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Abstract
Cross-modal hashing (CMH) has been widely used
for multi-modal retrieval tasks due to its low stor-
age cost and fast query speed. Although exist-
ing CMH methods achieve promising performance,
most of them mainly rely on coarse-grained super-
vision information (i.e., pairwise similarity matrix)
to measure the semantic similarities between all in-
stances, ignoring the impact of multi-label distri-
bution. To address this issue, we construct fine-
grained semantic similarity to explore the cluster-
level semantic relationships between multi-label
data, and propose a new dual semantic fusion hash-
ing (DSFH) for multi-label cross-modal retrieval.
Specifically, we first learn the modal-specific repre-
sentation and consensus hash codes, thereby merg-
ing the specificity with consistency. Then, we fuse
the coarse-grained and fine-grained semantics to
mine multiple-level semantic relationships, thereby
enhancing hash codes discrimination. Extensive
experiments on three benchmarks demonstrate the
superior performance of our DSFH compared with
16 state-of-the-art methods.

1 Introduction
In the era of informatization, retrieving relevant instances
from vast amounts of multi-modal data [Xu et al., 2024],
such as videos, images, and text, has become a great chal-
lenge. Cross-modal retrieval (CMR) [Wang et al., 2023;
Liu et al., 2024] aims to query semantically related data of
other modalities by providing data in one modality, which
becomes considerable attention. Early CMR methods [Ran-
jan et al., 2015; Wang et al., 2016] tend to learn a unified
real-valued representation for each instance to eliminate het-
erogeneity across modalities. Nevertheless, the explosive
growth in data volumes brings these methods to the bottle-
neck of query efficiency. Due to the advantages of retrieval
efficiency and storage cost, cross-modal hashing (CMH) [Sun
et al., 2023a; Sun et al., 2024a] exhibits significant potential
in processing massive-scale data. CMH aims to project high-
dimensional features into compact hash codes in the Ham-

∗Corresponding author.

ming space, thereby measuring the similarities between all
instances through the Hamming distances.

In recent years, numerous supervised CMH methods [Zhu
et al., 2024; Sun et al., 2024b] have been proposed to im-
prove retrieval performance. They can be broadly categorized
into two types: label matrix supervision [Xu et al., 2017;
Shen et al., 2021] and pairwise semantic supervision [Luo
et al., 2018; Liu et al., 2019]. Pairwise semantic super-
vision methods adopt pairwise similarity matrices to esti-
mate instance-level semantic relationships, thereby provid-
ing more semantic guidance. Therefore, they obtain more
promising performance. However, they still face some limi-
tations. The existing CMH methods always adopt relatively
coarse-grained supervision information (i.e., instance-level
semantic relationship) to guide hashing learning. In other
words, they ignore the intrinsic multi-label semantic corre-
spondences, which makes it difficult to excavate more seman-
tics. For example, as shown in Fig.1, we have three labels A
[1,0,0,1], B [0,1,0,1], and C [1,0,1,0], and the number of their
corresponding instances are 5, 50, and 5, respectively. Ac-
cording to the instance-level semantic relationship, the simi-
larity between A and B and between A and C is equal. Since
B contains a larger number of instances, the more relevant
instances could be retrieved if the instances from A are se-
mantically closer to ones from B. However, it is a great chal-
lenge how to construct a fine-grained semantic relationship to
enhance the expression of semantic information.
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Figure 1: The semantic relationships of multi-label data. From the
instance-level semantic view, label A has equivalent similarity to
B and C, while B and C are deemed an irrelevant pair. However,
since B has more instances, the semantic distance between A and B
should be decreased, whereas between A and C should be increased.
This fine-grained semantic similarity can more accurately measure
the semantic relationships between multi-label data.
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To address the above issues, we propose a dual seman-
tic fusion hashing (DSFH) framework for multi-label cross-
modal retrieval. Our DSFH explores the multi-level seman-
tic information from multi-label data, and further fuses both
the coarse-grained and fine-grained semantic relationships,
thereby making the learned hash codes more discriminative.
Specifically, as shown in Fig.2, we first learn the modality-
specific representations to preserve the consistency and speci-
ficity of all modalities to some extent. Then, we adopt K-
Means label clustering to capture finer-grained cluster-level
relationships between instances. Finally, we fuse the coarse-
grained and fine-grained supervision information to guide
consensus hashing learning, thereby generating discrimina-
tive hash codes. Overall, the main contributions of this paper
are summarized as follows:

• We propose a new dual semantic fusion hashing (DFSH)
that fully exploits the multi-level semantic information
in multi-label multi-modal data. To the best of our
knowledge, this is the first work to simultaneously con-
sider the coarse-grained and fine-grained semantic rela-
tionships for multi-label cross-modal hashing.

