On Office-31, S?DA-LC
exceeds former SOTA methods CAIDA [Dong et al., 2021]
on all tasks. On Office-Home, S?DA-LC exceeds former
SOTA methods SPS [Wang et al., 2022] on all tasks, with
huge improvements of 4.0% on —Cl, 3.0% on —Ar, —Pr
and —Rw. On DomainNet, S’DA-LC exceeds former SOTA
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Models Office-Home DomainNet
—Ar —Cl —Inf —Skt
Warm-up Only 723  56.1 262 562
w/o 0. 733 575 276  59.1
wlo wk 776 699 308 60.8
S3DA-LC 781 700 313 61.2
with ® = max(-) 777 65.1 288  60.8
with A = 3.0 778 69.2 31.1 61.2

Table 3: Experimental results of ablation study.

0.9
\_\ 0.6
&

0.3
0 0 10 20 3(9 0 0 5 10 15 20 0
Class Class
(a) —Ar (b) —»ClI

Figure 2: Negative effects of outliers (warm-up only).

methods STEM [Nguyen et al., 2021] on 4 out of 6 transfer
tasks, with huge improvements of 3.1% on —Inf and —Rel.

4.2 Ablation Study

To evaluate contribution of each part of S3DA-LC, we de-
compose S®DA-LC to reveal their functions. Table 3 shows
the results of ablation study.

We first set 7 = 0.0 to verify the label-specific confi-
dences, i.e., w/o 0.. The performance degrades huge on
all tasks. This is because all target domain samples are as-
signed pseudo-labels and participate in self-supervised train-
ing when 7 equals 0.0. And the pseudo-labels selected in this
setting have a very low accuracy rate and are very unbalanced.

We also evaluate the function of transferability weights by
setting w® = 1fork = 1,..., K, i.e., w/o w. In this case, we
treat all source domains equally. S?DA-LC outperforms w/o
wk on all tasks. This suggests the effectiveness of transfer-
ability weights {w*}X_,.

4.3 Negative Effects of Outliers

In Eq.(8), we use the upper range of Tukey’s fences (UTF),
ie, ® = Qs+ X (Q3 — Q1), to avoid the negative effects
of potential outliers in V/G. To evaluate the function of UTF,
we set ® = max(V/G), i.e., with & = max(-) and test it on
several tasks. As shown in Table 3, performance dropped on
all tasks. Notably, performance degrades more on tasks —Cl/
(-4.9%) and —Inf (-2.5%) than on —Ar (-0.4%) and — Skt
(-0.4%). This is because the outliers are relatively larger on
the former tasks.

As shown in Fig.2, we illustrate the difference between G
and V labels with V/G > 1.0. These labels are commonly
easy-to-learn labels. The green and orange lines represent the
label-specific confidences ¢ normalized by UTF (6-UTF) and
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max(-) (d-max) respectively. Comparing Fig.2 (a) and (b),
the largest and second largest values of V /G are significantly
more different on —CI than on —Ar. Therefore, for the rest
labels with V/G > 1.0, §-max is much lower than §-UTF
on —ClI, which will weaken the constraining ability on easy-
to-learn labels. While on —Ar, the gap of d between §-max
and 0-UTF is smaller. This explains why the performance
of with ® = max(-) degrades less on —Ar. Above all, the
experiments show negative effects of outliers and also verify
the effectiveness of UTF.

4.4 Sensitivity of Parameters

To study the sensitivity of 7, we investigate 11 different 7
values (from 0.0 to 1.0) on Office-Home. As shown in Fig.3,
the performance decay on all four tasks occurs when 7 ap-
proaches 0.0. This suggests that a too small 7 will introduces
too much noise into the pseudo-labels, which will deterio-
rate the adaptation. And with increasing of 7, the perfor-
mance on tasks —Rw, —Pr and —Ar remains stable when
7 € [0.4,0.9]. The performance on task —CI achieves best
results at 7 = 0.9. In summary, we set 7 as 0.9 for practice.
Notably, even performances on multiple tasks decrease
when 7 = 1.0, S3DA-LC still achieves good results even
when 7 =1.0. This is because Eq.(12) will gradually update
the labels with initial 6, =1.0 to less than 1.0. Thus the labels
abandoned at the beginning will rejoin the training eventually.
S3DA-LC use the “regular” setting in [Tukey, 19771 where
A = 1.5. We also test the “far” setting where A = 3.0, i.e,
with A = 3.0. As shown in Table 3, the performances of
with \ = 3.0 are closer to the S*DA-LC comparing with with
® = max(-). And S®DA-LC still achieves best performances.

