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Abstract
Exploiting self-supervised learning (SSL) to extract
the universal representations of time series could
not only capture the natural properties of time se-
ries but also offer huge help to the downstream
tasks. Nevertheless, existing time series represen-
tation learning (TSRL) methods face challenges in
attaining universality. Indeed, existing methods re-
lying solely on one SSL strategy (either contrastive
learning (CL) or generative) often fall short in cap-
turing rich semantic information for various down-
stream tasks. Moreover, time series exhibit diverse
distributions and inherent characteristics, particu-
larly with the common occurrence of missing val-
ues, posing a notable challenge for existing back-
bones in effectively handling such diverse time se-
ries data. To bridge these gaps, we propose CTRL,
a framework for universal TSRL. For the first time,
we employ Neural Controlled Differential Equation
(NCDE) as the backbone for TSRL, which captures
the continuous processes and exhibits robustness to
missing data. Additionally, a dual-task SSL strat-
egy, integrating both reconstruction and contrasting
tasks, is proposed to enrich the semantic informa-
tion of the learned representations. Furthermore,
novel hard negative construction and false negative
elimination mechanisms are proposed to improve
sampling efficiency and reduce sampling bias in
CL. Finally, extensive experiments demonstrate the
superiority of CTRL in forecasting, classification,
and imputation tasks, particularly its outstanding
robustness to missing data.

1 Introduction
Time series is an important type of data that is ubiquitous in a
wide variety of fields, including science, healthcare, finance,
transportation, manufacturing, etc. Universal time series rep-
resentation learning (UTSRL) could not only capture the in-
herent nature of time series but also greatly enhance the per-
formance of various downstream tasks. Furthermore, UTSRL
is an early yet crucial move towards enhancing the pattern
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Figure 1: The goal of our CTRL framework is universal time series
representation learning, with a focus on universality. The learned
representations exhibit (1) Task-Generality, being applicable to vari-
ous downstream tasks. and (2) Domain-Adaptability, demonstrating
robustness for diverse time series data.

recognition and reasoning capabilities inherent in time series
foundational models. It lays essential groundwork for future
development of artificial general intelligence that can effec-
tively comprehend and process common time series data.

As illustrated in Figure 1, the universality of UTSRL is un-
derscored by its two pivotal aspects: (1) Task-Generality: The
learned representations should be applicable to a wide variety
of downstream tasks, not just the specific task. (2) Domain-
Adaptability: The learned representations should demon-
strate robustness and stability in the face of time-series data
with varied distributions or inherent characteristics. However,
unfortunately, the expected universal performance are often
not realized for a variety of reasons in existing time series
representation learning (TSRL) methods.

First, existing prevalent self-supervised strategies, includ-
ing contrastive learning (CL) and generative methods, each
emphasize different aspects of feature extraction. As such,
relying solely on a single self-supervised strategy often falls
short in ensuring that the learned representations encom-
pass rich and diverse semantic information, posing challenges
when adapting to a wide array of downstream tasks. [Zhang
et al., 2023] Generative methods [Zerveas et al., 2021;
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Chowdhury et al., 2022; Nie et al., 2023], like Masked Auto-
Encoders (MAE), typically embed the randomly masked in-
put into a latent space via a Transformer encoder and then
reconstruct the original input signals. However, these meth-
ods model representation distribution at point-wise level,
which might fail to effectively capture high-level abstrac-
tions. Notably, most transformer-based MAE methods for
TSRL exhibit promising performance in forecasting tasks,
but mediocre in the classification tasks [Nie et al., 2023].
Contrastive learning methods force the encoder to learn rep-
resentations that draw semantically similar positive sam-
ples closer while pushing negative samples further apart.
This approach primarily concentrates on learning discrimi-
native features. And many studies [Tonekaboni et al., 2021;
Franceschi et al., 2019] focused on learning coarse-grained
representations of the whole segment of the input time series,
which may not be suitable for tasks requiring fine-grained
representations such as forecasting and imputation.

Second, the huge diversities in distributions and under-
lying characteristics among different time series data pose
challenges in constructing high-quality positive and nega-
tive samples for time series CL methods. These methods
encourage the model to learn key invariance properties of
time series through positive samples constructed by data aug-
mentation, including sub-series consistency [Franceschi et
al., 2019], temporal consistency [Tonekaboni et al., 2021],
transformation consistency [Eldele et al., 2021], contextual
consistency [Yue et al., 2022], etc. However, most of the
TS-property-invariance are based on strong assumptions of
date distribution, which could detrimentally impact Domain
Adaptability. For example, sub-series consistency encour-
ages the representation of a time series to be closer to its
sampled sub-series, but it becomes vulnerable when there ex-
ist level shifts. Additionally, existing approaches typically
adopt random negative sampling inspired by computer vision
experiences. However, time series possess inherent charac-
teristics, including complicated periodicity and inter-time se-
ries correlations, making randomly sampled negatives prone
to containing false negatives (i.e. negative samples with simi-
lar semantics to the positive example). This compromises the
semantics and generalization of the learned representations.

Third, widely used TSRL backbones like TCN [Bai et al.,
2018] and Transformer [Vaswani et al., 2017] have their lim-
itations in Domain-Adaptability. Time series data collected
in the wild often have irregular sampling intervals and miss-
ing values, but the latest popular backbones are very chal-
lenging to deal with such irregularities. Moreover, TCN em-
ploys padding to handle variable-length data, but model per-
formance could be affected when sequence length obviously
differs from its fixed receptive field size. And recent research
DLinear [Zeng et al., 2023] has pointed out that the nature of
the permutation invariant self-attention mechanism in Trans-
formers inevitably results in temporal information loss.

