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Abstract
Although Hierarchical Federated Learning (HFL)
utilizes edge servers (ESs) to alleviate communi-
cation burdens, its model performance will be de-
graded by non-IID data and limited communication
resources. Current works often assume that data is
uniformly distributed, which however contradicts
the heterogeneity of IoT. Solutions involving ad-
ditional model training to check the data distribu-
tion inevitably increase computational costs and the
risk of privacy leakage. The challenges in solv-
ing these issues are how to reduce the impact of
non-IID data without involving raw data, and how
to rationalize the communication resource alloca-
tion for addressing straggler problem. To tackle
these challenges, we propose a novel optimization
method based on coaLition formation gamE and
grAdient Projection, called LEAP. Specifically, we
combine edge data distribution with coalition for-
mation game innovatively to adjust the correlations
between clients and ESs dynamically, ensuring op-
timal correlations. We further capture the client
heterogeneity to achieve the rational bandwidth al-
location from coalition perception and determine
the optimal transmission power within specified de-
lay constraints at the client level. Experimental re-
sults on four real datasets show that LEAP is able
to achieve 20.62% improvement in model accuracy
compared to the state-of-the-art baselines. More-
over, LEAP effectively reduces transmission en-
ergy consumption by at least about 2.24 times.

1 Introduction
As a novel distributed machine learning paradigm, FL
[McMahan et al., 2017] has gained the attention of many
fields, such as the Internet of Things (IoT) [Rahman et al.,
2023], smart transportation [Pandya et al., 2023], and health-
care [Zhang et al., 2023], to break down the information

∗The full version is at https://arxiv.org/abs/2405.00579.
†Corresponding Author.

silos while enabling privacy preservation. With the power
of FL, Artificial Intelligence (AI) can effectively handle
machine learning tasks involving decentralized data, which
draws upon the advantages of distribution machine learning,
while also significantly eliminating the privacy risks. Dur-
ing the training process, only model parameters are transmit-
ted without involving local data, breaking information silos
and greatly improving training efficiency [Wang et al., 2023].
However, FL performance is affected by various factors, both
in the training and transmission phases [Xu et al., 2018]. Dur-
ing the training phase, FL involves hundreds and thousands
of clients, and the data distribution of each client is severely
different due to diverse user behavior patterns and data col-
lection methods. Consequently, the local data of an individ-
ual client fails to represent the overall data distribution of the
environment, leading to significant reductions in model per-
formance and compromising the model’s generalization capa-
bility. In the transmission phase, there is high communication
latency and instability between clients and central server (CS)
by mass and frequent data transfers, reducing model training
efficiency and even increasing the risk of data leakage.

In recent years, numerous solutions have been proposed to
address data heterogeneity and communication bottlenecks.
For a FL task, the client’s data distribution is very important
to the performance of the FL model. Significant deviations
in the data distribution among clients can severely impair FL
model learning and performance. For example, non-IID data
causes a number of FL model performance issues, including
decreased accuracy, sluggish model convergence, and model
communication delays. Reinforcement learning [Xia et al.,
2020] and data augmentation [Chen et al., 2023] have been
proposed to address the non-IID challenges. These studies
overemphasize the importance of individual clients, ignoring
the performance improvement of the model benefited from
aggregating local updates. In addition, despite their signifi-
cance, most of these approaches require auxiliary models or
extra data transmissions in FL, potentially introducing addi-
tional complexities. To alleviate communication pressures,
various techniques such as model compression [Zhu et al.,
2023], gradient sparsity [Lin et al., 2023], and over-the-air
computation [An et al., 2023] were proposed. Although
these methods can effectively reduce communication over-
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head, they may still result in bottlenecks in communication
at the CS each communication round. This is due to the fact
that during some training epochs, the CS still receives large
model weight updates.