4.5 Fix Threshold Strategy

We adopt idea of fix threshold strategy where we replace
the label-specific confidences J, with a fixed confidence p
in Eq.(9). We evaluate different p values (from 0.0 to 1.0) on
Office-Home.

Comparing Fig.3 and Fig.4, it is evident that label-specific
confidences strategy vastly outperforms fix threshold strat-
egy in almost every setting. Notably, there are huge drops
on —CI when pt >0.8 and —Ar when p >0.7. This is be-
cause the confidence level of the model on the target domain
cannot exceed p when p is too large, so almost no sample
is assigned pseudo-labels, which results in training failure.
And fix threshold strategy is also sensitive to y since the op-
timal values on different tasks are also different. Notably, fix
threshold strategy degrades to warm-up when 7 =1.0. This
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Figure 5: The pseudo-label distributions.

|  Hard-to-learn |  Easy-to-learn | All
Task Method
| Num ¢ Avgy | Num ¢ Avg, | Var, Accy
ol SImpAl 0.68 1.78 0.55 56.85
S3DA-LC 0.79 1.32 0.12 73.84
SInf SImpAl 218 0.41 127 3.88 21.67 27.14
S3DA-LC 128 0.58 217 2.72 3.59 34.09

Table 4: Statistical comparison. 1 indicates the higher the value, the better result, and vice versa.

is because no sample will be assigned pseudo-label and the
adaptation stage cannot proceed. The results validate the su-
periority of label-specific confidences.

4.6 Distribution of Pseudo-labels

To verify the effectiveness of S’DA-LC in alleviating the im-
balanced pseudo-label distribution, we compare the pseudo-
label distributions generated by S®DA-LC and SImpAl
[Venkat et al., 2020]. Fig.5 shows the visualized distribu-
tions. The deep gradient blue-red line represents the distribu-
tion generated by SImpAl which is the simplified version of
Fig.1, and the light gradient blue-red bars represent the dis-
tribution generated by SDA-Lc. For a fair comparison, we
visualize the distributions of the final update of pseudo-labels
for both methods.

We expect the pseudo-label distribution to be close to the
true label distribution, i.e., the proportions between pseudo-
label distribution and true label distribution on the target
domain (the vertical axis in Fig.5) should be close to 1.0.
As shown in Fig.5, the proportions of S?DA-LC are flatter
than SImpAl, and the proportions of leftmost labels are also
milder. Apparently, the pseudo-label distributions generated
by S?DA-LC are closer to the true label distribution.

We further analyze the pseudo-label distribution generated
by S?DA-LC and SImpAl statistically, as shown in Table 4.
For hard-to-learn labels, SDA-LC largely reduces the num-
ber (Num) of them and increases the average (Avg) of pro-
portions. This verifies the enriching ability of SDA-LC on
hard-to-learn labels. S®>DA-LC greatly enriches the sample
number of hard-to-learn labels, which increases the number

of easy-to-learn labels. However, even with more easy-to-
learn labels, S’DA-LC still achieves lower average of propor-
tions. This verifies the constraining ability of S?DA-LC on
easy-to-learn labels.

For all pseudo-labels, we use the variance of the propor-
tions (Var) to measure the difference between the pseudo-
label distribution and true label distribution. The smaller
the variance, the closer the distribution of pseudo-labels and
true labels. If the variance of the proportions equals to
0, the pseudo-labels distribution and true label distribution
will be identical. As shown in Table 4, S3DA-LC achieves
much lower Var than SImpAl on both tasks, which represents
S3DA-LC generates more balanced pseudo-labels. Mean-
while, SDA-LC also generates more accurate pseudo-labels.
All together verifies that S’DA-LC can alleviate the imbal-
anced pseudo-label distribution.