To address these gaps, we propose a novel NCDE-
based framework for universal Time series Representation
Learning, named CTRL. To enhance Task-Generality, we de-
sign a dual-task SSL strategy that couples contrastive learning
with reconstruction to capture diverse semantic features. For
improved Domain-Adaptability, we integrate Neural Con-

trolled Differential Equation (NCDE) [Kidger et al., 2020]
model within the SSL paradigm for the first time. This en-
coder captures the continuous evolving processes inherent in
time series and effectively manages diverse time series, par-
ticularly irregular ones. Additionally, we employ a simple yet
effective data augmentation technique—masking—to gener-
ate different views of the input, which avoids the necessity
for complex invariance assumptions and synergizes well with
our NCDE encoder. Last but not least, novel hard negative
construction strategies and false negative elimination mech-
anisms are proposed to improve sampling efficiency and re-
duce sampling bias in contrastive learning. The main contri-
butions are summarized as follows:

• It is the first time that Neural Controlled Differential
Equation (NCDE) is innovatively introduced as a robust
backbone for universal time series representation learn-
ing. It shows greater potential compared to widely-used
Transformer and TCN in capturing continuous evolving
processes and handling diverse time series, especially ir-
regular/missing data.

• A dual-task self-supervised learning strategy is de-
signed. It utilizes contrastive learning to learn discrimi-
native features from time series, as well as incorporates
a reconstruction task to further enrich the representation
with semantic information, distinguishing it from the ex-
isting methods that employ one task only.

• A debiased contrastive learning framework is proposed
for time series representation learning. Compared with
previous work which adopts all other samples as nega-
tives in batch, the proposed hard negative construction
and false negative elimination methods could improve
the quality of negatives and reduce sampling bias in time
series contrastive learning.

2 Related Work
2.1 Time Series Representation Learning
Self-supervised representation learning is becoming increas-
ingly popular. Nonetheless, in the domain of time series data,
SSL has been comparatively less explored when compared to
other domains, such as computer vision (CV) or natural lan-
guage processing (NLP) [Tian et al., 2020; He et al., 2020;
Chen et al., 2020; Kenton and Toutanova, 2019; Joshi et al.,
2020; Sun et al., 2019; He et al., 2022]. The existing methods
of TSRL can be primarily divided into two branches: one is
based on Contrastive and the other is based on Generative.
(1) Contrastive. These methods construct positive and neg-
ative samples and train the models to close the distance be-
tween positive pairs and increase the distance between neg-
ative pairs. T-Loss [Franceschi et al., 2019] proposes an en-
coder composed by dilated convolutions that admits variable-
length inputs, and trains with a triplet loss employing time-
based negative sampling. TNC [Tonekaboni et al., 2021]
trains an encoder to predict whether segments belong to the
same neighborhood, with the neighborhood distribution mod-
eled as a Gaussian distribution to capture the gradual transi-
tions in temporal data. TS-TCC [Eldele et al., 2021] encour-
ages the consistency of different data augmentations and puts
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efforts to learn robust representation by means of cross-view
prediction and contextual contrasting. TS2Vec [Yue et al.,
2022] proposes a universal framework for learning time series
representations by performing hierarchical contrastive learn-
ing over augmented context views and building representa-
tion of an arbitrary sub-sequence by aggregating timestamp-
level representations. CoST [Woo et al., 2022] separately
processes disentangled trend and seasonality parts of the orig-
inal time series data to encourage discriminative seasonal and
trend representations. Almost all of these methods rely on
heavily data augmentation or other domain knowledge. How-
ever, the defects of these contrastive methods, such as sam-
pling bias and spurious invariance assumption, could lower
the generalizability of learned time series representations.
(2) Generative. These methods generally embed the input
into a latent space via the encoder and decode the repre-
sentation back to recover the input signals. TST [Zerveas
et al., 2021] pre-trains Transformer encoder by masking
a small portion of time series and reconstructing them.
PatchTST [Nie et al., 2023] introduces two key compo-
nents, patching and channel-independent structure, to design
transformer-based model specifically for long-term time se-
ries forecasting tasks. Whereas, the representation distribu-
tion of the generative method is modeled at point-wise level,
which may not effectively address the challenge of high-level
abstraction in the time series data.

2.2 Neural Differential Equations
Neural differential equations are an elegant formulation com-
bining continuous-time differential equations with the high-
capacity function approximation of neural networks. They
are widely recognized for their unique capacity to model
complex, continuous dynamics, a feat not achievable by con-
ventional discrete methods. [Kidger, 2022]

(1) NODE. By far the most common neural differential
equation is a NODE [Chen et al., 2018]:

z(t1) = z(t0) +

∫ t1

t0

fθ(z(t))dt, (1)

where fθ is the ODE function, which is implemented as a
neural network to approximate ż

def
= dz(t)

dt . Typically fθ
will be some standard simple neural architecture, such as a
feedforward or convolutional network. To solve the integral
problem, NODEs rely on ODE solvers, such as the explicit
Euler method, the Dormand–Prince (DOPRI) method, and so
on [Dormand and Prince, 1980]. In general, ODE solvers dis-
cretize time variable t and convert an integral into many steps
of additions. For instance, the explicit Euler method can be
written as follows in a step:

z(t+ h) = z(t) + h · fθ(z(t)), (2)

where h is a pre-determined step size of the Euler method,
which is usually smaller than 1. When h = 1, the formulation
aligns with that of residual neural networks (ResNets). By
taking smaller integration steps, we can directly parameter-
ize and approximate the continuous evolution of latent states,
which forms the basic idea of NODEs. In this regard, NODEs
generalizes ResNets in a continuous manner.