• We establish the cluster-level semantic relationship to
capture finer-grained similarities between different in-
stances, thereby promoting that all instances with simi-
lar semantics could be clustered together.

• Extensive experiments demonstrate that our DFSH out-
performs all state-of-the-art comparison methods on
three benchmarks.

2 Related Work
2.1 Label Matrix Supervision Methods
Label matrix supervision Methods [Xu et al., 2017; Wang
et al., 2019; Sun et al., 2023b] typically adopt the class
label as semantic information to guide hashing learning,
thereby improving the discriminative of the learned hash
codes. For example, scalable discrete matrix factorization
hashing (SCRATCH) [Chen et al., 2020] learns a common
latent representation by incorporating original features and
labels, thereby generating unified hash codes. To more accu-
rately explore the correlation of heterogeneous data, discrete
semantic matrix factorization hashing (DSMFH) [Qin et al.,
2021] performs matrix factorization on labels to obtain la-
tent specific representations, then learns hash codes based on
these latent representations. To alleviate the interference of
noisy labels, robust and discrete matrix factorization hash-
ing (RDMH) [Zhang and Wu, 2022] directly associates hash
codes with the label matrix and introduces the l2,1-norm to
enhance its robustness.

2.2 Pairwise Semantic Supervision Methods
To fully reflect the semantic information between instances,
pairwise semantic supervision methods [Zhang and Li, 2014;
Lin et al., 2015; Teng et al., 2023] adopt the n× n similarity
matrix to capture semantic similarities between all instances.
For example, fast cross-modal hashing (FCMH) [Wang et al.,
2022] constructs both global and local similarity matrices to
guide hash codes learning. However, the n × n similarity

matrix could lead to high computational cost. To this end,
scalable asymmetric discrete cross-modal hashing (BATCH)
[Wang et al., 2021] adopts labels to construct pairwise simi-
larity, thereby avoiding the use of the large n × n similarity
matrix. To explore potential semantic correlations of multi-
label data, adaptive label correlation based asymmetric dis-
crete hashing (ALECH) [Li et al., 2023] proposes adaptive
label correlation to fully utilize the latent label information.

Although the existing CMH methods have obtained
promising performance, most of them ignore cluster-level
semantic relationships in multi-labels. Traditional coarse-
grained semantic similarity makes it difficult to fully mine
the correlations of multi-label data.

3 Proposed Method
3.1 Notations
Given a multi-modal dataset {V t}Mt=1 with M modalities, we
denote V t = [vt

1,v
t
2, · · · ,vt

n] ∈ Rdt×n as the training data
of the t-th modality, where n is the number of instances, and
dt is the corresponding feature dimensionality. To capture the
nonlinear features from original multi-modal data, we em-
ploy the radial basis function (RBF) kernel [Liu et al., 2012]
on V t. Therefore, the kernelized features of t modality can
be denoted as Xt = [exp(

∥xt
i−at

1∥
2
2

−2σ2 ), · · · , exp(∥x
t
i−at

h∥
2
2

−2σ2 )].
Where {at

1,a
t
2, · · · ,at

h} are h anchors randomly selected
from V t, and σ is the kernel width. In addition, Y =
[y1,y2, · · · ,yn] ∈ Rc×n denotes the ground truth labels,
where yi ∈ {0, 1}c×1 is the label vector of every instance,
c is the number of categories. We define yij = 1 if the j-th
instance belongs to i-th category, otherwise yij = 0.

