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Abstract
Deep reinforcement learning is used in various do-
mains, but usually under the assumption that the en-
vironment has stationary conditions like transitions
and state distributions. When this assumption is not
met, performance suffers. For this reason, tracking
continuous environmental changes and adapting to
unpredictable conditions is challenging yet crucial
because it ensures that systems remain reliable and
flexible in practical scenarios. Our research intro-
duces Behavior-Aware Detection and Adaptation
(BADA), an innovative framework that merges en-
vironmental change detection with behavior adap-
tation. The key inspiration behind our method
is that policies exhibit different global behaviors
in changing environments. Specifically, environ-
mental changes are identified by analyzing vari-
ations between behaviors using Wasserstein dis-
tances without manually set thresholds. The model
adapts to the new environment through behavior
regularization based on the extent of changes. The
results of a series of experiments demonstrate better
performance relative to several current algorithms.
This research also indicates significant potential for
tackling this long-standing challenge.

1 Introduction
Deep reinforcement learning has extensive applications in
economics [Mosavi et al., 2020], energy engineering [De-
larue et al., 2020; Oikonomou et al., 2023], medical anal-
ysis [Hu et al., 2023; Tiwari et al., 2023] and other do-
mains, where policies are trained to make optimal sequen-
tial decisions in an assumed stationary environment. How-
ever, in practice, stationary environments are rare. Instead,
the norm is non-stationary environments where the underly-
ing environment can change in quite unpredictable and abrupt
ways. For instance, outdoor robots must navigate constantly
changing terrain and lighting levels, while financial mar-
kets should rapidly shift alongside breaking news and global
events. Hence, ignoring the non-stationarity of underlying
environments will frequently lead to poor performance even
using a superior algorithm. There is no doubt that addressing
this issue requires a dedicated strategy.

Behavior 
Embedding Space

Trajectories

Figure 1: When an outdoor robot moves from flat terrain to moun-
tains, its speed, direction, and acceleration control changes corre-
sponding to the changing conditions. We believe these variations
can be fully captured through behavior.

In prior work, several research teams have looked for so-
lutions. Some have converted the problem into a contin-
ual multi-task reinforcement learning problem [Kirkpatrick
et al., 2017; Schwarz et al., 2018], while others have trans-
formed the issue into a meta reinforcement learning prob-
lem [Yu et al., 2020; Xie et al., 2021]. Yet the com-
mon thread in all these studies is that the change points
need to be known in advance, as these change points are
used to divide the non-stationary environment into multiple
tasks. However, there are often no ready-to-use indicators
for unpredictable changes. Furthermore, a typical contin-
ual learning setting focuses on preventing catastrophic for-
getting, while remembering the knowledge from previous
tasks may not contribute to the current adaptation, especially
in more practical environments without cyclically recurring
tasks. To address the absence of known change points, some
research actively detects environmental changes using meth-
ods like reward-based detection [Lomonaco et al., 2020;
Kirkpatrick et al., 2017] or state-based detection [Padakandla
et al., 2020]. However, the reward-based method generally
requires timely rewards and manually set thresholds. In addi-
tion, the state information is not comprehensive and accurate
enough for detection because different global behaviors may
have the same final state or perform similar actions at a lo-
cal level [Pacchiano et al., 2020]. Therefore, changes in state
alone do not serve as reliable indicators for determining envi-
ronmental changes.

We posit that the agents in an environment can be better
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characterized through their behavior. In our research, behav-
ior represents the embeddings mapped from the sequences of
states, actions and rewards during a period. As demonstrated
in Fig. 1, when an outdoor robot encounters different envi-
ronmental conditions, such as terrain, its speed and direction
tend to demonstrate significant changes from those of the pre-
vious terrain. However, the separate variables like speed and
direction at a few time steps can not describe the comprehen-
sive trajectory change, making it challenging to understand
and adapt to the new environment. In contrast, behavior can
offer more comprehensive information from a global level.
We believe that behavior distribution changes simultaneously
reflect environmental changes and can help us adapt to new
conditions, so our proposed method uses behavior as a core
indicator and knowledge. We propose using these shifts in
behavior distribution to detect environmental changes. Ad-
ditionally, these changes indicate that departing from the be-
havior in the original environment is beneficial for optimal
behaviors within the new conditions.