(2) NCDE. One limitation of NODEs is that the solution of
an ODE is determined by the initial condition at z (t0), leav-
ing no direct mechanism for incorporating data that arrives
later, which degrades the representation learning capability
of NODEs. To this end, NCDEs [Kidger et al., 2020] create
path X(t) from underlying time-series data, with z (t1) de-
termined by both z (t0) and X(t). NCDEs is the continuous-
time limit of recurrent neural networks. NCDEs can be writ-
ten as follows:

z (t1) = z (t0) +

∫ t1

t0

fθ(z(t)) dX(t), (3)

where X(t) is a natural cubic spline path of underlying time-
series data. Differently from NODEs, fθ, which we call CDE
function, is to approximate dz(t)

dX(t) . Whereas other methods
can be used for X(t), the original authors of NCDEs recom-
mend the natural cubic spline method for its suitable char-
acteristics to be used in NCDEs: i) it is twice differentiable,
ii) its computational cost is not much, and iii) X(t) becomes
continuous w.r.t. t after the interpolation.

3 Preliminary
Given a set of time series X = {x1,x2, · · · ,xN} of N in-
stances, and xi ∈ RT×F where T and F are sequence length
and feature dimension respectively. The goal is to learn a non-
linear embedding function Fθ that maps each xi to a univer-
sal representation ri, applicable to various downstream tasks.
The representation ri = {ri,1, ri,2, · · · , ri,T } contains vec-
tors ri,t ∈ RC for each timestamp t, where C is is the dimen-
sion of representation vectors.

4 Methodology
In this section, the proposed framework and all components
will be stated elaborately. The overall architecture of CTRL
is shown in Figure 2, which consists of three key compo-
nents: masking augmentation, NCDE encoder and dual-task
SSL strategy. We will clarify the merit of this particular com-
bination and introduce the details of each component.

4.1 Masking
There are three main reasons why we use masking only for
data augmentation: From the reconstruction task perspective,
masking is essential. For CL, data augmentation is used to
construct semantically similar positive pairs according to the
consistency assumption and has a great impact on the quality
of the learned representations. To minimize consistency bias,
masking is adopted as a minimal form of data augmentation
for time series within our framework. Last but not least, to
strengthen the model robustness to irregular time series, we
simulate this process by masking the original input.

Since time series has a lower information density and
higher redundancy, the very short masked sequences (e.g., of
1 masked time-point) in the input can be easily referred from
neighboring values, which makes the task trivial and thus the
representation may not carry important abstract information.
Here we utilize a complex randomization strategy proposed
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Figure 2: The overview architecture of CTRL. The different views of each time series generated by masking augmentation are fed into the
NCDE encoder to obtain their corresponding representations. Then the representations flow into two branches to perform two self-supervised
tasks: (1) reconstruction task, (2) contrastive task. Furthermore, we construct hard negatives to improve sampling efficiency, as well as
identify and eliminate false negatives to reduce sampling bias in contrastive learning.

by [Zerveas et al., 2021] to resolve the problem. Specifi-
cally, masks Mask ∈ {0, 1}T×F are created independently
for each view of a given training sample xi ∈ RT×F , where
T represents the sequence length and F is the feature dimen-
sion. We use the state transition method to alternate masked
and unmasked along the time axis and the mask ratio is rm,
such that each masked segment has a length that follows a
geometric distribution with mean lm. In our work, we adopt
a higher masking ratio rm = 0.5 coupled with an increased
length for continuous masking at lm = 5 to largely elimi-
nate redundancy and prevent the model from focusing only
on low-level semantic information.

4.2 NCDE Encoder
We employ Neural Controlled Differential Equations
(NCDE) [Kidger et al., 2020] as our backbone. As the con-
tinuous time analogue of an RNN, NCDE is designed to learn
the evolving process behind time series. The continuous hid-
den states captured by NCDE are consistent with representa-
tion learning. In contrast, Transformer , originally proposed
for NLP, treats time series values as tokens and deals with
time series in a discrete manner. However, we believe that
the underlying process of time series develops in continuous
time. Another crucial reason for choosing NCDE as our en-
coder is its remarkable ability to handle diverse time series,
particularly those with irregular intervals or missing values.
Furthermore, NCDE’s powerful mathematical properties for
dealing with such irregularities bring many advantages to our
dual-task SSL strategy. For reconstruction, there is no need
for additional processing on missing values after masking,
such as complementing with 0 [Yue et al., 2022] or apply-

ing linear interpolation [Zerveas et al., 2021], which may in-
troduce deviations. This is because the NCDE can directly
operate on irregularly sampled and partially observed time
series. For CL, the NCDE encoder, when combined with
masking augmentation, can construct effective semantically
similar positive pairs and avoid the need for prior knowledge
and overly strong assumptions about TS-property-invariance.