3.2 Model Formulation
Most existing methods emphasize extracting the shared in-
formation from different modalities to directly learn consen-
sus hash codes. However, they unconsciously neglect private
semantic information from each modality. To this end, we
first learn modality-specific representations Ht to maximally
preserve the intrinsic semantic correlations of each modality.
Then, we adopt the cosine similarity between the correspond-
ing labels of the instances to capture instance-level semantic
relationships, i.e., SI = Y ⊤Y . Further, to bridge the hetero-
geneity gaps across different modalities, we propose a con-
sistency learning strategy to learn consensus hash codes B
under the guidance of the supervision information. In addi-
tion, we add two strong constraints, i.e., (Ht)⊤Ht = nI and
(Ht)⊤1 = 0, for the bit decorrelation and bit balance. Math-
ematically, we can obtain the following objective function:

min
Ht,W t,B

M∑
t=1

∥Ht −W tXt∥2 + α∥B⊤Ht − rY ⊤Y ∥2

s.t. (Ht)⊤1 = 0, (Ht)⊤Ht = nI,

(W t)⊤W t = I,B ∈ {−1, 1}r×n,
(1)

where α is the trade-off parameter, r is the bit length.
Most of the existing methods adopt the pairwise similar-

ity matrix to estimate instance-level semantic relationships.
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Figure 2: The basic framework of our DSFH. DSFH first learns modality-specific representations to preserve the private semantics of different
modalities. Further, DSFH constructs both instance-level and cluster-level semantic relationships for multi-label data. Finally, we fuse both
coarse-grained and fine-grained semantics as multi-grained supervision to guide the learning of consensus hash codes.

Since multi-label multi-modal data contains more complex
semantic relationships, it is difficult to mine deeper seman-
tic information by solely relying on coarse-grained instance-
level semantic supervision SI . As shown in Fig.1, when
the instance-level semantic similarity between label A and
other labels is identical, we hope A to be closer to the la-
bel containing more instances. This proximity increases the
likelihood of retrieving more relevant instances, leading to
more accurate results. To this end, we introduce the fine-
grained semantics SC to capture the cluster-level semantic
relationships, thereby improving the retrieval performance.
Hence, we adopt label distribution to explore which labels
should be in close proximity or clustered together. Specifi-
cally, we regard the labels Y as the new features and con-
duct the K-Means algorithm to obtain cluster distribution
L = [l1, l2, · · · , ln] ∈ Rk×n. Note k is the number of clus-
ters and li ∈ {0, 1}k×1 indicates the cluster assignment of the
i-th instance. We further construct the cluster-level semantic
similarity relationships by SC = L⊤L. To be specific, we
have

Sij
C =

{
1, if C(i, j) = 1
0, otherwise , (2)

where C(i, j) = 1 represents that the i-th label and j-th label
are from the same cluster.

After constructing the instance-level and cluster-level se-
mantic relationships, we propose a dual semantic fusion
learning strategy to ensure the consensus hash codes can en-
code multi-level semantics. Specifically, we fuse both coarse-
grained semantics and fine-grained semantics to simultane-
ously supervise the learning of hash codes. The joint seman-
tics can be denoted as

SJ = Y ⊤Y + γL⊤L s.t.Y ∈ Rc×n,L ∈ Rk×n. (3)

We believe the cluster-level and instance-level semantics
should be equally important in the joint semantic relation-
ship. Hence, we set the adjusted factor γ to 1. Afterwards,

we can obtain the overall objective function as follows:

min
Ht,W t,B

M∑
t=1

∥Ht −W tXt∥2

+ α∥B⊤Ht − r(Y ⊤Y +L⊤L)∥2

s.t. (Ht)⊤1 = 0, (Ht)⊤Ht = nI,

(W t)⊤W t = I,B ∈ {−1, 1}r×n.

(4)

In general, we introduce the concept of fine-grained seman-
tics to distinguish which instance semantic relationships need
to be emphasized. Fine-grained semantics can provide supe-
rior supervision information, especially when the instance-
level semantic relationships between labels are the same.
As shown in Fig.1, such fine-grained supervision informa-
tion ensures that more instances can be retrieved. Therefore,
our DSFH exhibits the following advantages: 1) It preserves
both intra-modal specificity and inter-modal consistency. 2)
It reveals the complex semantic relationships in multi-label
data, thereby enhancing the discriminative ability of consen-
sus hash codes.