Inspired by this, we present a novel approach to de-
tect environment changes by monitoring behavior distribu-
tion shifts based on the Wasserstein distance [Villani, 2009;
Panaretos and Zemel, 2019]. The agent(s)’ behavior is then
regularized accordingly to help the policy steer away from
the previous optimum and adapt to new environmental con-
ditions. Experiments in benchmark environments prove our
method to be effective and accurate compared to other meth-
ods. We propose a setting that enhances the applicability and
effectiveness of reinforcement learning across diverse fields,
from robotics navigating in dynamic landscapes to trading
systems that can respond to volatile markets.

Our main contributions are summarized as follows,

• We propose an environmental change detection method,
testing environmental change points through the Wasser-
stein distance between the global behavior information
without manually setting thresholds.

• With detected change points, we introduce a policy
adaptation method that facilitates faster deviation from
the previous optimum and exploration of new behavioral
regions. We adjust regularization based on the extent of
change to ensure adaptability under various conditions.

• We provide an end-to-end framework called Behavior-
Aware Detection and Adaptation (BADA) to collaborate
environment change detection and adaptation by analyz-
ing and employing behavior.

2 Related Work
Change detection in RL. Several partial models [Da Silva
et al., 2006; Hadoux et al., 2014] have been published that
represent environmental contexts using a quality signal, but
neither method works well in complex scenarios. Online
Parametric Dirichlet Change Point (ODCP) [Prabuchandran
et al., 2021] detects environmental changes by converting
data into unconstrained multivariate data. At the same time,
CRL-Unsup[Lomonaco et al., 2020] uses the gap between
short and long-term rewards as an indicator, which relies on
manually selected thresholds. Liu et al. [Liu et al., 2024] de-

tect the changes by analyzing the joint distribution of state
and policy, lacking a comprehensive perspective over time.

Adaptive/Transfer RL. Another feature of CRL-Unsup
[Lomonaco et al., 2020] is that it adapts to new environments
using elastic weight consolidation (EWC) [Kirkpatrick et al.,
2017]. In ODCP [Padakandla et al., 2020], when a change
point is detected, the Q value of the relevant model is used as
an update parameter. Several approaches learn a latent repre-
sentation incorporating shared and specific components from
the source domain [Huang et al., 2022; Zintgraf et al., 2019;
Trabucco et al., 2022]. Some work[Huang et al., 2022;
Zintgraf et al., 2019; Trabucco et al., 2022] learn a latent
representation encompassing shared and specific components
from source domains. These methods typically have clear
task definitions and differentiate between the source and tar-
get domain. By contrast, our method, BADA, is designed for
sequential changes and continuously adapts to new tasks.

Continual RL. In continual scenarios, the focus tends to
be placed on avoiding catastrophic forgetting, which is the
tendency of a neural network to abruptly forget previously
learned tasks upon learning a new task. Most schemes in
continual learning are trained on pairs of separate tasks, and
discrete transitions are often used to inform adaptations in
the model. Some approaches add additional structures to
the network model to resist forgetting [Zenke et al., 2017;
Schwarz et al., 2018; Aljundi et al., 2017] added additional
structures to network models to resist forgetting. Other stud-
ies achieve this goal by introducing additional data or label in-
puts [Shin et al., 2017; Lopez-Paz and Ranzato, 2017]. How-
ever, the change points of environments are usually unpre-
dictable, which makes it difficult to deploy continual learning
methods in such settings directly.