Following the application of our masking augmentation,
we define the view as x = ((t0, x0), · · · , (tT , xT )) for sim-
plicity, annotated with observation time t0 < · · · < tT . Here,
xj ∈ (R ∪ {∗})F , where ∗ represents either missing values or
those masked by Mask. We employ the natural cubic spline
method for interpolating these discrete time series, thereby
building a continuous path X(t) : [t0, tT ] → RF+1, that sat-
isfies the condition X(tj) = (tj , xj) for each observation xj

at its respective time-point tj . And for other non-observed
time-points, the natural cubic spline algorithm interpolates
nearby observed data. Subsequently, the NCDE is driven by
X and can be defined as

rt0 = ζθ2(t0, x0),

rt = rt0 +

∫ t

t0

fθ1(rs)dXs t ∈ (t0, tT ] ,
(4)

where dXs denotes a Riemann–Stieltjes integral. The hid-
den state rt ∈ RC reflects an evolving belief about the time
series, updated continuously as observations X(t) are made.
Here, rt0 is the initial hidden state, and C defines the size
of hidden state. The integrand fθ1 : RC → RC×(F+1) and
ζθ2 : RF+1 → RC are both neural networks depending on
learnable parameters θ1, θ2. In our work, fθ1 and ζθ2 are
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taken to be simple feedforward neural networks.
The output of the NCDE model portrays a continuous evo-

lution over time. Consequently, we extract representations at
the observation time-points, i.e., {r1, r2, · · · , rT }.

4.3 Dual-Task Training
To obtain informative features for various downstream tasks,
we design a dual-task training strategy which combine recon-
struction and contrastive learning tasks. The final form of the
loss function in our framework is defined as:

Ldual = Lrec + λLcontrast, (5)

where λ is a trade-off between two tasks.

Reconstruction
The representations r1i , r

2
i are passed through a linear layer

respectively to reconstruct the raw input time series:

x̂k
i,t = rki,tW + b, (6)

where W ∈ RC×F and b ∈ RF are a trainable weight and a
bias of the linear layer. We calculate Mean Absolute Error be-
tween the ground truth xi and reconstruction x̂i for masked
and unmasked part of the data, respectively. The hyperpa-
rameter α (0 < α < 1) is used to control the relative weights
between the two losses:

Lk
rec = αLk

masked + (1− α)Lk
unmasked,

Lrec = L1
rec + L2

rec,
(7)

Debiased Contrasting
We employ hierarchical contrastive loss [Yue et al., 2022] to
facilitate multi-scale information learning, achieved through
max pooling on the learned representations along the time
axis. Moreover, we propose a debiased contrastive learning
framework aiming to boost the efficiency of negative sam-
pling and reduce sampling bias.

Hard Negative Construction (HNC). Recent studies
[Kalantidis et al., 2020] have shown that hard negative sam-
ples (i.e. true negative samples that are close to the anchor)
make it more challenging for the encoders to learn distin-
guishing features and lead to higher performance. However,
the exploration of hard negative has been relatively limited in
time series domain. To facilitate better learning, we propose
the following two methods to generate hard negatives.

(1) Temporal shuffling: Changing temporal orders may
lead to a different evolutionary tendency which is a vital fea-
ture in time series. Thus, instead of using the shuffling strat-
egy to generate positive samples as in previous work [Eldele
et al., 2021], we treat the shuffled time series as negative sam-
ples. Specifically, the time series instance is divided into sev-
eral segments xi = {seg1, seg2, · · · , segM}, where M is the
number of segments. And then half of the segments are ran-
domly selected for shuffling. In this way, half of the segments
remain in their original position, while their contextual in-
formation has changed. The purpose of this is to make the
generated negatives much harder.

(2) Instance Mixing: This method incorporates anchor
sample features into negative samples, rendering them more

intricate to discriminate and improving the model’s sensitiv-
ity to differentiate between positive and negative samples.
Given a time series instance xi and another instance xj drawn
randomly from the batch, the mixing example can be con-
structed as follows:

x
(mix)
i = βxi + (1− β)xj , β ∼ Beta(b, 1), (8)

where β is a mixing parameter that determines the contribu-
tion of each time series in the new sample, and to avoid the
issue of fixed parameter weighting and introduce fixed bias,
beta distribution β ∼ Beta(b, 1) is utilized. It is worth noting
that the value of b is recommended to be greater than 1 so that
the original time series xi can make up a larger proportion of
the new sample than xj .

False Negative Elimination (FNE). Besides the synthetic
negatives above, we adopt other in-batch samples as nega-
tives, following previous works. We design two strategies to
identify false negatives, the top-k strategy and the threshold
strategy. For each anchor x, x′ and Bx denote its positive
sample and the set of its negatives, respectively.

As for top-k strategy, we assume that the first k samples
with the highest similarity to the anchor may be false negative
samples. Thus, the false negatives of the anchor screened by
top-k strategy can be formulated as:

Ψx = {x−|x− ∈ top(sim(x, x−), k), x− ∈ Bx}, (9)

where sim(u, v) is a similarity function and top(S, k) de-
notes a set containing the maximum k elements of set S.