5 Conclusion

In this paper, we focus on the imbalanced characteristic of
pseudo-label distribution in target domain, where both easy-
to-learn and hard-to-learn labels extremely hurt the general-
ization performance. We propose a self-supervised MSDA
method named S3DA-LC to alleviate such problem. S®DA-
LC estimates label-specific confidences by measuring the dif-
ferences between the prior distribution of all domains and
the distribution of ensemble prediction over the target do-
main, then uses them as dynamic thresholds to generate more
precise pseudo-labels for target domain. Along with self-
supervised training, S?DA-LC achieves state-of-the-art per-
formance comparing against the existing MSDA baselines.

4675



Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

Acknowledgments

We sincerely thank the anonymous reviewers for their care-
ful work and thoughtful suggestions, which have greatly im-
proved this article. This work was supported by the Natural
Science Research Foundation of Jilin Province of China un-
der Grant Nos. 20220101106JC and YDZJ202201ZYTS423,
the National Natural Science Foundation of China under
Grant No. 62276113, the China Postdoctoral Science Foun-
dation under Grant No. 2022M721321, and the Fundamen-
tal Research Funds for the Central Universities of China
under Grant Nos. 2412022ZD018, 2412022QD040 and
93K172022K10.

References

[Ahmed et al., 2021] Sk Miraj Ahmed, Dripta S. Raychaud-
huri, Sujoy Paul, Samet Oymak, and Amit K. Roy-
Chowdhury. Unsupervised multi-source domain adapta-
tion without access to source data. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR 2021), pages 10103-10112, 2021.

[Berthelot et al., 2020] David Berthelot, Nicholas Carlini,
Ekin D. Cubuk, Alex Kurakin, Kihyuk Sohn, Han Zhang,
and Colin Raffel. ReMixMatch: Semi-supervised learning
with distribution alignment and augmentation anchoring.
In Proceedings of the International Conference on Learn-
ing Representations (ICLR 2020), 2020.

[Dong et al., 2021] Jiahua Dong, Zhen Fang, Anjin Liu, Gan
Sun, and Tongliang Liu. Confident anchor-induced multi-
source free domain adaptation. In Proceedings of the An-

nual Conference on Neural Information Processing Sys-
tems (NeurIPS 2021), pages 2848-2860, 2021.

[Feng et al., 2021] Haozhe Feng, Zhaoyang You, Minghao
Chen, Tianye Zhang, Minfeng Zhu, Fei Wu, Chao Wu,
and Wei Chen. KD3A: Unsupervised multi-source decen-
tralized domain adaptation via knowledge distillation. In
Proceedings of the International Conference on Machine
Learning (ICML 2021), pages 3274-3283, 2021.

[Ganin and Lempitsky, 2015] Yaroslav Ganin and Victor S.
Lempitsky. Unsupervised domain adaptation by backprop-
agation. In Proceedings of the International Conference on
Machine Learning (ICML 2015), pages 1180-1189, 2015.

[Guo et al., 2020] Han Guo, Ramakanth Pasunuru, and Mo-
hit Bansal. Multi-source domain adaptation for text clas-
sification via distancenet-bandits. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI 2020),
pages 78307838, 2020.

[He er al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR 2016), pages
770-778, 2016.

[Kang et al., 2019] Guoliang Kang, Lu Jiang, Yi Yang, and
Alexander G. Hauptmann. Contrastive adaptation network
for unsupervised domain adaptation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR 2019), pages 4893-4902, 2019.

4676

[Kang er al., 2022] Guoliang Kang, Lu Jiang, Yunchao Wei,
Yi Yang, and Alexander Hauptmann. Contrastive adapta-
tion network for single-and multi-source domain adapta-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(4):1793-1804, 2022.

[Kundu et al., 2020] Jogendra Nath Kundu, Naveen Venkat,
Ambareesh Revanur, Rahul M. V., and R. Venkatesh Babu.
Towards inheritable models for open-set domain adapta-
tion. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR 2020), pages
12373-12382, 2020.