3.3 Optimization
Since the proposed objective function is non-convex and in-
volves three variables, we design an alternating optimization
strategy to solve this model. In other words, we update one
variable while keeping the others fixed.
▶W t-Step: Fixing the other variables but W t, the W t step
can be simplified as follows:

min
W t

M∑
t=1

∥Ht −W tXt∥2 s.t. (W t)⊤W t = I. (5)

Afterwards, Eq.5 can be expressed as the trace form, i.e.,

max
(W t)⊤W t=I

tr((W t)⊤Ht(Xt)⊤). (6)
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Since the orthogonal constrain, we perform the singular value
decomposition (SVD) on Ht(Xt)⊤, i.e.,

Ht(Xt)⊤ = P tΣ(Qt)⊤, (7)

where P t and Qt are the left and right singular values, re-
spectively. Therefore, we can obtain W t as follows:

W t = P t(Qt)⊤. (8)

▶ Ht-Step: To optimize Ht, we fix the other two variables
and obtain the following sub-problem,

min
Ht

M∑
t=1

∥Ht −W tXt∥2

+ α∥B⊤Ht − r(Y ⊤Y +L⊤L)∥2

s.t. (Ht)⊤1 = 0, (Ht)⊤Ht = nI.

(9)

Then, we can simplify Eq.9 as

max
Ht

tr(Gt(Ht)⊤)

s.t. (Ht)⊤1 = 0, (Ht)⊤Ht = nI,
(10)

where Gt = W tXt + αrH(Y ⊤Y + L⊤L). To avoid the
large n × n matrices (i.e., Y ⊤Y ,L⊤L) to reduce both the
time and space costs, we can obtain

Gt = W tXt + αr(HY ⊤Y +HL⊤L). (11)

Then, we define U = In − 1
n1n1

⊤
n and compute eigende-

composition on GtU(Gt)⊤ as follows:

GtU(Gt)⊤ =
[
Zt Ẑt

] [
Θt 0
0 0

] [
Zt Ẑt

]⊤
, (12)

where Θt ∈ Rl×l, Zt ∈ Rr×l, and l denotes the rank of
GtU(Gt)⊤. By adopting the Gram-Schmidt process on Ẑt,
we can obtain Z̃t ∈ Rr×(r−l).To solve Ht, we further define
J t = U(Gt)⊤Zt(Θt)−1/2 ∈ Rn×l and a random orthogo-
nal matrix J̃ t ∈ Rn×(r−l). Therefore, the final optimization
equation of Ht can be written as:

Ht =
√
n
[
Zt Z̃t

] [
J t J̃ t

]⊤
. (13)

Notably, Ẑt, Z̃t and J̃ t are empty when r = l.
▶ B-Step: Removing irrelevant variables, we can optimize
B as follows:

min
B

M∑
t=1

α∥B⊤Ht − r(Y ⊤Y +L⊤L)∥2

s.t. B ∈ {−1, 1}r×n.

(14)

Then, Eq.14 can be represented as the trace form

max
B

tr(αr(
M∑
t=1

Ht(Y ⊤Y +L⊤L))B⊤). (15)

Finally, we can obtain the optimal solution B, i.e.,

B = sgn(αr
M∑
t=1

(HtY ⊤Y +HtL⊤L)). (16)

3.4 Out-of-Sample Extension
To achieve out-of-sample extension, we further learn
modality-specific hash function F t by the learned hash codes
B. Afterwards, we adopt the following linear regression, i.e.,

min
F t

M∑
t=1

∥B − F tXt∥2 + λ∥F t∥2. (17)

where λ is a hyper-parameter to avoid the trivial solution.
Then, the hash function F t can be solved as follows:

F t = B(Xt)⊤(Xt(Xt)⊤ + λI)−1. (18)

Given a new query Xt
q , we can directly obtain the corre-

sponding hash codes Bt
q of each modality, i.e.,

Bt
q = sgn(F tX̂t

q). (19)

where X̂t
q is the RBF kernelized features of Xt

q .

3.5 Time Complexity Analysis
The time complexity of our proposed DSFH mainly depends
on three steps, i.e., costs of updating W t, Ht, and B. In
every iteration step, the time complexity for calculating the
three variables is about O(rhn+ r2h), O(rhn+ rcn+ r3),
and O(rn), respectively. Therefore, the total time complexity
is roughly O(rhn+r2h+rcn+r3+rn). Since r, h, c ≪ n,
the time complexity is approximately O(n), which is linear
to the size of training data.