Meta RL. Meta reinforcement learning typically consists of
meta-training and meta-testing, with the goal of learning a
policy capable of adapting to new tasks from a given task
distribution. Some methods learn latent variable models to
infer the task embedding from current and past experiences.
Off-policy reinforcement learning is then performed with this
latent variable [Rakelly et al., 2019; Bing et al., 2023; Xie
et al., 2021]. Unlike meta-reinforcement learning, where the
training and testing tasks are separate, BADA focuses on real-
time adaptation during the training phase. Moreover, BADA
does not assume that the tasks come from one distribution.

Multi-task RL. Multi-task learning within varied task fam-
ilies often faces the challenge of negative transfer among
dissimilar tasks, which can impede training. Previous re-
search addresses this issue by evaluating task relatedness us-
ing a validation loss for different tasks [Liu et al., 2022;
Fifty et al., 2021; Standley et al., 2020]. Other complemen-
tary methods for sharing information include sharing data,
parameters or representations, and sharing behaviors [Yu et
al., 2021; Yu et al., 2022; Sasaki and Yamashina, 2020;
D’Eramo et al., 2020]. The goal with multi-task settings is
to train an agent to perform well at various tasks simultane-
ously. By contrast, BADA focuses on adapting to the current
environment for optimal performance.
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3 Methodology
3.1 Problem Formulation
A Markov decision process M is defined by a state space
S , a starting state distribution p0(s), an action space A,
a transition dynamics P(st+1|st, a), and a reward function
R : S × A → R. A policy πθ is parameterized by θ. The in-
teraction trajectory τ = {s0, a0, r0, s1, a1, r1, ...} is collected
by a policy πθ. With a discount factor of γ, the optimal pol-
icy is the one that maximizes the expected discounted reward:
π∗ = argmaxπ Eτ∼π [

∑
t γ

tR(st, at)] .
Standard reinforcement learning assumes that the under-

lying M is unknown but fixed. When this assumption does
not stand, a reinforcement learning scheme for non-stationary
environments must be implemented. Further, this paper tar-
gets a specific problem within non-stationary environments,
in which the change happens suddenly, and the change points
are unknown. Formally:
Problem 1. Let {Mk=1:K} be a sequence of different MDPs
with unknown switch points {C1, ..., CK−1} and arbitrary
order. An agent will sequentially interact with {Mk=1:K}
with unknown change points, where the goal is to find an op-
timal policy to maximize the long-term cumulative reward:

π∗
1:J = argmax

π1:J

Eτ∼π

 ∑
k=1:J

C′
k∑

t=C′
k−1

γtR(st, at)

 , (1)

where {C ′
1, ..., C

′
J−1} are the detected change points.

Remark 1. Each MDP Mk is distinct, potentially differing
in state spaces, transition dynamics, and reward functions.
Remark 2. The duration of the agent’s interaction in each
MDP, Ck − Ck−1, is not predetermined and assumed.

To ensure the maximum long-term reward, the problem en-
compasses two sub-goals: detecting change points accurately
and adapting to the new environment rapidly.

3.2 Behavior-based Change Detection
During the training process, the policy continuously in-
teracts with the environment. Within each update epoch
t, the trajectories collected by πθ are denoted as τ =
{s0, a0, r0, ..., sH , aH , rH}, where H is the step taken in this
epoch. A behavioral embedding map Φ : Γ → E maps the
trajectories into a behavioral latent space. In our particular
implementation, this map function is a multilayer perceptron.
The embedding Pθ represents the behavior embedding distri-
bution corresponding to policy πθ at epoch t.

As mentioned previously, environmental non-stationarity
leads to a shift in the trajectory. Therefore, the behavior
distributions from two adjacent epochs {Pt−1,Pθ} are used
to quickly identify the change points promptly. Here, the
Wasserstein distance [Olkin and Pukelsheim, 1982; Panare-
tos and Zemel, 2019] is used as the measure for evaluating
the difference between behavior trajectories. The Wasser-
stein distance originates from the optimal transport problem,
which evaluates the cost required to transform one probabil-
ity distribution into another. Given two distributions µ, ν, the
Wasserstein distance is defined as

W(µ, ν) = inf
γ∈Γ(µ,ν)

