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Abstract
Recognizing domain generalization as a common-
place challenge in machine learning, data distri-
bution might progressively evolve across a con-
tinuum of sequential domains in practical scenar-
ios. While current methodologies primarily con-
centrate on bolstering model effectiveness within
these new domains, they tend to neglect issues
of fairness throughout the learning process. In
response, we propose an innovative framework
known as Disentanglement for Counterfactual
Fairness-aware Domain Generalization (DCFDG).
This approach adeptly removes domain-specific in-
formation and sensitive information from the em-
bedded representation of classification features. To
scrutinize the intricate interplay between semantic
information, domain-specific information, and sen-
sitive attributes, we systematically partition the ex-
ogenous factors into four latent variables. By incor-
porating fairness regularization, we utilize seman-
tic information exclusively for classification pur-
poses. Empirical validation on synthetic and au-
thentic datasets substantiates the efficacy of our
approach, demonstrating elevated accuracy levels
while ensuring the preservation of fairness amidst
the evolving landscape of continuous domains.

1 Introduction
The distribution shifts across sequential data domains drive
the need for machine learning models with evolving domain
generalization capabilities [Wang et al., 2022]. It requires
the development of models in learning invariant representa-
tions across distinct temporal periods, consequently enhanc-
ing generalization to evolving data distributions. The tem-
poral alignment between source and target domains [Zeng
et al., 2023] contributes to adaptive machine learning solu-
tions, which prove indispensable in dynamic environments or
evolving data streams.

∗This paper is supervised by Chen Zhao and Minglai Shao.
†Corresponding author.

As methodologies extend domain generalization to contin-
uously evolving environments, there is a tendency to prior-
itize accuracy, neglecting equitable model treatment across
novel domain sequences. Fairness, a significant concern in
machine learning, cannot be disregarded. Sensitive features,
containing protected information, include attributes like race,
gender, religion, or socioeconomic status, safeguarded by
ethical considerations, legal regulations, or societal norms.
For instance, during the COVID-19 pandemic, systemic al-
gorithms exhibited discrimination against African American
individuals in bank loans [Miller, 2020]. Causal models
have been widely applied in machine learning to address is-
sues related to model fairness. Structural Causal Models
(SCMs) [Hitchcock and Pearl, 2001] provide a means of
explaining machine learning model predictions. Analyzing
causal graphs and paths helps understand how the model’s
predictions for different groups are formed, thereby iden-
tifying and addressing potential unfair factors. Simultane-
ously, to analyze fairness based on SCMs, a concept known
as counterfactual fairness [Kusner et al., 2017] has been in-
troduced. This concept seeks to minimize the impact on
predicted values when counterfactual interventions are ap-
plied to sensitive attributes. In the context of dynamically
evolving environments, we propose a framework, denoted as
Disentanglement for Counterfactual Fairness-aware Domain
Generalization (DCFDG), designed to address the issue of
counterfactual fairness.

Our objective can be succinctly summarized as aiming to
enhance the model’s generalization capacity across unfamil-
iar domain sequences while concurrently ensuring counter-
factual fairness in decision-making. Therefore, to model the
relationships among sensitive attributes, domain-specific in-
formation, and semantic information, we partition the exoge-
nous variables into four latent variables: 1) semantic infor-
mation caused by sensitive attributes: Us, 2) semantic infor-
mation not caused by sensitive attributes: Uns, 3) domain-
specific information caused by sensitive attributes: Uv1, and
4) domain-specific information not caused by sensitive at-
tributes: Uv2. Among these, we posit that the distribu-
tion of semantic information remains invariant across all do-
mains, whereas the distribution of domain-specific informa-
tion varies with changes in the environment. Here, the data
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feature X is composed of two components, wherein sensitive
attributeA directly causes a subset of features (Xs), while an-
other subset of features (Xns) is not directly influenced by A
but may still exhibit correlations with it. They are encoded in
the latent space as the first two exogenous variables (i.e., Us

and Uns). The advantages of this partitioning will be eluci-
dated in the causal structure of DCFDG (Section 4.1). By em-
ploying such an approach, we skillfully disentangle domain-
specific information (i.e., Uv1 and Uv2) from the embedded
representation of classification features, ensuring a reduction
in the impact of environmental changes on the model while
concurrently upholding its decision fairness. In conclusion,
our contributions can be summarized as follows:

• We introduce a novel causal structure framework, DCFDG,
which adeptly addresses data distributions that evolve
within dynamic environments and are influenced by sen-
sitive information. To the best of our knowledge, this is the
first method of addressing counterfactual fairness issues in
dynamic evolving environments.