Inspired by [Liu et al., 2020], our aim is reduce the impact
of non-IID distribution on HFL training by increasing the de-
gree of IID of data distribution between ESs. Additionally,
we seek to further optimize the resource allocation scheme to
reduce the communication latency. The combination of these
two objectives gives rise to an extremely complex and diffi-
cult problem, which presents the following three challenges:
First, different edge association relationships represent differ-
ent edge data distributions. Once edge association changes,
the data distribution will evolve in an unpredictable direction,
potentially reducing or increasing the degree of edge IID.
Therefore, the impact of changes in association relationships
on changes in data distribution is vague and uncertain. Sec-
ond, straggler problem caused by worst-performing client.
Edge aggregation latency is susceptible to the communication
performance of the worst-performing client in synchronized
FL. Dynamic edge association relationships make it difficult
to capture communication performance information for each
edge coalition. As a result, targeted resource optimization
is impossible. Third, contradiction between task execution
latency requirements and clients’ energy consumption. Suffi-
cient resource investment can meet the task requirements but
may cause excessive overhead on clients, which is impracti-
cal. Consequently, striking a balance that satisfies the needs
of both parties simultaneously poses a formidable challenge.

To tackle the abovementioned challenges, we propose a
novel optimization method for HFL based on coaLition for-
mation gamE and grAdient Projection method, named LEAP,
which not only effectively reduces the impact of cross-edge
non-IID, but also improves the communication efficiency.
The main contributions of our work are as follows:

• Theoretically, we frame a complex optimization prob-
lem that focuses on the effect of multi-dimensional prop-
erties (i.e., time delay, energy consumption, and data dis-
tribution) on the performance of HFL. We strategically
decouple this problem by transforming data distribution
optimization into edge correlation analysis and further
optimizing heterogeneous resource allocation.

• Methodologically, we construct a coalition formation
game by analyzing the relationship between edge asso-
ciation and edge data distribution similarity, and prove
the existence of stable coalitions. Moreover, we utilize
the gradient projection method to calculate the optimal
bandwidth allocation for each coalition, and further de-
termine the transmission performance of heterogeneous
clients to ensure that the latency requirements of the
tasks are met.

• Experimentally, we validate the effectiveness of LEAP
on four real datasets and baselines, it is able to achieve
20.62% improvement in accuracy compared to Mean-
shift algorithm. Moreover, experiments demonstrate that
our optimization method is able to reduce the transmis-
sion energy consumption by at least 2.4 times while en-
suring that the maximum latency requirement is met.

2 Related Work
In this section, we briefly discuss related work on non-IID
data and communication bottleneck in FL.
Non-IID Data. In FL, the non-IID data, caused by the het-
erogeneity among clients, poses a challenge for training ro-
bust FL models due to its impact on slowing down the con-
vergence of the global model [Yao et al., 2019]. Many ef-
forts have been made to address this issue. For instance,
Arisdakessian et al. [Arisdakessian et al., 2023] proposed a
trust-based coalitional FL approach, which mitigates non-IID
problems by sharing data of coalition masters. Lu et al. [Lu et
al., 2023] utilized the Mean-shift algorithm to cluster clients
according to data distribution and then selected clients from
different clusters to participate in training. Shin et al. [Shin
et al., 2020] proposed a novel approach that uses XorMixup
hybrid data enhancement technology. This approach gener-
ates synthetic yet realistic sample data on the server, aiming
to solve the issue of unbalanced training datasets in one-shot
FL. However, it will bring a large computational burden.