As for threshold strategy, we believe that the similarity be-
tween negative pairs is typically lower than that between pos-
itive pairs, aligning with the training objectives of CL. Thus,
we can utilize the similarity of positive pairs as a benchmark,
considering negatives with high similarity to the anchor as
potential false negatives:

Φx = {x−|sim(x, x−) > ϕ× sim(x, x′), x− ∈ Bx}, (10)

where ϕ is a hyperparameter of the similarity threshold.
Since the true labels or semantic similarities of time se-

ries are unavailable, we directly utilize the dot product of the
representations to measure the similarity between samples,
i.e. sim(x, x−) = r · r−, where r and r− is the represen-
tations of x and its negative x−. However, it boils down to
a chicken-and-egg problem: we want to learn good semantic
representations, but may demand certain semantic similarity
from the start. Therefore, we delay the false negative elimi-
nation until after a period of model training, which we found
to be more beneficial for performance improvement. The top-
k strategy may be preferred given information about the ap-
proximate number of false negatives, while threshold may be
better suited when a dynamic adaptation is expected. In ad-
dition, we also consider a strategy that combines top-k and
threshold, which not only allows for adaptive adjustments but
also guarantees a minimum count for negative samples.

We perform false negative elimination in the calculation of
both temporal contrastive loss and instance-wise contrastive
loss. Let i be the index of the input time series sample and
t be the timestamp. ri,t and r′i,t denote the representations
for the same timestamp t but from two augmentations of xi.
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These two contrastive loss for ri,t can be both formulated as:

ℓ
ri,t
type = − log

exp(ri,t · r′i,t)
exp(ri,t · r′i,t) +

∑
r−∈Ω

ri,t
type

exp(ri,t · r−)
,

(11)
where type indicates whether it is temporal or instance-wise,
and Ω

ri,t
type represents the set of negative sample representa-

tions r− corresponding to ri,t in the type contrative loss.
As for temporal contrastive loss, to learn discriminative

representations over time, we take those at different times-
tamps from the same time series as negatives, i.e., Bri,t

temp =

{ri,t′}Tt′=1,t′ ̸=t ∪ {r′i,t′}Tt′=1, where T is sequence length.
Building on this, we employ the top-k strategy to eliminate
false negative samples, resulting in Ω

ri,t
temp = Bri,t

temp \Ψ
ri,t
temp.

As for instance-wise contrastive loss, we use representa-
tions of other time series in the same batch and synthetic hard
negative samples rnegi,t at same timestamp t as negative sam-
ples, i.e., Bri,t

inst = {rj,t}Bj=1,j ̸=i ∪ {r′j,t}Bj=1 ∪ {rnegj,t }Bj=1,
where B is the batch size. We then filter the false nega-
tives through the combined top-k and threshold strategy, i.e.,
Ω

ri,t
inst = Bri,t

inst \ (Φ
ri,t
inst ∩Ψ

ri,t
inst).

The two losses are complementary to each other. For ex-
ample, given traffic data of a city, instance contrast may learn
the road-specific characteristics, while temporal contrast aims
to mine the dynamic trends over time. The overall contrast
loss is defined as:

Lcontrast =
1

2BT

∑
i

∑
t

(
ℓ
ri,t
temp + ℓ

r′i,t
temp + ℓ

ri,t
inst + ℓ

r′i,t
inst

)
.

(12)

5 Experiments
In this section, we verify the superiority of our representation
learning framework through extensive experiments in fore-
casting, classification and imputation tasks. Notably, CTRL
attains the top average rank in all three tasks, demonstrating
its outstanding universality. The source code is publicly avail-
able at https://github.com/LiuZH-19/CTRL.

5.1 Datasets
For time series forecasting task, we utilize four popular real-
world datasets: Exchange Rate [Lai et al., 2018], Wind [Wu
et al., 2020], Weather1, and ILI [Wu et al., 2021].

For time series classification task, we select 18 datasets
from the UCR, UEA Time Series Classification Archive [Dau
et al., 2019; Bagnall et al., 2018]. This selection is in line
with the classification datasets utilized in TST [Zerveas et al.,
2021] and TimesNet [Wu et al., 2022]. Additionally, we in-
clude 8 univariate time series datasets. These datasets exhibit
diverse characteristics, including variations in the number, di-
mension, sequence length, and the number of classes.

For time series imputation task, we select the datasets from
the electricity and weather scenarios, including ETT [Zhou
et al., 2021] and Weather, where the data-missing problem

1https://www.ncei.noaa.gov/data/local-climatological-data/

happens commonly. To compare the model capacity under
different proportions of missing data, we randomly mask the
time points in the ratio of {12.5%, 25%, 37.5%, 50%}.

5.2 Baselines
We present a comprehensive comparison of the well-
acknowledged and advanced models. The selected baselines
are categorized into two groups: (1) Representation Learning
Methods: T-Loss [Franceschi et al., 2019], TNC [Tonekaboni
et al., 2021], TS-TCC [Eldele et al., 2021], TS2Vec [Yue et
al., 2022], CoST [Woo et al., 2022], TST [Zerveas et al.,
2021] and PatchTST [Nie et al., 2023]. (2) End-to-End Su-
pervised Methods: LSTM [Sutskever et al., 2014], TCN [Bai
et al., 2018], Informer [Zhou et al., 2021], Autoformer [Wu
et al., 2021], FEDformer [Zhou et al., 2022], DLinear [Zeng
et al., 2023] and TimesNet [Wu et al., 2022].

5.3 Reproduction Details for CTRL
The representation dimension C is set to 320. The batch
size B is set to 128 by default, unless limited by memory.
The learning rate is 0.001. The number of optimization it-
erations is determined empirically based on the dataset size.
For masking data augmentation, we set the mask ratio rm to
0.5 and the average length of continuous masking lm to 5.
The parameter α for the reconstruction loss is set to 0.8. The
loss term trade-off parameter λ is tuned from the set {0.01,
0.05, 0.1, 0.5, 1}. Regarding our NCDE encoder, a fixed set
of hyper-parameters is determined empirically regardless of
datasets. The integrand fθ1 is a feedforward network with 5
fully connected layers and 64 hidden channels. And we use a
tangent hyperbolic function as the final nonlinearity for fθ1 .
ζθ2 is implemented as a fully connected network with 2 lay-
ers, where the hidden channel size is set to 128.