• We analyze the Evidence Lower Bound (ELBO) that should
be considered within evolving environments. Besides, we
theoretically demonstrate the rationality of DCFDG.

• Experimental results conducted on both synthetic and real-
world datasets demonstrate that DCFDG exhibits supe-
rior predictive capabilities compared to existing exogenous
variable disentanglement methods, while concurrently en-
suring fairness.

2 Related Work
Domain Generalization in Changing Environments. To
address the generalization issues in continuously changing
environments, Bai et al. [2022] involve passing the param-
eters of neural networks into a temporal encoder to train
domain-specific parameters for each different domain. An-
other approach is to separately model environmental infor-
mation in both features and labels, enabling the simultane-
ous handling of covariate shift and concept shift [Qin et al.,
2022]. Zeng et al. [2023] explore aligning the data distri-
bution in the training domain with that in an unseen do-
main as a means of addressing these challenges. Addition-
ally, a classic work proposed a model-agnostic meta-learning
(MAML) algorithm that learns to adapt quickly to new do-
mains, demonstrating its effectiveness in few-shot domain
generalization [Finn et al., 2017]. Building upon this work,
Zhao et al. [2021a; 2022; 2023] introduces a method that
incorporates fairness considerations.

Counterfactual Fairness with Variational Autoencoder.
ConsiderX ,A, Y , andU as data features, sensitive attributes,
classification labels, and exogenous variables, respectively.
Conditional Variational Autoencoder (CVAE) [Sohn et al.,
2015] extends this framework by incorporating additional
conditional information, such as labels Y , during the genera-
tion process. Louizos et al. [2017] propses a causal graph. In
their CEVAE, A and X have an indirect connection through
U , while A has both a direct and an indirect connection with
Y simultaneously. However, this approach embeds A’s infor-
mation in U , rendering the counterfactual generation process

of p(y|¬a,u) infeasible. To address this issue, an enhanced
causal graph is proposed, assuming that X and Y are caused
by both A and U [Pfohl et al., 2019]. It employs Maximum
Mean Discrepancy to regularize the generations, effectively
removing A’s information from U . Although this approach
eliminates all A-related components from U , the ideal sce-
nario should involve the removal of only the portion in U
that is caused by A, rather than all A-related components.
Therefore, DCEVAE [Kim et al., 2021] is proposed to de-
fine Xs ⊂ X as a subset of features caused by A whereas
Xns ⊂ X is the other subset of irrelevant features to the inter-
vention. The intervention onA should be imposed onXs, and
Xns should be maintained in a counterfactual generation.

3 Background
3.1 Structual Causal Model and Do-operator
Structural causal models (SCMs) are widely used in causal
inference to model the causal relationships among variables.
An SCM consists of a directed acyclic graph (DAG) and a
set of structural equations that define the causal relationships
among the variables in the graph [Pearl, 2009; Spirtes et al.,
2000; Pearl and Mackenzie, 2018]. The structural equation
for an endogenous variable Vi can be expressed as follows:

Vi = fVi(PaVi , UVi) (1)

where PaVi
denotes the parent set of Vi in the graph, and

UVi
denotes the set of exogenous variables that directly af-

fect Vi. The function fi represents the causal relationship
between the parent variables and Vi. SCMs are used to esti-
mate causal effects and test causal hypotheses. By including
sensitive variables in the graph and modeling their causal re-
lationships with other variables, SCMs can adjust for sensi-
tive and produce unbiased estimates of causal effects [Hernán
and Robins, 2018].