Data-sharing operation raises privacy concerns for clients,
thus limiting its application scenarios and it is difficult to op-
erate under privacy-preserving FL. The method of selecting
clients through clustering does mitigate the non-IID problem,
but it does not guarantee that the final selection result is opti-
mal. In contrast, our work can find optimal edge association
relationship in no additional model training without consid-
ering the raw data leakage problem.
Communication Bottleneck. In FL, communication cost
is a significant factor that affects overall efficiency and effec-
tiveness, while the uplink transmission rate of the underlying
client is a major bottleneck in the training process. Many re-
searchers proposed related solutions. For example, Mills et
al. [Mills et al., 2019] focused on enhancing communication
efficiency in FL by combining a distributed Adam optimizer
with a compression technique. They emphasized reducing the
uploaded data size during training rounds to mitigate commu-
nication costs. Building upon of model compression, Liu et
al. [Liu et al., 2021] applied it to wireless FL to alleviate
local computation and communication bottlenecks.

The abovementioned studies were conducted on cloud-
based FL systems, whereby the CS receives the local model
from the clients. However, in cloud-based FL, the trans-
mission distance can often be considerable, resulting in un-
stable and undependable communication among the clients
and CS. In our study, we make full use of abundant band-
width resources of ESs and design communication optimiza-
tion method for heterogeneous clients to solve the resource
allocation problem in HFL, as well as to improve the effec-
tiveness of HFL in heterogeneous client environments.

3 System Model and Problem Formulation
In this section, we introduce the workflow of HFL, refine its
multidimensional properties, and give an explicit definition
of the optimization problem.

3.1 HFL Framework
We consider a HFL framework that consists of a set N =
{1, · · · , N} of clients, a setM = {1, · · · ,M} of ESs, and a
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CS. The data set of the client n is denoted asDn = {Xn,Yn},
where Xn = {xn,1, · · · , xn,Dn} are the training dataset,
Yn = {yn,1, · · · , yn,Dn} are the corresponding label set,
and |Dn| is the number of training data owned by the client
n. The CS aims to train a model, with parameters denoted
by a vector ω, over K iterations to minimize the global loss
LK (ω). The ESs are employed to facilitate the uplink trans-
mission of parameter updates by distributing orthogonal re-
source blocks to their clients. Then, each client can only as-
sociate with one ES to perform the model training. We de-
fine Gm as the set of clients that associate with ES m, i.e.,
Gm = {n ∈ N : am,n = 1}, where A = [a]M×N is the edge
association matrix and Gm ∩ Gm′ = ∅ for m ̸= m′. The HFL
iteration i consists of four main steps as follows [Ng et al.,
2022]:

• Local Training: Each client receives the intermediate
model from ES m denoted by ωi, to train a local model
using its dataset.

• Local Model Parameter Transmission: After every τc
rounds of local updates, clients transmit the updated lo-
cal model ωi,τc

n,m to the associated ES m.

• Edge Aggregation: ES m aggregates the local model
parameters from its associated clients to derive the in-
termediate model ωi,1

m , which is transmitted back to the
clients for the next edge iteration.

• Global Aggregation: At the end of predefined intervals
τe, each ES transmits the intermediate model ωi,τe

m to CS
for aggregation to derive the updated global model ωi+1

and transmits a new global model back to clients for the
next global iteration.

The entire process described above will continue until a pre-
determined number of global training rounds τg is reached.

3.2 Multi-Dimensional Properties in HFL
The efficiency and sustainability of HFL are affected by ex-
ecution time, energy cost and data quality, and these three
comprehensive properties consider the impacts of different
aspects on FL systems. We hence give a formal definition
of each property as follows:

Definition 1. The muti-dimensional properties of FL V are
represented as a 3-tuple (T , E ,J ), i.e., execution time T , en-
ergy consumption E , and data distribution similarity J .