∫
c(x, y)dγ(x, y), (2)
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Figure 2: This figure presents a t-SNE plot of behavior. The dis-
tinct clusters demonstrate the significant impact of environmental
changes on behavior and inspire us to use the behavior to adapt ac-
tively to coming changes.

where Π(·, ·) denotes the joint distribution with marginal dis-
tributions, and c(·, ·) denotes the cost function quantifying the
distance between two points. If the cost of a move is simply
the distance between the two points, then the optimal cost is
identical to the definition of the Wasserstein 1-distance [Xu,
2019]. We calculate the distance by using the dual form of
Eq. (2), which is defined as:

W(µ, ν) = sup
fµ,fν

∫
fµdµ(x)−

∫
fνdν(y) , (3)

where fµ, fν : Rd → R and Lip(fµ) ≤ 1. The Lip(f)
denotes the minimal Lipschitz constant for the function f . To
calculate the Wasserstein distance, the objective is to find the
optimal f∗

µ, f
∗
ν to maximize the integral.

Wasserstein distance is a metric that reflects the proxim-
ity between two distributions, even if no overlap components
exist. This property is important for our problem because
the agent may manifest completely different behavior before
and after changes. Therefore, the support between these dis-
tributions on behavior spaces would be limited, and then a
proper distribution distance definition for such a situation is
crucial. Additionally, its symmetrical nature offers a more ef-
fective measure of the differences between distributions com-
pared with other options, like KL divergence. For example, as
Fig. 2 shows, when a policy is sequentially trained from one
environment to another – say where the textures and light-
ing change – the agent’s behavior embedding distribution will
show a distinct shift in distribution without overlapping. This
observation can also help us identify these behavioral-level
changes using the Wasserstein distance.

With the evaluated distance before and after a potential
change point, we still need to decide on a change point, usu-
ally based on a manually determined threshold. It is difficult
because it depends on the environment and behavior distribu-
tions, and what is even worse is that different change points
may need different thresholds. Here, we propose to perform
the permutation test [Welch, 1990; Van Borkulo et al., 2022],
which infers the presence of any change points. The permu-
tation test is an exact statistical hypothesis test based on proof
by contradiction. This method involves permuting the order
of samples, recalculating statistical test metrics, constructing
an empirical distribution, and then determining the p-value
based on this distribution to make inferences.

To explain the permutation idea, given two samples from
adjacent behavior embedding distributions Pθ,Pt−1 and cal-
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Figure 3: The BADA framework. When a change is detected
through the behavior distribution permutation test, regularization
will be added to deviate policy behavior from the previous optimum.

culate the test statistic T = W(Pθ,Pt−1). The typical null
hypothesis is given by:

H0 : Pθ = Pt−1, (4)

i.e., all samples come from the same distribution. Then,
for each permutation e = 1, 2, ...E, randomly permute the
components of Pθ ∪ Pt−1, and split the permuted data into
P(e)
θ ,P(e)

t−1 with the original sizes, then calculate test statis-
tics Te = W(P(e)

θ ,P(e)
t−1). By repeating the permutation and

calculation, a p-value is given by

p =
1

E

E∑
t=1

1{Te ≥ T}, (5)

where 1 is an indicator function. This test is guaranteed to
control the type-I error [Good, 2013] because we evaluate the
p-value of the test via the permutation approach. In addi-
tion, the non-parametric nature, i.e., that it does not rely on
assumptions about data distribution. As Fig. 2 shows, the
trajectory distribution usually does not conform to an easily
computable and representable form of distribution. There-
fore, using a permutation test is highly suitable for solving
our problem. Suppose the p-value is lower than the signif-
icance level; in that case, the current epoch t is noted as a
change point c = t, and Ppre = Pc−1 is the optimal behavior
distribution corresponding to the previous environment.