[Li and Wang, 2020] Ximing Li and Yang Wang. Recover-
ing accurate labeling information from partially valid data
for effective multi-label learning. In Proceedings of the

International Joint Conference on Artificial Intelligence,
(IJCAI 2020), pages 1373-1380, 2020.

[Li et al., 2020] Changchun Li, Ximing Li, and Jihong
Ouyang. Learning with noisy partial labels by simulta-
neously leveraging global and local consistencies. In Pro-
ceedings of the ACM International Conference on Infor-
mation and Knowledge Management (CIKM 2020), pages
725734, 2020.

[Liang et al., 2020] Jian Liang, Dapeng Hu, and Jiashi Feng.
Do we really need to access the source data? Source hy-
pothesis transfer for unsupervised domain adaptation. In
Proceedings of the International Conference on Machine
Learning (ICML 2020), pages 6028-6039, 2020.

[Long et al., 2015] Mingsheng Long, Yue Cao, Jianmin
Wang, and Michael I. Jordan. Learning transferable fea-
tures with deep adaptation networks. In Proceedings of
the International Conference on Machine Learning (ICML
2015), pages 97-105, 2015.

[Long et al., 2017] Mingsheng Long, Han Zhu, Jianmin
Wang, and Michael I. Jordan. Deep transfer learning with
joint adaptation networks. In Proceedings of the Inter-
national Conference on Machine Learning (ICML 2017),
pages 2208-2217, 2017.

[Nguyen et al., 2021] Van-Anh Nguyen, Tuan Nguyen,
Trung Le, Quan Hung Tran, and Dinh Phung. STEM: An
approach to multi-source domain adaptation with guaran-
tees. In Proceedings of the IEEE International Confer-
ence on Computer Vision (ICCV 2021), pages 9332-9343,
2021.

[Peng ef al., 2019] Xingchao Peng, Qinxun Bai, Xide Xia,
Zijun Huang, Kate Saenko, and Bo Wang. Moment match-
ing for multi-source domain adaptation. In Proceedings

of the IEEE International Conference on Computer Vision
(ICCV 2019), pages 14061415, 2019.

[Saenko et al., 2010] Kate Saenko, Brian Kulis, Mario Fritz,
and Trevor Darrell. Adapting visual category models to
new domains. In European Conference on Computer Vi-
sion (ECCV 2010), volume 6314, pages 213-226, 2010.

[Saito et al., 2018] Kuniaki Saito, Kohei Watanabe, Yoshi-
taka Ushiku, and Tatsuya Harada. Maximum classifier dis-
crepancy for unsupervised domain adaptation. In Proceed-



Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR 2018), pages 3723-3732, 2018.

[Saito et al., 2020] Kuniaki Saito, Donghyun Kim, Stan
Sclaroff, and Kate Saenko. Universal domain adapta-
tion through self supervision. In Proceedings of the An-
nual Conference on Neural Information Processing Sys-
tems (NeurIPS 2020), 2020.

[Sohn et al., 2020] Kihyuk Sohn, David Berthelot, Nicholas
Carlini, Zizhao Zhang, Han Zhang, Colin Raffel, Ekin Do-
gus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fix-
Match: Simplifying semi-supervised learning with con-
sistency and confidence. In Proceedings of the Annual
Conference on Neural Information Processing Systems
(NeurIPS 2020), 2020.

[Sun and Saenko, 2016] Baochen Sun and Kate Saenko.
Deep CORAL: Correlation alignment for deep domain
adaptation. In Computer Vision — ECCV 2016 Workshops,
pages 443-450, 2016.

[Tan er al., 2018] Chuangi Tan, Fuchun Sun, Tao Kong,
Wenchang Zhang, Chao Yang, and Chunfang Liu. A
survey on deep transfer learning. In Artificial Neural
Networks and Machine Learning (ICANN 2018), volume
11141, pages 270-279, 2018.

[Tukey, 19771 John W. Tukey. Exploratory Data Analysis.
Addison-Wesley, 1977.