Interventions on SCMs involve changing the value of a
variable to a specified value. This can be represented mathe-
matically using the do-operator, denoted by do(Vi = v). The
do-operator separates the effect of an intervention from the
effect of other variables in the system. For example, if we
want to investigate the effect of drug treatment on a disease
outcome, we might use the do-operator to set the value of
the treatment variable to “treated” and observe the effect on
the outcome variable. In the following narrative, we will em-
ploy an alternative representation for the do-operator. For two
variables: Ŷ , A and given exogenous variable set U ,

P
(
ŶA←a(U)) = P

(
Ŷ (U)|do(A = a)). (2)

3.2 Counterfactual Fairness Problem
Counterfactual fairness is a concept that models fairness us-
ing causal inference tools, first introduced by [Kusner et al.,
2017]. Given a predictive problem with fairness considera-
tions, whereA,X , Y , and Ŷ represent the sensitive attributes,
remaining attributes, the output of interest, and model esti-
mation respectively. A SCM G := ⟨U, V, F,P(u)⟩ is given,
where V is the set of endogenous variables, P(v) := P(V =
v) =

∑
{u|fV (V,u)=v} P(u), and U is the set of exogenous

variables. the set of deterministic functions F is defined in
Vi = fVi

(PaVi
, UVi

) like Eq.1. We can say predictor Ŷ is

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4561



Figure 1: Causal Structure of DCFDG. The figure depicts the causal
structures across two consecutive domains, wherein, due to the grad-
ual evolution of the environment, we posit a correlation between the
environmental information of each domain and that of the preceding
domain.

counterfactually fair, if

P
(
ŶA←a(U) = y|X = x, A = a

)
= P

(
ŶA←¬a(U) = y|X = x, A = a

) (3)

for all y and any value ¬a attainable by A. By setting A
to both a and ¬a separately, Ŷ evolves into two distinct vari-
ants: ŶA←a and ŶA←¬a. From an intuitive perspective, coun-
terfactual fairness seeks to ensure that the values of sensitive
attribute A do not influence the distribution of predicted out-
come Ŷ .

3.3 Counterfactual Fairness in Evolving
Environments

We consider classification tasks where the data distribution
evolves gradually with time. In training stage, we are given T
sequentially arriving source domains S = {D1,D2, ...,DT },
where each domain Dt = {(xt

i, a
t
i, y

t
i)}

nt
i=1 is comprised

of nt labeled samples for t ∈ {1, 2, ..., T}. And x, a,
and y denote the data features, the sensitive label, and the
class label respectively. The trained model will be tested on
M target domains T = {DT+1,DT+2, ...,DT+M}, Dt =
{(xt

i, a
t
i, y

t
i)}

nt
i=1 (t ∈ {T +1, T +2, ..., T +M}), which are

not available during training stage. For simplicity, we omit
the index i whenever xt

i refers to a single data point. Our
primary objective is to enhance the robustness of the model
on these unseen domains to achieve higher accuracy. Mean-
while, we are also committed to ensuring classification fair-
ness across theseM target domains, resulting in the following
expression for Eq.3:

P
(
Ŷ t
At←at(U

t) = yt|Xt = xt, At = at
)

= P
(
Ŷ t
At←¬at(U

t) = y|Xt = xt, At = at
)

for t ∈ {T + 1, T + 2, ..., T +M}.

4 Methodology
In this section, we will introduce the causal structure of our
model. Building upon this causal structure, we will further
elaborate on the entire training process of the model, includ-
ing the formulation of the loss function used.

4.1 Causal Structure of DCFDG
The causal graph depicting two consecutive domains is il-
lustrated in Fig. 1. To achieve the counterfactual genera-
tion of p(y|¬a,u) for intervention on A, it is crucial to en-
sure that the exogenous variable U does not contain any part

caused by A. Otherwise, there will be situations where in-
tervention on A occurs, but the information caused by A in
U remains unchanged, leading to an erroneous generation
of y. To address the problem, we define Xs ⊂ X as a
subset of features caused by A, whereas Xns ⊂ X is the
other subset of irrelevant features to the intervention. This
is a common method of partitioning features in the context
of fairness issues [Zhao et al., 2021b; Grari et al., 2021;
Kim et al., 2021]. For instance, considering the ‘Sex’ at-
tribute in the Adult dataset as the sensitive attribute, we
can broadly describe the characteristics of this attribute as
Xs = {Occupation,Workclass, ...}, while the remaining
features can be denoted as Xns. Similarly, let’s define the ex-
ogenous variables of Xns and Xs to be Uns and Us, respec-
tively. We assume that Us and Uns are disentangled. Ideally,
Us contains the portion caused by A, rather than the part cor-
related withA. Therefore, we need to disentangle Us fromA.
On the other hand, Uns contains only the part correlated with
A and does not require decoupling from A. However, in the
face of a constantly changing environment, it becomes imper-
ative to devise strategies for decoupling the domain-specific
information fromXs andXns. To simulate dynamic environ-
ments, we adopt two variables, Uv1 and Uv2, to capture the
dynamic changes in the distributions of Xs and Xns respec-
tively, as they vary with the environments. For the domain
Dt at timestamp t, we represent Uv1 and Uv2 as U t

v1 and U t
v2,

respectively.