For hard negative construction, we typically set the beta-
distribution parameter β to either 2 or 4, and the number of
segments M to either 4 or 8. In the false negative identifica-
tion process, we tune ϕ within the range [0.96, 0.99], and set
k to be 20% to 40% of the total number of instances. These
hyper-parameters for debiased contrasting should be chosen
carefully according to the nature of the time series data. For
example, in time series data with longer sequences, the value
of M should be greater than in those with shorter sequences
when applying shuffling.

We conduct 5 repetitions of all experiments using different
random seeds, and report the average evaluation metrics. To
ensure complete reproducibility, we have included detailed
settings for each experiment in our public code.

5.4 Time Series Forecasting
The evaluation results on MSE for forecasting are presented
in Table 1. In general, CTRL attains the best average rank
of 1.688 across all dataset-horizon results and excels with ei-
ther the top or second-best performance in most cases. Fur-
thermore, our representations only need to be learned once
for each dataset and can be directly applied to various hori-
zons with linear regressions, including short-term and long-
term, which demonstrates the universality of the representa-
tions. Even in comparison to the latest TSRL methods like
CoST [Woo et al., 2022] and PatchTST [Nie et al., 2023],
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Dataset H TS-TCC TNC TS2Vec CoST PatchTST CTRL

Avg. Rank 5.063 4.563 4.063 2.118 3.438 1.688
E

xc
ha

ng
e

R
at

e

96 0.540 0.231 0.277 0.129 0.111 0.107
168 1.018 0.475 0.574 0.245 0.196 0.182
336 1.584 1.099 1.010 0.641 0.409 0.403
672 4.345 2.581 3.711 1.822 0.966 1.526

W
in

d

96 0.754 0.561 0.512 0.511 0.605 0.508
168 0.722 0.559 0.512 0.511 0.601 0.507
336 0.719 0.550 0.502 0.500 0.551 0.496
672 0.717 0.551 0.505 0.503 0.566 0.499

W
ea

th
er 96 0.463 0.459 0.448 0.423 0.494 0.446

168 0.504 0.507 0.494 0.465 0.542 0.483
336 0.544 0.549 0.533 0.499 0.578 0.520
672 0.585 0.600 0.574 0.544 0.647 0.566

IL
I

6 1.917 3.080 4.139 2.064 1.086 1.654
12 2.613 3.609 4.580 2.437 1.820 2.263
48 4.782 4.849 4.619 2.512 2.183 2.624
60 4.798 4.882 4.943 2.741 2.091 2.850

Table 1: Time series forecasting results compared to other represen-
tation learning methods on MSE. H denotes the forecasting horizon.
The best and second-best MSE results are highlighted in underlined
and italicized formatting, respectively.

tailored for time series forecasting, CTRL remains compet-
itively strong. CoST, built upon the TS2Vec [Yue et al.,
2022] framework, captures more relevant features by learn-
ing a composition of trend and seasonal features. Meanwhile,
PatchTST, as indicated by its name, employs patching to time
series based on TST [Zerveas et al., 2021], thereby enhancing
the performance of transformer-based models in long-term
forecasting. However, it’s important to note that both CoST
and PatchTST have limitations in terms of universality, which
will be discussed in later sections.

5.5 Time Series Classification
The evaluation results of classification task are shown in Ta-
ble 2. CTRL performs an average rank of 2.656 and an av-
erage improvement of 2.2% classification accuracy, setting it
apart from all other models. These results demonstrate the
power and robustness of CTRL to capture high-level seman-
tics of time series. Furthermore, we observe that TST and
PatchTST, the transformer-based models trained by recon-
struction task, encounter challenges in capturing high-level
features in excessively long sequences, such as InsectWing-
beatSound and SelfRegulationSCP1. T-Loss [Franceschi et
al., 2019], TS-TCC [Eldele et al., 2021], and TNC [Tonek-
aboni et al., 2021] impose strong inductive biases to select
positive pairs, which ultimately restricts their generalization.
Regarding CoST, as an enhancement to TS2Vec, it notably
improves forecasting tasks but falls short of outperforming
TS2Vec in classification tasks, highlighting the challenge of
excelling in diverse tasks. Additionally, due to its frequency
domain computations, CoST requires consistency in input
lengths between the pre-training and inference phases, con-
straining its universality.

5.6 Time Series Imputation
Table 3 presents the results of imputation task. The imputa-
tion task necessitates the model to uncover underlying tempo-
ral patterns from irregular and partially observed time series.

Figure 3: Accuracy scores with respect to the missing ratios.

CTRL attains the state-of-the-art performance in this chal-
lenging task, with an average MSE improvement of 32.3%.

5.7 Robustness to Missing Data
To further investigate the robustness of CTRL to missing data,
we conduct classification experiments on two datasets and
compare CTRL with two other SOTA models (TS2Vec, TST)
and one variant (CTRL→LSTM) that replaces the NCDE
encoder with LSTM. We randomly mask out observations
for both training set and test set with specific missing rates
of timestamps. Figure 3 illustrates that CTRL maintains
steady performance when feeding data with a large propor-
tion of missing values, while the other models all begin to
decrease. Notably, even with 50% missing values, the accu-
racy of CTRL drops by only 1.1% and 1.6% on PowerCons
and InsectWingbeatSound, respectively.