• T is the execution time of a task, which includes compu-
tation latency T C and communication latency T U , i.e.,

T C
n,t = τc

cn|Dn|
fn

, (1)

T U
n,t =

Z
Rn,m

, (2)

Tn,t = T C
n,t + T U

n,t, (3)

Tm =

τe∑
t=1

(
max
n∈Gm

Tn,t
)
, (4)

T = τg max
m∈M

Tm, (5)

where t is an edge iteration, cn is the number of CPU
cycles for training unit data, fn is the CPU cycle fre-
quency that determines the computational power, and Z
is the model size. Clients upload local models to ESs via
frequency domain multiple access (FDMA). The band-
width allocation matrix is defined as B = [B]1×M . Bm

is the bandwidth allocated for ES m and BU
m,n is the

bandwidth allocated for client n to upload local model.
Rn,m represents the uplink transmission rate of client n:

Rn,m = BU
n,m log2

(
1 +

pn,mhn,m

BU
n,mN0

)
, (6)

where pn,m denotes the transmission power of the client
n, hn,m is the channel gain between client n and ES m,
and N0 is the power of additive white Gaussian noise.

• E defines the energy consumption, which contains the
training energy EC and transmission energy EU .



ECn,t = τcφcn|Dn|f2
n, (7)

EUn,t = T U
n,tpn, (8)

En,t = ECn,t + EUn,t, (9)

Em =
∑

n∈Gm

τgτeEn,t, (10)

E =
M∑

m=1

Em, (11)

where φ is the effective capacitance parameter of the
computing chipset.

• J denotes the data distribution similarity cross-edge
that measured by Jensen Shannon Divergence (JSD)
[Menéndez et al., 1997] . JSD and data distribution
similarity are negatively correlated. A lower JSD im-
plies that the two sets of data are more likely to fulfill
the assumption of being IID. We only compute the JSD
value once between the two ESs because of the sym-
metry of JSD, i.e., JS(Qa, Qb) = JS(Qb, Qa) and
JSD ∈ [0, 1].

JS(Qa, Qb) =
1

2

∑
i∈{a,b}

KL(Qi,Mab), (12)

JS =

∑M−1
i=1

∑M
j=i+1 JS(Qi, Qj)

M
, (13)

where Qa, Qb are the probability distributions of the
data under ES a and ES b, KL(·) denotes the KLD
(Kullback-Leibler Divergence) [van Erven and Har-
remos, 2014]. Mab denotes the mean distribution of Qa

and Qb:

Mab =
Qa +Qb

2
. (14)

Remark: We mainly consider the case of equal number of
local data in this paper. And we are based on a synchronized
FL scenario, so the execution latency in a round of global
iteration under a ES depends on the last completed client, as
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Figure 1: An overview of LEAP

shown in Eq. (4). Due to the high transmission power of
ES, the aggregation time and downlink transmission time are
ignored compared to the local training and upload time. The
clients under the same ES share bandwidth resources equally,
which means that BU

1,m = · · · = BU
n,m, n ∈ Gm.

3.3 Problem Formulation
For a FL task, high-quality data can enhance model perfor-
mance, while longer time delays and higher energy consump-
tion bring negative impacts. For ease of representation, we
define the utility of the network as a function of J and E .

U = λ1(1− JS)− λ2E , (15)

where λ1 and λ2 are weighting parameters. Based on the
multi-dimensional properties, we model the problem as fol-
lows:

P1 : max
A,B,p

U & min
A,B,p

T , (16a)

s.t. an,m ∈ {0, 1} , ∀n ∈ N , ∀m ∈M, (16b)
M∑

m=1

Bm = B, ∀m ∈M, (16c)

Bm > 0, ∀m ∈M, (16d)
pn ∈ (0, pmax

n ] , ∀n ∈ N , (16e)

Tn,t ≤
I

τeτg
, ∀n ∈ N , (16f)

where Eq. (16b) indicates that each client can only associate
with one ES at a time. Eq. (16c) and Eq. (16d) are the band-
width constraints of uplink channels. The transmission power
constraint is given by Eq. (16e) and Eq. (16f). I in Eq. (16f)
is the maximum execution latency of the currently executed
FL task.