4.2 Network Architecture of DCFDG
Based on our causal graph, the corresponding neural network
architecture is shown in Fig. 2, encompassing both the infer-
ence and generation processes. During the inference stage,
we employ four distinct encoders to model q(us|xt

s, a
t),

q(uns|xt
ns), q(uv1|xt

s) and q(uv2|xt
ns), respectively. The

prior distributions for us and uns follow standard normal dis-
tributions. For the environmental variable sequences {U t

v1}
T
t

and {U t
v2}

T
t , we can regard them as two temporal priors (i.e.,

p(ut
v1) = p(ut

v1|u<t
v1 ) and p(ut

v2) = p(ut
v2|u<t

v2 )). Hence,
all the prior distributions are as follows:

p(us) = N (0, I); p(uns) = N (0, I);

p(utv1) = p(utv1|u<tv1 ) = N (µ(utv1), σ
2(utv1));

p(utv2) = p(utv2|u<tv2 ) = N (µ(utv2), σ
2(utv2)), (4)

where the distribution p(ut
v1|u<t

v1 ) and p(ut
v2|u<t

v2 ) can
be encoded using recurrent neural networks such as
LSTM [Hochreiter and Schmidhuber, 1997]. Wherein, at the
initial state when t = 0, u0

v1 and u0
v2 is initialized to 0. In

the generation phase, all latent variables are fed into two dis-
tinct decoders and a classifier to reconstruct Xs, Xns, and
Y . To enhance adaptability within a dynamically changing
environment, we solely utilize environment-independent se-
mantic information to reconstruct Y .

4.3 Evidence Lower Bound of DCFDG
For any given time point t and domain Dt =
{(xt

i, a
t
i, y

t
i)}

nt
i=1, we employ Us and Uns to capture the

invariant semantic information within the distribution, while
U t
v1 and U t

v2 are utilized to encapsulate the domain-relevant
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Figure 2: Network Architecture of DCFDG. We separately decouple the environmental information Uv1 and Uv2 for Xs and Xns, and employ
the adversarial loss (Section 4.5) to remove sensitive information from Us. Semantic information Us and Uns are used for classification.

information. Analogous to the Variational Autoencoder
(VAE) [Kingma and Welling, 2013], in this context, q de-
notes the inference process, while p signifies the generation
process. The detailed derivation process of the ELBO for
DCFDG is provided in Appendix A.5.

Sensitive Part. To encode representations containing sen-
sitive information, we employ the sensitive attributeA to con-
tribute to the encoding process. Therefore, the ELBO of the
sensitive part can be represented as follows:

ELBOs =
T∑
t=1

{Eq(us|xt
s,a

t)q(ut
v1|u

<t
v1 ,x

t
s)

[
log p

(
xts|us,utv1, at

)]
− KL

(
q(us|xts, at)||p(us)

)
− KL

(
q(utv1|u<tv1 ,xts)||p(utv1|u<tv1 )

)
}. (5)

Non-sensitive Part. Like the sensitive part, the ELBO of the
non-sensitive part can be represented as follows:

ELBOns =
T∑
t=1

{Eq(uns|xt
ns)q(u

t
v2|u

<t
v2 ,x

t
ns)

[
log p

(
xtns|uns,utv2

)]
− KL

(
q(uns|xtns)||p(uns)

)
− KL

(
q(utv2|u<tv2 ,xtns)||p(utv2|u<tv2 )

)
}. (6)

Prediction Generation. We use semantic representations
and sensitive attributes for classification and the loss is:

Lcla =

T∑
t=1

Eq(us|xt
s,a

t)q(uns|xt
ns)

[
log p

(
yt|us,uns, at

)]
. (7)

Final ELBO of DCFDG. Taking into account the three
aforementioned components, we derive the final ELBO as
follows:

log p(x1:T
s ,x1:T

ns , y1:T |a1:T )

≥ ELBOs + ELBOns + Lcla = ELBO. (8)

During the training process, it is imperative to maximize this
ELBO, consequently rendering its negative counterpart, the
−ELBO , a constituent of the objective function.