The robustness of CTRL against missing data can be at-
tributed to two main factors: (1)The NCDE demonstrates
powerful mathematical properties that enable it to effectively
handle irregular time series, operating directly on irregularly
sampled and partially observed data. In contrast, TS2Vec fills
in missing values with 0, while TST uses linear interpola-
tion, both of which may introduce deviations. (2) We employ
a high mask ratio (rm = 0.5) and longer continuous mask
length (lm = 5) to mask raw data during the self-supervised
training stage, thereby enhancing our model’s ability to infer
representations under incomplete contexts. In contrast, TST
has a mask ratio of 0.15 with lm = 3, while TS2Vec ran-
domly masks timestamps on the embedding layer instead of
continuous segments. Although the mask ratio of TS2Vec is
also 0.5, it utilizes a much simpler approach to mask.

In conclusion, CTRL, as a universal framework, exhibits
exceptional robustness to missing data. This characteristic is
crucial in real-world applications where data incompleteness
is common and underscores the practical value of CTRL.

5.8 Ablation Study
In this section, We conduct comprehensive ablation studies to
validate the effectiveness of our key components, which try to
answer the following four research questions (RQs).

• RQ1: How does the proposed dual-task SSL strategy
effectively improve performance and generalizability?

• RQ2: Is our masking augmentation effective and suit-
able for our NCDE-based framework?
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Method DTW TST TS-TCC TNC T-Loss TS2Vec CoST PatchTST CTRL

EthanolConcentration 0.323 0.262 0.285 0.297 0.205 0.308 0.296 0.289 0.319
FaceDetection 0.529 0.534 0.544 0.536 0.513 0.501 0.534 0.501 0.547
FingerMovements 0.530 0.560 0.460 0.470 0.580 0.480 0.470 0.530 0.593
Heartbeat 0.717 0.746 0.751 0.746 0.741 0.683 0.725 0.741 0.722
JapaneseVowels 0.949 0.978 0.930 0.978 0.989 0.984 0.972 0.965 0.976
PEMS-SF 0.711 0.740 0.734 0.699 0.676 0.682 0.791 0.798 0.751
SelfRegulationSCP1 0.775 0.754 0.823 0.799 0.843 0.812 0.816 0.768 0.864
SelfRegulationSCP2 0.539 0.550 0.533 0.550 0.539 0.578 0.539 0.533 0.567
SpokenArabicDigits 0.963 0.923 0.970 0.934 0.905 0.988 0.977 0.904 0.975
UWaveGestureLibrary 0.903 0.575 0.753 0.759 0.875 0.906 0.903 0.438 0.847
Chinatown 0.957 0.936 0.983 0.977 0.951 0.965 0.971 0.921 0.979
ECG5000 0.924 0.928 0.941 0.937 0.933 0.935 0.942 0.957 0.937
ElectricDevices 0.602 0.676 0.686 0.700 0.707 0.721 0.644 0.562 0.732
InsectWingbeatSound 0.355 0.266 0.415 0.549 0.597 0.630 0.592 0.254 0.617
MelbournePedestrian 0.791 0.741 0.949 0.942 0.944 0.959 0.944 0.936 0.951
PowerCons 0.878 0.911 0.961 0.933 0.900 0.961 0.959 0.889 0.994
DodgerLoopDay 0.500 0.200 - - - 0.562 0.585 0.313 0.575
DodgerLoopGame 0.877 0.696 - - - 0.841 0.894 0.674 0.899

Avg. Accuracy
(excl. DodgerLoop*) 0.715 0.693 0.732 0.738 0.744 0.756 0.755 0.687 0.773
Avg. Rank 6.313 6.125 4.750 4.781 5.250 3.875 4.438 6.813 2.656

TS-TCC, TNC and T-Loss cannot handle datasets with missing values, including DodgerLoopDay and DodgerLoopGame.

Table 2: Time series classification results compared to other representation learning methods. The best and second-best accuracy results are
highlighted in underlined and italicized formatting, respectively.

TS-TCC TS2Vec CoST PatchTST CTRL

Avg. Rank 5.000 3.533 3.067 2.400 1.000

E
T

T
m

1

12.5% 0.186 0.130 0.085 0.140 0.036
25.0% 0.210 0.156 0.113 0.085 0.037
37.5% 0.247 0.184 0.142 0.071 0.040
50.0% 0.283 0.215 0.177 0.072 0.044

Avg. MSE 0.232 0.171 0.129 0.092 0.039

E
T

T
h1

12.5% 0.330 0.233 0.166 0.257 0.083
25.0% 0.357 0.271 0.204 0.193 0.095
37.5% 0.429 0.319 0.245 0.200 0.116
50.0% 0.493 0.396 0.304 0.207 0.157

Avg. MSE 0.402 0.305 0.230 0.214 0.113

W
ea

th
er

12.5% 0.240 0.201 0.199 0.206 0.157
25.0% 0.246 0.211 0.212 0.184 0.160
37.5% 0.272 0.228 0.229 0.180 0.168
50.0% 0.290 0.246 0.250 0.188 0.179

Avg. MSE 0.262 0.222 0.223 0.186 0.166

Table 3: Time series imputation results compared to other represen-
tation learning methods on MSE.