3.3 Behavior-Aware Adaptation
Although the vanilla DRL can adapt to the new environment,
especially in gradually changing environments, it typically re-
quires many interactions that sample inefficient and generate
a significant delay. With the detection signal from the above
section, we aim to achieve fast adaption. Since our detec-
tion is based on Wasserstein distance, we follow Wasserstein-
based policy gradient baseline - Behavior Guided Policy Gra-
dients (BGPG) [Pacchiano et al., 2020]. Its training objective
(for stationary environment) is to maximize:

F (θ) = Eτ∼Pθ
[R(τ)]−W (Pθ,Pt−1), (6)

where Pt−1 is the behavior distribution of last update epoch.
When a policy converges in one environment, the behav-

ior will enter a relatively stable distribution, providing a basis

Algorithm 1 Behavioral Aware Detection and Adaptation
(BADA)
Initialize: Policy πθ, behavioral embedding mapping func-
tion Φ, and significance level α.

1: for Epoch t = 1, 2, ... do
2: Collect τ = {s0, a0, r0, ..., sH , aH , rH} from the cur-

rent environment.
3: Obtain behavior embedding Pθ by behavioral embed-

ding mapping function Φ.
4: Compute the original statistics T = W (Pθ,Pt−1).
5: for Permute iteration e = 1, 2, ...E do
6: Shuffle Pθ ∪ Pt−1 and split the data into P(e)

θ ,P(e)
t−1

and compute statistics Te = W (P(e)
θ ,P(e)

t−1).
7: end for
8: Obtain the p-value 1

E

∑E
t=1 1{Te ≥ T}

9: if p-value≤ α at epoch c then
10: Save Pc−1 as previous behavior distribution Ppre.
11: Update policy parameter by θt+1 ← θt−α∇θF (θt)

following Eq. (7)
12: else
13: Update policy parameter by θt+1 ← θt−α∇θF (θt)

following Eq. (6).
14: end if
15: Save Pt−1 ← Pθ for environment change detection.
16: end for

for us to detect environmental changes. When a change point
is detected at epoch c, indicating that a significant change in
the environment has occurred, Pc−1 is saved as a previous
optimal behavior distribution Ppre. To assist the policy in
quickly deviating from the optimal behavior of the previous
environment, we propose to add a regularizer that maximizes
the difference between the current behavior distribution and
the previously converged behavior distribution. This new ob-
jective function is designed as follows:

F (θ) = Eτ∼Pθ
[R(τ)]−W(Pθ,Pt−1)+ δW(Pθ,Ppre), (7)

whereR =
∑

Aπt−1 (si, ai)
πθ(ai|si)

πt−1(ai|si) , Aπt−1 (si, ai) is the
advantage function, and Ppre is the converged behavior distri-
bution in the previous environment, and δ ∈ R>0 is a hyper-
parameter. Here, we use the adjacent behavior distance on
the detected change point W (Pc−1,Pc) as δ, depending on
the extent of change. This self-adjusted coefficient ensures
that the adaptation regularization has a greater impact as the
level of environmental change increases.

If no change is detected, the adaptation term will not work,
so δ will be set as zero. The first penalty constrains policy up-
dates within a trust region, ensuring the validity of importance
sampling. However, this constraint can lead to slow adapta-
tion when the environment undergoes abrupt changes, as the
policy hesitates to deviate from its previous optimal behavior.
At the change point c, Pprev = Pc−1. Only following the first
penalty term at this point might trap the policy in a subopti-
mal area for an extended period. Therefore, our second adap-
tation regularization serves as a contrastive term, steering the
policy away from previous behavior. As the policy gradu-
ally adapts to the current environment, i.e., t ≫ c, the adap-
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tation term W(Pθ,Pc−1) and the first term W(Pθ,Pt−1) no
longer conflict. The penalty constraints ensure performance
improvement in a stationary environment, and the role of the
adaptation term weakens as the policy moves away from the
previous optimum.