4.4 Counterfactual Fairness Loss of DCFDG
The essence of counterfactual fairness lies in minimizing the
impact of A on the predicted value Ŷ . Therefore, for our
model, if the condition:

p(ŷt|at,us,uns) = p(ŷt|¬at,us,uns) (9)

is satisfied, the model’s predictions attain complete counter-
factual fairness in such a case. To earnestly achieve fairness in
classification, it is imperative to augment the objective func-
tion with a fairness regularization term:

Lf =

T∑
t=1

Eq(us|xt
s,a

t)q(yt|xtns)

[
||p(yt|at,us,uns)

−p(yt|¬at,us,uns)||2
]
, (10)

where for the sake of simplicity, every attribute A is treated
as a binary variable in this paper, and ¬a denotes the negation
of its original value.

4.5 Adversarial Loss of DCFDG
Building upon the analysis of causal structure, Us is concur-
rently disentangled from both A and Uns. In other words,
Us is simultaneously independent of both A and Uns (i.e.,
q(us, a

t,uns) = q(us)q(a
t,uns)). Hence, the disentangle-

ment objective is equivalent to minimizing the KL divergence
between q(us, a

t,uns) and q(us)q(a
t,uns). However, com-

puting this KL divergence directly is infeasible, prompting
us to leverage an approach akin to the one proposed in Fac-
torVAE [Kim and Mnih, 2018], which bears resemblance to
GAN-like [Goodfellow et al., 2014] principles, to address this
challenge. We begin by employing a discriminator D, which
outputs a probability that a set of samples originates from
the distribution q(us, a

t,uns) rather than q(us)q(a
t,uns).

Hence, we can approximate the KL divergence as follows us-
ing the loss function LTC about D:

LTC =

T∑
t=1

KL
(
q(us, a

t,uns)∥q(us)q(at,uns)
)

≈
T∑
t=1

Eq(us,at,uns)

[
log

D(us, a
t,uns)

1−D(us, at,uns)

]
. (11)

Furthermore, to train the discriminator D, we should maxi-
mizeMD:

MD =

T∑
t=1

Eq(us,at,uns)

[
log(D([us, a

t,uns]))
]

+ Eq(us)q(at,uns)

[
log (1−D([us, a

t,uns]))
]

=

T∑
t=1

Eq(us,at,uns)

[
log(D([us, a

t,uns]))
]

+ Eq(us,at,uns)

[
log (1−D(perm[us, a

t,uns]))
]
, (12)
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Algorithm 1 Optimization procedure for DCFDG

1: Input: sequential source labeled datasets S with T do-
mains; static feature extractor Es, Ens; dynamic infer-
ence networks Ev1, Ev2 and their corresponding prior
networks (LSTM) F v1, F v2; decoder Ds, Dns; discrim-
inator D; classifier C.

2: Initialize Es, Ens, Ev1, Ev2, F v1, F v2, Ds, Dns, D,C
3: Assign u0

v1,u
0
v2 ← 0

4: for t = 1, 2, ..., T do
5: Generate prior distribution p(ut

v1|u<t
v1 ) via F v1

6: Generate prior distribution p(ut
v2|u<t

v2 ) via F v2

7: for i = 1, 2, ... do
8: Sample a batch of data (xt

s,x
t
ns, a

t, yt) from Dt

9: Calculate LDCFDG by Eq. 13
10: Update Es, Ens,Ev1, Ev2,F v1, F v2 ,Ds, Dns and

C by LDCFDG

11: CalculateMD by Eq. 12
12: Update D byMD

13: end for
14: end for

where perm[us, a
t,uns] denotes the randomized alteration

of the relative sequence between (at,uns) and us.

4.6 Ultimate Objective Function
We denote all parameters of DCFDG, including all encoders,
decoders, and prior networks (LSTMs), as θ, and the param-
eters of discriminator D as ψ. Summing up the preceding
sections, the training objectives of the model can be summa-
rized into two phases as follows:

minθ LDCFDG := −ELBO + λfLf + λtcLTC , (13)
maxψ MD. (14)

After the completion of training within the DCFDG frame-
work (Algorithm. 1), we require the trained static feature ex-
tractor Es and Ens to obtain semantic information (us and
uns). Finally, the classifier C is utilized for prediction by
inputting both us and uns alongside sensitive attribute a.