• RQ3: How does CTRL benefit from NCDE encoder?
• RQ4: How does the proposed debiased contrasting

framework influence the performance of CTRL and
other time series contrasting learning methods?

RQ1. As shown in Figure 4, we conduct an ablation study
of two parts of our training loss on different datasets across
three benchmark downstream tasks. Reconstruction Only and
Contrast Only train the encoder independently using either
the reconstruction or contrastive learning task, respectively.

Figure 4: Ablation study of dual-task SSL strategy.

In all observed results, CTRL’s dual-task SSL strategy consis-
tently surpasses the single-task SSL approaches. This clearly
validates the effectiveness of integrating both reconstruction
and contrastive learning tasks to acquire richer semantic in-
formation, indeed enhancing the performance and generaliz-
ability of the learned representations.
RQ2. Furthermore, we investigate the impact of varying
data augmentation techniques on CTRL. Figure 5 displays
the classification accuracy outcomes for various data aug-
mentation on ElectricDevices dataset. Replacing our masking
strategy with timestamp-level random masking (→ Bernoulli
Mask) leads to decreased performance, indicating that exces-
sively short masking length diminishes the model’s ability to
capture essential abstract information. Additionally, incorpo-
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Figure 5: Ablation study of different augmentations.

Metrics Dilated CNN LSTM Transf. NCDE

Param. 637K 413K 416K 116K

Elec. Acc. 0.726 0.725 0.570 0.732
Power. Acc. 0.978 0.844 0.833 0.994
Exch. MSE 1.031 0.671 0.411 0.371

Table 4: Ablation study of various backbone encoders.

Random + FNE + HNC + Both (Ours)

CTRL 0.707 0.717 0.718 0.722 (+2.1%)
TS2Vec 0.683 0.710 0.702 0.719 (+5.3%)

Table 5: Ablation study of debiased contrasting.

rating augmentations used in other CL methods, such as jitter,
scaling, permutation [Eldele et al., 2021], and temporal shift-
ing [Liu et al., 2021], also results in performance degradation.
As previously mentioned, these augmentations assume cer-
tain invariance assumptions that do not hold for diverse and
ever-changing distributions of time series. This emphasizes
the robustness of our masking strategy and its compatibility
with our NCDE-based framework, as additional augmenta-
tions appear to adversely affect performance.
RQ3. To justify our choice of the backbone, we replace the
NCDE with the latest popular backbones, including Dilated
CNN [Yue et al., 2022; Woo et al., 2022], LSTM [Tonek-
aboni et al., 2021] and Transformer [Zerveas et al., 2021],
whose settings refer to the default values in their public code.
The classification results on ElectricDevices and PowerCons
and forecasting results on Exchange Rate are shown in Ta-
ble 4. Remarkably, the NCDE exhibits superior performance
despite its notably fewer parameters.
RQ4. We also perform an ablation study to analyse the ef-
ficacy of our debiased contrastive learning framework. We
name different variants of the negative sampling method
in CL as follows: Random utilizes other samples within
the batch as negatives, a practice most frequently used.
+FNE (False Negative Elimination) builds upon the Random
method by integrating our false negative elimination tech-
nique. +HNE (Hard Negative Construction) enhances Ran-
dom by incorporating our hard negative construction strat-
egy. +Both includes constructing hard negatives and execut-
ing false negative elimination on all negative samples. Ta-
ble 5 presents classification accuracy results from different

Tasks Forecasting Classification Imputation

Metric Avg. MSE Avg. Acc. Avg. MSE

LSTM 2.105 0.542 0.989
TCN 1.587 0.723 0.516
Informer 1.550 0.741 0.071
Autoformer 0.613 0.622 0.051
FEDfromer 0.519 0.661 0.061
DLinear 0.354 0.726 0.093
TimesNet 0.416 0.747 0.027
CTRL 0.412 0.727 0.039

Table 6: CTRL results compared to supervised methods.

variants on the Heartbeat dataset. The results show that each
operation, whether FNE or HNC, independently contributes
to enhancement, and their combined application results in
superior overall performance. Moreover, our debiased con-
trastive learning framework demonstrates broad applicabil-
ity to other time series contrastive learning methods. When
applied to TS2Vec model, our +Both variant yields a 5.3%
performance improvement compared to its original version
(Random). Considering the periodic nature of time-series
data and inter-time series correlations, random negative sam-
pling often results in numerous false negatives. Hence, false
negative elimination becomes crucial for time series data. Ex-
periments indicate that our FNE takes up only 0.413% of total
training time. At the same time, our hard negative construc-
tion method supplements the negative sample set to prevent
the quantity of negatives from diminishing excessively.

5.9 Compared to Supervised Methods
We further compare CTRL with end-to-end supervised meth-
ods. Table 6 summarizes the average metrics of forecasting
results on the Exchange Rate dataset, classification results
on 8 datasets, and imputation results on the ETTm1 dataset.
CTRL obtains remarkable performance, ranking second in
forecasting and imputation tasks, while also displaying com-
petitive performance in classification tasks. These strongly
support the representation learning capability of CTRL.

6 Conclusion
In this work, we proposed, for the first time, an NCDE-based
framework for universal representation learning of time se-
ries, named CTRL. The evaluation of the learned represen-
tations on time series classification, forecasting and imputa-
tion tasks demonstrated the universality and effectiveness of
CTRL. Remarkably, CTRL showed superior stability when
handling missing data compared to existing SOTA methods.
The universality of CTRL makes it a promising candidate
with ample potential for various applications and future re-
search endeavors.
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