4 Experiments
4.1 Datasets
To evaluate the effectiveness of the proposed DSFH,
we conduct numerous experiments on three benchmarks.
MIRFlickr-25K [Huiskes and Lew, 2008] has 25,000 image-
text pairs sourced from the Flickr website. Each image and
text are characterized by a 512-dimensional GIST vector and
a 1386-dimensional BOW vector, respectively. In our experi-
ments, we select the instances associated with a minimum of
20 textual labels, resulting in 20,015 instances. Further, we
randomly choose 2,000 instances as the query set, while the
remaining image-text pairs constitute the training set. IAPR-
TC12 [Escalante et al., 2010] consists of 20,000 geographical
images belonging to 255 categories. The features for the im-
ages and textual descriptions are 512-dimensional GIST vec-
tors and 2912-dimensional BOW vectors, respectively. In our
experiments, we randomly select 2,000 instances from the en-
tire dataset to form the query set, and the remaining instances
are used for the training set. NUS-WIDE [Chua et al., 2009]
contains 269,648 image-text pairs, where each image is se-
mantically associated with one or more of the 81 textual la-
bels. The image instances are represented as 500-dimensional
SIFT vectors, while the textual descriptions are represented
as 1000-dimensional binary tagging vectors. In our exper-
iments, we deliberately choose 184,710 data pairs with the
top 10 most frequent class labels. We randomly select 1,867
data pairs as the query set and the remains as the training set.
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Task Method MIRFlickr-25K IAPR-TC12 NUS-WIDE

8-bit 16-bit 32-bit 64-bit 8-bit 16-bit 32-bit 64-bit 8-bit 16-bit 32-bit 64-bit

Img2Txt

RFDH 58.25 58.46 58.28 58.22 35.32 44.85 45.53 45.83 34.54 47.33 57.76 58.32
LCMFH 67.44 69.86 70.88 69.49 32.69 42.73 44.70 45.69 55.52 63.18 64.21 64.87
MTFH 65.82 72.45 73.12 73.64 47.14 48.32 50.45 51.98 / / / /
FCMH 72.59 73.69 75.20 75.15 46.25 49.48 51.70 53.20 64.66 65.82 66.40 67.20
FDDH 70.38 72.97 73.33 75.81 44.37 48.04 52.29 53.89 59.75 62.07 65.79 68.60
BATCH 71.63 73.31 73.69 74.10 44.91 48.05 50.40 52.62 63.17 65.72 66.49 67.47
EDMH 71.18 73.22 73.87 74.00 46.39 49.86 50.85 52.43 64.56 65.83 67.16 67.44
DAH 70.32 72.33 72.46 72.63 43.40 44.72 48.15 52.01 62.63 63.58 66.29 66.31
ALECH 71.95 73.54 74.00 74.28 45.68 48.30 50.35 52.07 65.02 66.08 67.85 68.22
WASH 71.18 72.53 72.72 73.03 46.75 48.25 51.00 53.45 62.45 64.04 64.18 63.34
AMSH 72.56 73.78 74.29 74.89 46.81 49.05 51.62 53.66 64.63 65.37 67.60 67.34
DSFH 74.62 75.41 75.13 76.66 50.53 52.81 54.64 56.73 67.92 68.07 67.94 69.34

Txt2Img

RFDH 58.64 57.66 57.97 57.85 34.83 45.52 46.40 57.54 35.48 53.66 58.22 62.73
LCMFH 70.93 74.48 74.65 74.15 34.69 49.86 53.68 56.42 58.43 67.08 72.23 73.64
MTFH 69.42 79.44 81.73 80.24 52.27 57.36 60.92 62.33 / / / /
FCMH 79.76 81.75 83.57 83.69 53.47 58.50 61.92 65.13 75.57 77.64 78.84 80.76
FDDH 74.53 78.09 79.45 82.54 49.33 55.16 61.14 65.00 70.20 74.79 77.98 81.58
BATCH 79.01 80.65 81.35 82.05 52.75 57.77 61.85 64.88 76.57 77.58 79.41 80.20
EDMH 79.59 81.53 82.61 83.20 53.61 58.70 60.53 63.53 73.12 78.50 79.61 79.64
DAH 77.47 79.20 81.03 81.55 49.80 54.75 58.17 61.17 73.82 77.45 78.05 79.09
ALECH 78.06 80.75 81.73 82.15 52.55 57.74 61.44 64.61 76.26 77.64 78.89 79.77
WASH 76.69 78.53 79.59 79.77 50.89 54.25 61.50 65.02 73.31 77.70 80.39 81.09
AMSH 80.12 81.69 82.90 82.86 53.89 58.87 62.98 66.32 77.05 78.46 80.12 80.83
DSFH 80.89 82.60 82.58 84.25 56.46 61.03 64.56 67.55 78.56 80.69 81.19 82.58

Table 1: Performance comparison (mAP) of DSFH and baselines on three datasets.