[Venkat er al., 2020] Naveen Venkat, Jogendra Nath
Kundu, Durgesh Kumar Singh, Ambareesh Revanur, and
Venkatesh Babu R. Your classifier can secretly suffice
multi-source domain adaptation. In Proceedings of the
Annual Conference on Neural Information Processing

Systems (NeurIPS 2020), 2020.

[Venkateswara et al., 2017] Hemanth Venkateswara, Jose
Eusebio, Shayok Chakraborty, and Sethuraman Pan-
chanathan. Deep hashing network for unsupervised do-
main adaptation. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR
2017), pages 5385-5394, 2017.

[Wang and Deng, 2018] Mei Wang and Weihong Deng.
Deep visual domain adaptation: A survey. Neurocomput-
ing, 312:135-153, 2018.

[Wang er al., 2022] Zengmao Wang, Chaoyang Zhou,
Bo Du, and Fengxiang He. Self-paced supervision for
multi-source domain adaptation. In Proceedings of the
International Joint Conference on Artificial Intelligence
(IJCAI 2022), pages 3551-3557, 2022.

[Wen et al., 2020] Junfeng Wen, Russell Greiner, and Dale
Schuurmans. Domain aggregation networks for multi-
source domain adaptation. In Proceedings of the Inter-
national Conference on Machine Learning (ICML 2020),
pages 10214-10224, 2020.

[Xie et al., 2020] Qizhe Xie, Zihang Dai, Eduard H. Hovy,
Thang Luong, and Quoc Le. Unsupervised data augmen-
tation for consistency training. In Proceedings of the An-

nual Conference on Neural Information Processing Sys-
tems (NeurIPS 2020), 2020.

4677

[Xu et al., 2018] Ruijia Xu, Ziliang Chen, Wangmeng Zuo,
Junjie Yan, and Liang Lin. Deep Cocktail Network:
Multi-source unsupervised domain adaptation with cate-
gory shift. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR 2018),
pages 3964-3973, 2018.

[Zhang ef al., 2021] Bowen Zhang, Yidong Wang, Wenxin
Hou, Hao Wu, Jindong Wang, Manabu Okumura,
and Takahiro Shinozaki. FlexMatch: Boosting semi-
supervised learning with curriculum pseudo labeling. In
Proceedings of the Annual Conference on Neural Infor-
mation Processing Systems (NeurIPS 2021), 2021.

[Zhao et al., 2018] Han Zhao, Shanghang Zhang, Guanhang
Wu, José M. F. Moura, Jodo Paulo Costeira, and Geof-
frey J. Gordon. Adversarial multiple source domain adap-
tation. In Proceedings of the Annual Conference on Neural
Information Processing Systems (NeurIPS 2018), pages
8568-8579, 2018.

[Zhao et al., 2020a] Sicheng Zhao, Bo Li, Colorado Reed,
Pengfei Xu, and Kurt Keutzer. Multi-source domain adap-
tation in the deep learning era: A systematic survey. arXiv,
abs/2002.12169, 2020.

[Zhao et al., 2020b] Sicheng Zhao, Guangzhi Wang, Shang-
hang Zhang, Yang Gu, Yaxian Li, Zhichao Song, Pengfei
Xu, Runbo Hu, Hua Chai, and Kurt Keutzer. Multi-source
distilling domain adaptation. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI 2020), pages
12975-12983, 2020.

[Zhao et al., 2020c] Sicheng Zhao, Xiangyu Yue, Shang-
hang Zhang, Bo Li, Han Zhao, Bichen Wu, Ravi Krishna,
Joseph E. Gonzalez, Alberto L. Sangiovanni-Vincentelli,
Sanjit A. Seshia, and Kurt Keutzer. A review of single-
source deep unsupervised visual domain adaptation. IEEE
Transactions on Neural Networks and Learning Systems,
33(2):473-493, 2020.



	Introduction
	Related Work
	S3DA-lc
	Warm-up
	Adaptation with Pseudo-labeled Samples

	Experiments
	Comparing against Existing Baselines
	Ablation Study
	Negative Effects of Outliers
	Sensitivity of Parameters
	Fix Threshold Strategy
	Distribution of Pseudo-labels

	Conclusion