LEAP decomposes the original problem P1 into several
subproblems, as shown in Figure.1, which can be solved one
by one by combining coalition formation game and gradient
projection method. In the coalition formation game, we de-
sign a coalition-friendly preference rule F to determine the
optimal edge association relationship A∗. Based on a stable
coalition structure, to reduce the communication delay and
energy consumption, LEAP optimizes the bandwidth alloca-
tion B∗ using the gradient projection method. In addition to

this, LEAP captures the heterogeneous client communication
resource conditions and determines the optimal transmission
power p∗ of the clients based on satisfying the maximum de-
lay of the task.

4 Optimal Solution Based on LEAP
In this section, we address the previously formulated problem
P1. We start by identifying a stable coalition partition, and
then optimize bandwidth allocation and transmission power
based on this result.

4.1 Optimal Data Distribution
To achieve the goal of optimal network utility, we need to en-
hance the similarity of data distribution between ESs. Coali-
tion game possesses an excellent tool for revealing the coali-
tion formulation process. We model the problem of minimiz-
ing the JSD value of data distribution among ESs as a coali-
tion formation game.

Definition 2. A coalition formation game C is represented as
a 4-tuple (N , O, F , A), i.e., a set N of clients, a coalition
partition O, a preference relation F , and a game strategy
profile A.

• N : A set N = {1, · · · , N} of players.

• O: A coalition partition O = {G}M1 , where Gm ⊆ O,
∪Mm=1Gm = N and m denotes the index of the coalition
or ES.

• F : A preference relation ≻n is a complete, reflexive,
and transitive binary relation over the set of all coali-
tions that client n may join in, i.e., G1≻nG2 indicates
that client n strictly prefers joining coalition G1 over
coalition G2.

• A: A strategy profile of edge association of clients, i.e.,
am,n = 1 means client n associates with ES m ∈M.

When determining client preferences for multiple coali-
tions, the order of coalition preferences can be determined
according to different rules. For example, the “Selfishness
Rule”, which only considers individual’s choices, and the
“Pareto Rule”, which never harms the choices of any mem-
ber in original coalition and new coalition [Zhang et al.,
2018]. The former completely ignores the development of
other clients in same coalition, posing a risk of harming coali-
tion partition. The latter is too strict for the development of
clients and coalitions. To minimize JS , we use a preference
rule that places greater emphasis on the collective welfare of
the entire coalition, called coalition-friendly preference rule,
which the definition is as follows,

Definition 3. If there are two potential coalitions that client
n can join, i.e., Ga,Gb ∈ O, then the preference relation is

Ga ≻n Gb ⇔ JS
n

Gb→Ga
< JSnGb

, (17)

where JSnGb→Ga
means the JS value after client n leaves

original coalition Gb to join the new coalition Ga, and JSnGb

means the JS value before client n leaves.
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Algorithm 1: Coalition Formation Game for Data
Distributions Adjustment
Input: N = {1, · · · , N},M = {1, · · · ,M}, Ocr,

and Lmax

Output: Final partition O∗ = {G∗}M1
1 O∗ = ∅, l = 0;
2 repeat
3 n = random {1, · · · , N}, n ∈ Gm;
4 foreach Gm′ ∈ Ocr,m ̸= m′ do
5 Calculate JSnGm→Gm′ ;

6 m′ = min
m

{
JSnGm→G1

, · · · ,JSnGm→GM

}
;

7 if m′! = m then
8 Gm = Gm\ {n}, Gm′ = Gm′ ∪ {n};
9 Ocr = (Ocr\ {Gm,Gm′}) ∪ (Gm\ {n}) ∪

(Gm′ ∪ {n});
10 l = l + 1;
11 until coalition partition converges or l = Lmax;

Under the coalition-friendly preference rule, clients aim to-
wards a globally optimal solution by considering the reduc-
tion of JS before and after the switch. Based on the prefer-
ence relations given in Eq. (17), we define the switch rule:

Definition 4. Given a partition O = {G}M1 , the client
n ∈ Ga decides to leave the original coalition Ga and
move to another coalition Gb, b ̸= a , if and only if Gb ∪
{n}≻nGa. The new coalition partition can be described as
Õ → {(O\{Ga,Gb}) ∪ (Ga\ {n}) ∪ (Gb ∪ {n})}.