Method Img2Txt Txt2Img

16-bit 32-bit 64-bit 16-bit 32-bit 64-bit

DADH 80.20 80.72 81.79 79.20 79.59 80.64
MDCH 80.63 81.66 82.32 80.48 82.15 83.37
DMFH 78.02 79.19 79.46 79.78 80.97 81.01
DCMHT 82.63 82.72 84.41 81.16 81.37 82.81
CMGCAH 79.01 80.30 81.23 78.23 79.32 80.45

ALECHcnn 83.23 84.55 85.12 80.93 82.16 82.55
WASHcnn 81.60 82.21 82.70 79.47 79.94 80.51
AMSHcnn 84.52 85.66 86.21 81.80 83.21 83.51
DSFHcnn 84.93 85.97 86.35 82.45 83.71 84.01

Table 2: Performance comparison (mAP) of DSFH and other deep
methods on MIRFlickr-25K.

4.2 Baselines and Evaluation Metrics
To comprehensively evaluate our proposed DSFH, we com-
pare DSFH with 16 competitive baselines. They are 11 shal-
low CMH methods (i.e., RFDH [Wang et al., 2017], LCMFH
[Wang et al., 2018], MTFH [Liu et al., 2019], FCMH [Wang
et al., 2022], FDDH [Liu et al., 2022], BATCH [Wang et
al., 2021], EDMH [Chen et al., 2022], DAH [Zhang et al.,
2023b], ALECH [Li et al., 2023], WASH [Zhang et al.,
2023a] and AMSH [Luo et al., 2023]) and 5 deep CMH meth-
ods (DADH [Bai et al., 2020], MDCH [Lin et al., 2021],
DMFH [Nie et al., 2021], DCMHT [Tu et al., 2022], and

CMGCAH [Ou et al., 2023]). Following the common eval-
uation metrics in the CMR field, we adopt the Mean Aver-
age Precision (mAP), the Precision-Recall (PR) curve, and
the Precision at Top-N (Precision@TopN) curve to show the
performance of the proposed DSFH.

4.3 Experimental Setup
In our experiments, we adopt two common CMR tasks (i.e.,
Img2Txt and Txt2Img) to validate the performance of all
competition methods. Img2Txt and Txt2Img represent us-
ing images to retrieve relevant texts and using texts to re-
trieve relevant images, respectively. Experimentally, we set
hash lengths from 8 to 64 bits. The number of anchors for
RBF is set to 1500, and the maximum iteration step is set to
10. The hyper-parameters α and λ are set to {10−3, 10−3},
{10−4, 10−3}, and {10−4, 10−4} for MIRFlickr-25K, IAPR-
TC12, and NUS-WIDE, respectively. In addition, the num-
ber of clusters k is 400, 300, and 400 for three datasets, re-
spectively. For fair comparisons, the experimental settings of
all baselines are consistent with those reported in the orig-
inal papers. To comprehensively evaluate the retrieval per-
formance, we conduct extensive experiments on a Windows
server equipped with 64GB of RAM.

4.4 Comparison with Shallow Baselines
To show the effectiveness of the proposed DSFH, we com-
pare our method with 11 shallow baselines on three bench-
mark datasets. The mAP scores of all methods with differ-
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Figure 3: PR curves with 8 bits on NUS-WIDE.
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Figure 4: Precision@TopN curves with 8 bits on NUS-WIDE.

ent hash lengths are reported in Table 1. Additionally, Fig.3
and Fig.4 depict the corresponding PR curves and the Preci-
sion@TopN curves on the NUS-WIDE dataset, respectively.
Note here that we cannot perform MTFH on the NUS-WIDE
dataset due to being out of memory. According to the ex-
perimental results, we can obtain the following observations:
1) Clearly, our DSFH outperforms nearly all baselines under
various experimental conditions. Specifically, For Img2Txt
tasks with different hash lengths, the improvement of the re-
trieval performance ranges from a minimum of 0.34% to a
maximum of 3.76%. For Txt2Img tasks with different hash
lengths, the gains of the retrieval performance are between
0.77% and 2.65%. Such improvements could be attributed
to the dual semantic fusion scheme in DSFH, which can en-
hance the discriminative ability of hash codes.