With the optimal f∗
µ, f

∗
ν according to Eq. (3), the regular-

ization term in Eq. (7) is:

W(Pθ,Ppre) ≈ Eτ∼Pθ
[f∗

µ(τ)]− Eϕ∼Ppre
[f∗

µ(ϕ)]. (8)

Maximizing this term can guide the optimization by favor-
ing those trajectories that show more difference between old
ones. When another change occurs, we consider only the
preceding behavior distribution. We believe excessive con-
straints may lead to a narrow area and result in local optima.
Therefore, focusing on the immediate historical behavior en-
sures adaptability to changing environments without intro-
ducing unnecessary complexities. This training goal allows
us to scale to scenarios with multiple changes easily. Fig. 3
illustrates the adaptation scheme, and Algorithm 1 describes
the complete BADA method in detail.

4 Experiments and Analysis
This section comprehensively evaluates our BADA method,
addressing key questions: 1) Can BADA achieve higher re-
wards in environments without known change points? 2) Is
behavior-based change detection superior to alternative meth-
ods? 3) Does BADA’s adaptation method outperform retrain-
ing and other adaptation approaches? 4) Can BADA maintain
performance with frequent environmental changes? These in-
quiries guide our experiments and analysis.

4.1 Settings
Environments. We conducted all experiments within ViZ-
Doom [Wydmuch et al., 2019], a first-person shooting game
with various scenarios. This environment allows reinforce-
ment learning agents to be developed using only visual in-
formation (the screen buffer). We chose four scenarios to
evaluate our proposed method. We employ distinct chal-
lenges and modifications to simulate dynamic environments
for agent training. For example, as Fig. 4 shows, the envi-
ronment transit from high-contrast simpler basic to dimly lit
basic settings, shift from defending a line in a rectangle map
to defending a point in a circular map against enemies in de-
fend the line/center. In addition, we adjust the number of en-
emies in deadly corridor and change the medikit textures in
the healt gathering scenario to represent new rooms. Agents
need to respond to these changes.
Comparison methods. In all experiments, we used the
PPO/TRPO update, and once the environment changed, the
model could not access any information on the changed envi-
ronmental conditions. Further, we compared BADA to three
baseline methods as follows.

• PPO [Schulman et al., 2017] and TRPO [Schulman et
al., 2015] without detection and adaptation;

• Behavior-based BGPG [Pacchiano et al., 2020] without
detection and adaptation;

• CRL-Unsup [Lomonaco et al., 2020] with both detec-
tion and adaptation.

Figure 4: The simulated non-stationary environments. The left set-
ting is from high-contrast simpler basic to dimly lit basic scenario,
and the right one is from defend the line with a rectangular map to
defend the center with a circular map.

The agent architecture for all methods consisted of a 4-layer
convolutional neural network (ConvNet) with 3x3 kernels
featuring 16 maps, complemented by ReLU activation func-
tions. This was followed by a fully connected layer that out-
puts a distribution of action sizes.

To evaluate performance in terms of environmental change
detection, we compared BADA to:

• A permutation test using KL divergence
• A two-sample test using weighted maximum mean dis-

crepancy (WMMD) [Bellot and van der Schaar, 2021]

• The online parametric Dirichlet change point (ODCP)
[Prabuchandran et al., 2021]

• CRL-Unsup [Lomonaco et al., 2020], which is based on
long and short-term rewards.

Metrics. One metric is the cumulative reward or reward
curve, and the other metric is F1 Score F1 = 2∗P∗R

P+R
[Sasaki,

2007], indicating the detection accuracy.

4.2 Overall performance
Cumulative rewards. As Fig. 5 shows, BADA (depicted
in red) exhibits an accelerated increase in reward after the
change point (marked by the vertical dashed line in each
graph). The post-change point improvement in reward is not
only attributed to the effectiveness of adaptation regulariza-
tion, enabling the policy to deviate from its previous optimum
swiftly but also indicates that BADA accurately responds to
environmental changes.