The coalition-friendly preference rule is considered from a
coalition standpoint, which can be viewed as a partially col-
laboration. It is critical to investigate the stability under it.

Definition 5. If there exists a potential function ϕ such that
the difference between potential function and utility function
remains constant when the client’s association relationship
changes, the game is an exact potential game.

ϕ (ãn, a−n)− ϕ (an, a−n) = Un(ãn, a−n)− Un(an, a−n).
(18)

Theorem 1. The coalition formation game C is an exact po-
tential game.

According to Theorem 1, the coalition formation game C
has at least a stable coalition partition. To obtain the solu-
tion of the game, we will focus on the algorithm for forming
an effective coalition partition, which shown in Algorithm 1.
In the coalition formation algorithm, a client n is selected
to undergo a comparative update based on the switch rule
defined in Definition 4. This rule determines whether the
client should leave its current coalition or join another coali-
tion (lines 3-7). We assume that client n leaves current coali-
tion and compute JS of each situation that client n joins in
other coalition respectively based on Eq. (13). Therefore, ac-
cording to the result of assumption, the prioritization of each
situation or coalition can be determined. We choose the case
that yields the lowest JS , and then client n leaves the current

coalition Gm, joins the new coalition Gm′ if the two coali-
tion are not the same (lines 8-9). Coalition partition will be
updated due to this switching (line 10). However, if JS in-
creases after the switch operation, client will remain in the
current coalition. The iterative process described above re-
peats until form a stable partition of coalitions O∗ = {G∗}M1
where no exchange exists that can bring down JS in current
partition Ocr or reach the maximum iteration rounds. We
need to perform (m−1)m

2 calculations for JS . However, in
reality, the computation is equally distributed to each ES, so
the final time complexity is O (M). This is hardly a burden
for a high-performance ES that can respond quickly to clients.

4.2 Optimal Bandwidth Allocation
Based on the final coalition partition, the delay of local train-
ing is determined. According to Eqs. (7) to (11), energy
consumption is proportional to the execution time of train-
ing. From Eq. (2) and Eq. (16c), we can observe that the
transmission delay is minimized when p∗n = pmax

n ,∀n ∈ N
. Hence, the joint optimization problem Eq. (16a) is distilled
into a single-object optimization problem:

P2 : min
B
T U , (19a)

s.t.
M∑

m=1

Bm = B, ∀m ∈M, (19b)

Bm > 0, ∀m ∈M. (19c)

It can be observed that T U
n (Bm) is a convex function with

respect to Bm from Eq. (2). We assume that the worst trans-
mission case in each coalition is n0

m and the clients in each
coalition have the same status as the worst case. The solution
of the communication minimization problem P2, i.e., optimal
bandwidth allocation for coalitions, is denoted as B∗. Then,
the λ2E can reach the minimum value when B = B∗. Be-
cause a strictly convex function has at most one minimum, by
setting nm = n0

m, ∀m ∈ M and p∗n,m = pmax
n,m , ∀n ∈ N , the

optimization problem is transformed as:

P3 : min
B

M∑
m=1

λ2 |Gm| τgτe
pmax
n0
m

Z

Bm

|Gm| log2

(
1 +

pmax
n0
m

hn,m

Bm
|Gm|N0

) ,

(20a)

s.t.
M∑

m=1

Bm = B, ∀m ∈M, (20b)

Bm > 0, ∀m ∈M. (20c)
Lemma 1. If gi(x) is convex function, max(min)gi(x),∑

gi(bix) and
∑

bigi(x) are also convex functions.
Since the objective function of the optimization problem is

the sum of a convex function, according to Lemma 1, the ob-
jective function is also convex with respect to B. We can ap-
ply the gradient projection method (GP) [Chu et al., 2023] to
allocate bandwidth. The GP method is summarized in Algo-
rithm 2. Through several iterations (lines 3-6), we can obtain
the optimal bandwidth allocation in P2 and P3.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4664