2) DSFH boasts the largest area under the PR curves,
which indicates that DSFH achieves optimal performance in
all cases. Moreover, the Precision@TopN curves show that
DSFH maintains high precision with different N values. Note
here that DSFH appears to be inferior to AMSH in Fig.4(b).
This could be because AMSH introduces the adaptive margin
matrix factors on semantic labels, thereby alleviating the rigid
zero-one linear regression.

3) In general, the performance of all methods on Txt2Img
tasks surpasses that of Img2Txt tasks. This discrepancy could
be attributed to the text features having more discriminative
semantics, whereas image features are relatively more ab-
stract. In addition, the mAP scores for all methods increase
with the length of hash codes because longer hash codes can
encode more information.

4.5 Comparison with Deep Baselines
To further show the performance of our DSFH, we compare
it with several shallow methods with deep features and deep
methods on the MIRFlickr-25K dataset. The mAP results are

shown in Table 2. Specifically, the first five rows represent
the latest deep methods, and the latter four rows correspond
to shallow methods fed with deep features. The deep image
features are 4096-dimensional vectors extracted by the pre-
trained CNN-F model [Chatfield et al., 2014]. In general,
although DSFHcnn is not an end-to-end deep method, it still
outperforms these comparison methods. This could be be-
cause DSFHcnn can encode the more semantic information
of multi-label data into the discriminative hash codes.

Method MIRFlickr-25K IAPR-TC12 NUS-WIDE

8-bit 64-bit 8-bit 64-bit 8-bit 64-bit

RFDH 24.29 76.38 58.32 118.16 162.62 624.46
LCMFH 1.63 3.42 8.43 16.32 11.17 27.89
MTFH 16.53 190.24 46.37 326.51 / /
FDDH 7.57 27.81 22.87 28.59 82.51 307.64
BATCH 0.18 0.58 0.25 0.83 1.80 3.51
EDMH 1.84 9.63 5.85 22.86 11.15 69.11
DAH 0.13 0.59 0.33 0.88 0.78 5.56
ALECH 0.62 1.15 1.06 1.92 3.31 9.15
WASH 1.65 2.92 3.58 6.65 11.54 23.39
AMSH 3.33 6.93 3.82 8.13 28.66 59.84
DSFH 0.57 1.54 0.56 1.79 4.70 17.00

Table 3: Training time (seconds) of different methods with 8-bit and
64-bit hash codes on three datasets.

4.6 Parameter Analysis
In this section, we perform experiments to explore the pa-
rameter sensitivity of our DSFH, i.e., α, λ, and k. α is the
trade-off coefficient that balances cross-modal consistency
and specificity. λ is the regularization parameter, and k is
the number of clusters for K-Means. Experimentally, we set
the parameters α and λ to vary from 10−4 to 102 and from
10−4 to 10−1, respectively. In addition, we set the k value as
{100, 200, 300, 400, 500}. To study the effects of these pa-
rameters, we adopt the grid search method to obtain the op-
timal parameters. Firstly, we employ the grid search method
to vary the α and λ values. The corresponding mAP results
on NUS-WIDE are shown in Fig.5. Notably, DSFH shows
strong retrieval performance under a large range of α and λ
values. In addition, The mAP results with various k values
on NUS-WIDE are shown in Fig.6. It can be observed that
the mAP curves exhibit a uni-modal trend. If the value k is
too small, the clustering result could not capture the struc-
ture of the label distribution. Conversely, if the value k is too
large, the clustering results may be too fine-grained, which
leads to meaningless clustering redundancy. Therefore, we
can choose the optimum k to obtain the best performance.