In basic, when the lighting and wall texture of the room
change, methods without adaptation see a significant per-
formance drop. We can see that the CRL-Unsup method
demonstrates a notable adaptation ability with a steady in-
crease in rewards after environmental changes are initially
detected, albeit slightly inferior to BADA. This indicates that
our behavior-based regularization term enables faster adap-
tation to new environments. In health gathering, we can
see that the texture of the medkit has a lesser impact than
the lighting level. This is evident from the results, where
even methods without adaptation can regain relatively high
rewards after several updates. Meanwhile, BADA’s reward
continues to rise, demonstrating its adaptation capability in
environments with relatively minor changes. In this sce-
nario, CRL-Unsup seems to be prone to false detections of
environmental changes. This leads to unnecessary adap-
tations and results in a less stable learning process. No-
tably, in the deadly corridor, the reduction in the number
of enemies does not yield additional rewards for well-trained
agents who do not employ adaptation strategies. This could
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Figure 5: Performance comparison of different methods in non-stationary environments. The vertical dashed lines represent the points of
environmental change, and the shaded areas around the reward lines indicate the standard deviation over different runs.

basic health gathering

BADA(Ours) 0.95±0.08 0.90±0.11
Permu-KL 0.70±0.09 0.50±0.26
CRL-Unsup 0.80±0.12 0.35±0.16
WMMD 0.50±0.13 0.56±0.27
ODCP 0.55±0.36 0.37±0.07

deadly corridor defend the line

BADA(Ours) 0.78±0.16 0.86±0.07
Permu-KL 0.69±0.09 0.50±0.26
CRL-Unsup 0.67±0.21 0.72±0.11
WMMD 0.47±0.19 0.62±0.15
ODCP 0.38±0.20 0.50±0.19

Table 1: Comparative F1 scores of change detection methods in non-
stationary environments.

be attributed to the fact that they still follow their origi-
nal behavior and fail to respond promptly to environmental
changes. However, BADA reaches a higher reward faster and
sustains an upward trend, showing its ability to learn from
new environmental conditions continuously. In the scenar-
ios of defend the line/center, map shape and defended goal
changes force each method to learn a new task. In this con-
text, BADA and CRL-Unsup outperform other baselines by
quickly achieving higher scores on the new task, while BADA
has superior performance compared to other methods. This
indicates the effectiveness of steering away from the previous
optimal strategy in discovering a new one.
Environment change detection accuracy. Tab. 1 lists the
F1 scores for all the methods. As shown, BADA outper-
forms other methods in all scenarios. The lower accuracy
of BADA in the deadly corridor scenario is because of the
reduced number of enemies, which has a less immediate im-
pact on behavior compared to observable conditions like envi-
ronmental lighting. The relatively poorer performance of the
permutation test based on KL divergence (Permu-KL) com-
pared to our Wasserstein-based approach can be attributed to
the KL divergence being sensitive to the probability distri-
bution’s representation in the data. In scenarios where the
probability distributions of the environment states are sparse
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Figure 6: Cumulative rewards of adaptation strategies in non-
stationary environments with known change points.

or have non-overlapping supports, KL divergence struggles
to measure the distance between distributions accurately. By
contrast, Wasserstein distance is based on the optimal trans-
port problem, denoting the minimum ”cost” of turning one
distribution into the other. It is particularly beneficial in non-
stationary reinforcement learning environments, which often
feature abrupt and significant changes in distribution. An-
other observation is that CRL-Unsup performs relatively well
but heavily relies on extensive tests to select the thresholds
manually. By contrast, BADA detection does not require hy-
perparameters to be manually adjusted and provides a signif-
icance level at the same time. We also find that ODCP and
WMMD are not efficient in image-based scenarios.

4.3 Ablation Study
Adaptation evaluation. To evaluate the performance of
adaptation separately and confirm whether the adaptation
scheme contributes to new training as opposed to simply re-
training the agent following a reinforcement learning loss, we
test the following comparison methods:

• Employing KL divergence instead of Wasserstein dis-
tance as the regularization term.

• CRL-Unsup with the EWC adaptation method.

• Restarting training following a traditional PPO scheme.
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Figure 7: Average reward after the first change points in environ-
ments with increasing change points.

All methods are provided with the change points to initiate
adaptation or retraining.