Algorithm 2: Bandwidth Allocation
Input: B(0), step size η, accuracy tolerance ϵ, and

iteration number Jmax

1 j = 0;
2 repeat
3 Gradient: ∇G (Bj);
4 Projection: PΩB

;
5 Update B: Bj+1 ←− PΩB

(Bj − η∇G (Bj));
6 j = j + 1;
7 until objective value converges or j = Jmax;

4.3 Optimal Transmit Power
Once the bandwidth allocation matrix B∗ and stable coali-
tion partition G∗ are determined, the optimization of transmit
power for each client can be formulated as follows:

P4 : min
p

λ2EU , (21a)

s.t. pn ∈ (0, pmax
n ] , ∀n ∈ N , (21b)

Tn,t ≤
I

τeτg
, ∀n ∈ N . (21c)

Eq. (21b) gives the clients’ transmission power range and
Eq. (21c) emphasizes the constraint of maximum execution
latency, so the solution needs to satisfy both of them.

Theorem 2. There exists an optimal solution p∗n,m for prob-
lem P4, i.e.,

p∗n,m = min {pmax
n , pn,I} , (22)

where

pn,I =

BU
n,mN0

(
2

Z

BU
n,m

(
I

τeτg
−τcT C

n,t

)
− 1

)
hn,m

. (23)

5 Experiments
In this section, we conduct extensive experiments to assess
the performance of LEAP. We first introduce the experimental
setups, and then compare and analyze the effectiveness of our
approach to SOTAs.

5.1 Experimental Setup
Datasets and Models. We evaluate the performances of
LEAP on two commonly adopted learning models and four
real datasets: a LR (Logistic Regression) model on MNIST
dataset [Lecun et al., 1998] and a CNN (Convolutional Neu-
ral Network) with two convolution layers and three fully con-
nected layers on CIFAR-10 [Krizhevsky, 2009], SVHN [Net-
zer et al., 2011] and CINIC-10 [Darlow et al., 2018].

Parameter Settings. We set two scale settings on each
dataset, 5 ESs with 50 clients or 3 ESs with 10 clients. For
each dataset, 5 rounds of local training and 12 rounds of edge
iterations are conducted. Among these setting, 100 rounds
of global iterations are performed for MNIST and CINIC-10
datasets, while 200 rounds of global iterations for CIFAR-10

and SVHN. We set learning rate to 0.01 for MNIST, CIFAR-
10 and CINIC-10, and 0.005 for SVHN. The momentum is
set within the range of [0, 0.9] and weight decay is 0.005.

Baselines. Four baselines are considered for comparison
with LEAP, consist of two clustering algorithms, a coalition
formation method and a model aggregation method.

• Mean-Shift [Lu et al., 2023]: It is a density-based non-
parametric clustering algorithm. One advantage is that it
does not require specifying the number of clusters in ad-
vance, as it automatically determines this in the process.

• K-Means [Lim et al., 2022]: It is an iterative clustering
algorithm that partitions data points into K clusters (K is
pre-specified) and assigns each data point to the nearest
cluster center based on distance.

• RH [Ng et al., 2022]: It is a reputation-aware hedonic
coalition formation algorithm, in which clients form sta-
ble coalition partitions with selfish preferences based on
the reputation of cluster heads and their own utility.

• MA [Zhang et al., 2021] [Shi et al., 2022]: It is a model
aggregation method based on marginal losses. By set-
ting marginal loss thresholds, it becomes possible to
identify and reduce the impact of low-quality models on
the aggregation process.