5 Theoretical Guarantee of DCFDG
Due to the usual representation of ELBO as a sum of multiple
terms, we delve into its equivalent optimization objective in
theoretical analysis.
Lemma 1. In the vanilla VAE, the KL divergence
KL(q(u|x)||p(u|x)) can be represented as

KL(q(u|x)||p(u))− Eq(u|x)[log p(x|u)] + log p(x). (15)

Based on Lemma 1, we can derive the Evidence Lower
Bound (ELBO) of the vanilla VAE in the following formula:

ELBO = log p(x)− KL(q(u|x)||p(u|x)) (16)

It means that optimizing the ELBO of VAEs is equivalent
to optimizing KL(q(u|x)||p(u|x)). We denote the samples
from the source domains as X1:T

s and X1:T
ns , while the fea-

tures of samples from the unseen target domains are repre-
sented as XT+m

s and XT+m
ns for m ≥ 1. The relationship

between the source domains and the target domains can be
expressed as follows.

Theorem 1. The KL divergence between
q(us,uns|xT+m

s , aT+m,xT+m
ns ) and the un-

known domain-invariant ground truth distribution
p(us,uns|xT+m

s , aT+m, ,xT+m
ns ) can be bounded as

follows:

KL(q(us,uns|xT+m, aT+m)||p(us,uns|xT+m, aT+m)

≤ inf
I∈I

[
∑
i∈I

βi(KL(q(us|x1:T,i
s , a1:T,i)||p(us|x1:T,i

s ))

+ KL(q(uns|x1:T,i
ns , a1:T,i)||p(uns|x1:T,i

ns )))],

where x1:T,i
s , a1:T,i and x1:T,i

ns denotes features with index i
in source domains. The feasible set I [Wang et al., 2021] and
constant βi are defined in Appendix A.3. Semantic informa-
tion us and uns are defined in Section 4.1.

This inequality expresses that the ELBO on the target do-
mains can be optimized by separately optimizing the ELBO
concerning Xs and Xns on the source domains. Therefore,
Theorem 1 ensures that DCFDG is a rational and effective
methodology. The detailed proof of Theorem 1 is provided in
Appendix A.4.

6 Experiments
6.1 Datasets
FairCircle is a synthetic dataset containing 12 domains. For
each domain, followed by [Zafar et al., 2017], we gener-
ate 2000 binary class labels uniformly at random and as-
sign a two-dimensional feature vector x = [xs, xns]

T per
label by sampling from two distinct Gaussian distributions:
P(x|y = 0) = N (µ0, [10, 1; 1, 3]) and P(x|y = 1) =
N (µ1, [5, 1; 1, 5]), where µ0 and µ1 will changed by do-
main. Sensitive attributes of data samples are drawn from
a Bernoulli distribution P(a = 1) = P(x′|y=1)

P(x′|y=1)+P(x′|y=0) ,
where x′ = [cos(ϕ),− sin(ϕ); sin(ϕ), cos(ϕ)][xs; 1] is sim-
ply a rotated vector related to xs. The ϕ controls the correla-
tion between the sensitive attribute and the class labels. The
ϕ in each domain is a random number between π

8 and π
4 . The

closer ϕ is to zero, the higher the correlation. To construct
multiple sequentially changing domains, we uniformly sam-
pled 12 values of µ0 and µ1 from two circular arcs with radii
of 25 and 34, respectively, to simulate the variation in data
distribution. The visualization of the dataset is provided in
Appendix B.1.

Adult [Kohavi and others, 1996] contains a diverse set
of attributes pertaining to individuals in the United States.
The dataset is often utilized to predict whether an individ-
ual’s annual income exceeds 50,000 dollars, making it a pop-
ular choice for binary classification tasks. We categorize
gender as a sensitive attribute. Income is designated as the
dependent variable Y . Race, age, and country of origin
constitute the set Xns, while the remaining variables com-
prise the set Xs [Zhao et al., 2021b; Grari et al., 2021;
Kim et al., 2021]. We divided the samples into 18 domains
based on age, ranging from younger to older. Specifically,
the source domain tends to represent a younger demographic,
while the target domain tends to represent an older demo-
graphic.
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FairCircle Adult Chicago Crime