4.7 Time Cost Analysis
To further demonstrate the training efficiency of our DSFH,
we show the training time of all methods with 8 and 64 bits
on the three datasets in Table 3. Compared to most base-
lines, DSFH offers some computation advantages, mainly for
two reasons: 1) Only using simple matrix operations to op-
timize the overall hash model. 2) Avoiding the usage of the
large n× n pairwise similarity matrix. However, the training
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Task Method MIRFlickr-25K IAPR-TC12 NUS-WIDE

8-bit 16-bit 32-bit 64-bit 8-bit 16-bit 32-bit 64-bit 8-bit 16-bit 32-bit 64-bit

Img2Txt
DSFH-w/o ISP 60.12 61.70 59.86 58.99 34.31 33.41 33.77 33.99 52.87 52.18 52.97 52.90
DSFH-w/o CSP 72.87 74.00 74.50 74.79 49.60 52.58 53.85 55.70 66.46 67.54 67.88 68.20
DSFH-full 74.62 75.41 75.13 76.66 50.53 52.81 54.64 56.73 67.92 68.07 67.94 69.34

Txt2Img
DSFH-w/o ISP 61.15 62.55 61.82 61.38 35.72 35.22 36.01 36.96 62.25 60.83 60.94 61.38
DSFH-w/o CSP 79.73 81.41 82.27 82.90 55.40 60.71 63.89 66.91 76.99 79.71 80.73 81.29
DSFH-full 80.89 82.60 82.58 84.25 56.46 61.03 64.56 67.55 78.56 80.69 81.19 82.58

Table 4: Performance comparison (mAP) of DSFH and its variants on three datasets.

(a) Img2Txt (b) Txt2Img

Figure 5: Sensitivity analysis of DSFH with 8 bits for parameters α
and λ on NUS-WIDE.
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Figure 6: Sensitivity analysis of DSFH with 8 bits for parameter k
on NUS-WIDE.

time of DSFH is slower than that of DAH and BATCH. This
could be because DAH and BATCH directly learn the com-
mon latent representations of all modalities and ignore fine-
grained semantic information. In summary, DSFH remains
highly competitive in terms of training time cost.

4.8 Convergence Analysis
We conduct the experiments to analyze the convergence prop-
erties of the proposed DSFH. Specifically, we draw the curves
of the objective value and mAP scores with respect to itera-
tion steps on NUS-WIDE in Fig.7. We can conclude the fol-
lowing observations: 1) The objective value decreases rapidly
within the five iterations, and then converges to approxi-
mately zero and remains stable after the 10-th iteration. 2)
The mAP curves of Txt2Img and Img2Txt tasks both steadily
ascend with the iteration steps. Then, DSFH reaches the high-
est mAP score within the 10-th iteration. In general, these
results demonstrate that DSFH enjoys both rapid initial con-
vergence and subsequent stable characteristics.
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Figure 7: Convergence analysis with 8 bits on NUS-WIDE.

4.9 Ablation Experiments
Our proposed DSFH has two primary modules, i.e., instance-
level semantic preservation (ISP) and cluster-level semantic
preservation (CSP). Therefore, we meticulously design two
variants, namely DSFH-w/o ISP and DSFH-w/o CSP. Com-
pared to the original objective function in Eq.4, the variant
DSFH-w/o ISP removes the L⊤L term, and the DSFH-w/o
CSP removes Y ⊤Y term, respectively. As shown in Table 4,
we can observe that DSFH-w/o ISP exhibits a notable per-
formance degradation of over 10%, because instance-level
semantics offer the primary supervision in hash codes learn-
ing. In addition, DSFH-w/o CSP exhibits about 1% of perfor-
mance degradation, which indicates the cluster-level seman-
tic relationship can capture finer-grained semantics in multi-
labels, thereby enhancing the retrieval performance.

5 Conclusion
In this paper, we propose a novel dual semantic fusion hash-
ing (DSFH) for multi-label cross-modal retrieval. We first
propose modality-specific learning and consensus hashing
learning to preserve the intrinsic consistency and specificity
across different modalities. Then, we utilize label distribu-
tion to construct cluster-level semantic relationships, thereby
exploring finer-grained semantic similarities between all in-
stances. Finally, we propose a dual semantic fusion learning
strategy that embeds both the coarse-grained and fine-grained
semantics into consensus hash codes, thereby simultaneously
preserving instance-level and cluster-level semantic relation-
ships. Extensive experiments on three benchmarks demon-
strate the outstanding performance of DSFH compared with
state-of-the-art CMH baselines.
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