5.2 Experimental Results
Validating the effectiveness of mitigating the degree of
cross-edge non-IID. Figures 2(a) to 2(c) show the distribu-
tion of data for each coalition during the coalition formation
process, with the color of each cell indicating the percentage
of such data under that coalition. The initial JS is 0.69 with
two label categories of each coalition. As the client switching
process progresses, the data distributions under each coali-
tion become increasingly similar, with the final JS reaching
0, which means that the distribution in each coalition is same.
Figure 2(d) shows the complete variation of JS during the
client switching process. Each switching operation demon-
strates a consistent decreasing trend of JS .

Comparing with K-means and Mean-shift algorithms. Fig-
ure. 3 shows the accuracy under different methods and differ-
ent data distributions. Comparing the initial state, the average
accuracy based on the final distribution is improved by 2.9%,
33.3%, 47.6%, and 26.2% in the four datasets, respectively.
Based on the same initial conditions, Mean-shift algorithm
divides the data into five clusters. While randomly assigning
the clients to ESs, the optimal client combination cannot be
ensured because of the duplicate labels within the clusters. A
similar issue arises when using the K-means algorithm. In ad-
dition, the K-means algorithm requires specifying the number
of clusters in advance, which further hampers its applicabil-
ity. It is clear that the final result after optimization based on
our method is significantly improved compared to the other
two methods, because our method is always in the direction
of better when adjusting the combination of data distribution.

Comparing with RH and MA. The the initial correlation re-
lation of Table 1 is based on the experimental results in [Ng
et al., 2022] that presented RH, with 10 clients and 3 ESs.
Compared to RH and MA, our approach still performs well.
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(a) JS = 0.69 (b) JS = 0.49 (c) JS = 0.0 (d) JS’s change process

Figure 2: Changes of data distribution and JS during coalition formation.

(a) MNIST (b) CIFAR-10 (c) SVHN (d) CINIC-10

Figure 3: Global model performance comparison of different data distributions and methods on four datasets.

Methods Datasets

MNIST CIFAR-10 SVHN CINIC-10

RH 88.65% 51.19% 68.93% 32.95%
MA 80.00% 36.31% 53.07% 24.29%
Our 90.75% 58.63% 73.77% 40.14%

Table 1: Average model accuracy of different methods based on the
finial coalition partition in RH.

This is because RA performs association formation with self-
ish client preference rule without considering the impact on
the coalition partition. MA discards some model parameters
below the loss threshold when aggregating based on marginal
losses, resulting in data wasting.

Verifing the effectiveness on resource allocation. We cal-
culate average transmission energy consumed per round of
edge aggregation with random bandwidth allocation (RB),
random transmission power (RP), and a combination of RB
and RP (RB RP). From Figure. 4(a), we can observe that
LEAP achieves a significant reduction in transmission energy
consumption. We notice that in some cases RP is lower, but
it fails to satisfy the maximum execution delay. From Figure.
4(b), the randomly determined transmission power is below
the optimal value several times, so it fails to satisfy the delay
requirement despite producing lower energy consumption.

6 Conclusion
In this paper, a novel optimization method LEAP, which has a
lightweight implementation, was proposed to address the im-

(a) Transmission Energy (b) Transmission Power

Figure 4: Transmission energy consumption and transmission power
under different optimization schemes.

pact of muti-dimentional properties on HFL, i.e., data contri-
bution, consumption of time and energy. Due to the stochas-
tic characteristics of data distribution under ESs, edge asso-
ciation was combined with LEAP and a coalition formation
game was built to model data distribution under different as-
sociations. To reduce the degree of non-IID of cross-edge
data, a coalition-friendly preference rule was employed, and
the existence of stable coalition partitions was proved. Fur-
ther, the gradient projection method (GP) was utilized to re-
duce task execution time in heterogeneous resources within
stable coalitions, improving the communication efficiency.
Finally, extensive experiments were conducted on various
real datasets to validate the effectiveness of LEAP.
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