As shown in Fig. 6, the BADA method excels in adapt-
ing to environments with known change points. First, BADA
consistently outperformed the ‘Restart’ approach, as seen by
the quicker recovery and sustained improvement in rewards.
This indicates that BADA deviates from the previous optimal
and finds a new one rapidly, adapting a more efficient strat-
egy than restarting training from scratch. Second, BADA sur-
passed the other adaptation strategies, with the Wasserstein
Distance constraint proving superior to KL divergence. Fur-
ther, BADA outperforms CRL-Unsup, demonstrating that our
behavior-based adaptation is more effective than other meth-
ods. Overall, these results confirm that BADA has a superior
ability to adapt to environmental changes.
Frequently changing environments. Change frequency
could challenge BADA’s ability because it may affect whether
the constrained distribution is the previous optimal, i.e., the
policy might not have converged when the changes occurred.
Fig. 7 provides a comparative overview of the different algo-
rithms’ performances across the basic environment with vary-
ing numbers of change points. As indicated in red, BADA
consistently achieved higher average rewards than the other
methods when the environment changed in more frequently
changing environments, demonstrating its robustness in deal-
ing with multiple change points. We can see that when
the number of change points increases from 2 to 4, perfor-
mance does not drop significantly. However, as the number
of change points increases to 9, the performance of all meth-
ods has marked declines. However, BADA shows the most
minor decrease, maintaining a clear lead over the others. This
indicates BADA’s superior adaptability in more complex en-
vironments with frequent changes. Also, Tab. 2 shows the
detection accuracy in frequently changing environments. All
methods will be influenced as the number of change points
increases. Therefore, in extremely non-stationary environ-
ments, the policy may not have converged in each envi-
ronment, resulting in behaviors that remain in random and
chaotic patterns. This can limit BADA’s ability to detect and
adapt based on behavior.
Parameter sensitivity. Fig. 8 shows the parameter sensitivity
analysis for the adaptation regularization term W(Pθ,Ppre)
in Eq. (7). The result indicates a distinct peak in average re-

2 changes 4 changes 9 changes

BADA(Ours) 0.89±0.12 0.78±0.16 0.56±0.20
Permu-KL 0.52±0.19 0.49±0.11 0.43±0.09
CRL-Unsup 0.71±0.13 0.60±0.17 0.37±0.08
WMMD 0.45±0.17 0.40±0.11 0.28±0.19
ODCP 0.25±0.15 0.21±0.11 0.20±0.13

Table 2: F1 scores for change detection methods across environ-
ments with increasing change points.
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Figure 8: The parameter sensitivity analysis of the adaptation regu-
larization. The orange lines represent the coefficient range we used.

wards for both environments. This peak represents an op-
timal value for the coefficient, consistent with the range of
our adaptive coefficient (denoted in orange rectangles). The
parameter we used represents the extent of environmental
change, determining the level of adaptation based on the en-
vironment. The experiment proves that our self-adjusted co-
efficient, according to environmental changes, is effective.
Also, the decline post-peak implies that an overly aggressive
correction term could negatively impact the learning process.
Therefore, an accurate balance of adaptation regularization is
crucial to sustaining good performance. The empirical results
show that tuning it according to change level is valid.

5 Conclusion
This paper addresses deep reinforcement learning in non-
stationary environments without known change points by
developing the Behavior-Aware Detection and Adaptation
(BADA) framework. The behavior-based change detection
method represents a novel approach to monitoring and re-
sponding to environmental shifts by closely analyzing pol-
icy behavior. This method has proven effective and accurate
without any manually set threshold, allowing for timely ad-
justments to the learning strategy. Furthermore, the online
adaptation mechanism integrates this behavioral information,
providing a self-adjusted regularization term. The behavior-
based regularization can help policy steer from suboptimal ar-
eas and find potential behavior in new conditions. The exper-
imental results show its superior performance in accurately
detecting changes and quickly adapting to new environments
compared to other methods. A future extension could ben-
efit from exploring mechanisms for off-policy adaptations,
broadening BADA’s applicability in various RL settings.
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