Methods Acc ↑ TCE ↓
(×10) Acc ↑ TCE ↓

(×10)
CE ↓ (×10) Acc ↑ TCE ↓

(×10)
CE ↓ (×10)

o00 o01 o10 o11 o00 o01 o10 o11

DIVA [Ilse et al., 2020] 69.10 1.15 68.04 0.81 0.88 0.62 0.34 0.86 56.19 1.68 1.68 1.46 1.84 1.75
LSSAE [Qin et al., 2022] 89.25 5.03 57.79 1.91 2.96 3.64 1.70 1.67 53.72 0.85 0.77 0.93 0.90 0.77
MMD-LSAE [Qin et al., 2023] 82.79 0.70 60.34 1.60 1.17 1.35 1.05 1.68 53.83 0.35 0.23 0.41 0.36 0.31

CVAE [Sohn et al., 2015] 49.99 0.18 61.83 0.56 0.53 0.55 0.51 0.57 54.43 0.72 0.67 0.70 0.74 0.77
CEVAE [Louizos et al., 2017] 49.99 0.34 62.49 0.69 0.68 0.69 0.69 0.69 54.23 0.42 0.40 0.43 0.42 0.44
mCEVAE [Pfohl et al., 2019] 63.30 0.28 61.05 0.48 0.45 0.35 0.50 0.48 51.83 0.01 0.01 0.01 0.01 0.01
DCEVAE [Kim et al., 2021] 53.25 0.18 62.69 0.39 0.39 0.38 0.39 0.38 51.29 0.44 0.48 0.45 0.44 0.39

DCFDG (Ours) 88.70 0.12 69.85 0.22 0.10 0.01 0.17 0.26 55.93 0.01 0.01 0.01 0.01 0.01

Table 1: Accuracy outcomes and TCE value results across the three datasets. Within the experiment, the variable O comprises two attributes,
where oij denotes the first attribute as i and the second attribute as j.

Chicago Crime [Zhao and Chen, 2020] dataset includes
a comprehensive compilation of criminal incidents in differ-
ent communities across Chicago city in 2015. We use race
(i.e., black and non-black) as the sensitive attribute. To bet-
ter delineate between Xs and Xns, we measured the Pearson
Product-Moment Correlation Coefficients (PPMCC) values
between each feature and sensitive attribute (Appendix B.2).
This was done to gauge their correlation and aid in the parti-
tioning process. Grocery count, per capita income, aged 25+
without high school diploma, and housing crowd of origin
constitute the set Xns, while the remaining variables com-
prise the set Xs. The dataset was collected over time, and
as a result, we partition the data into 18 domains based on
chronological order. The target domain consists of the most
recent samples.

6.2 Baseline Methods
We evaluate the proposed DCFDG against seven baseline
methods. These baselines are selected from two perspectives:
approaches that utilize causal structures to tackle evolving do-
main generalization (DIVA [Ilse et al., 2020], LSSAE [Qin et
al., 2022], and MMD-LSAE [Qin et al., 2023]), and methods
that utilize causal structures to address counterfactual fairness
(CVAE [Sohn et al., 2015], CEVAE [Louizos et al., 2017],
mCEVAE [Pfohl et al., 2019], and DCEVAE [Kim et al.,
2021]).

6.3 Evaluation Metrics
We employed two metrics, total causal effect and counterfac-
tual effect, to evaluate the fair classification. Assuming A
is the intervention target of the do-operator, Y is influenced
by this intervention. The post-intervention distribution of Y
mentioned in Section 3.1 can be further abbreviated as P(ya).
Definition 1 (Total Causal Effect (TCE) [Pearl, 2009]). The
total causal effect of the value change of A from a to ¬a on
Y = y is given by TCE(a,¬a) = |P(ya)− P(y¬a)|.
Definition 2 (Counterfactual Effect (CE) [Shpitser and Pearl,
2008]). Given context O = o, the counterfactual effect of
the value change of A from a to ¬a on Y = y is given by
CE(a,¬a|o) = |P(ya|o)− P(y¬a|o)|.

Smaller TCE and CE indicate that the prediction results are
more stable in the counterfactual generation of changing the
sensitive attribute, implying greater fairness [Wu et al., 2019].

For the Adult dataset, we set context of counterfactual effect
as O = {race, native country}. For the Crime dataset, we set
context of counterfactual effect as O = {grocery count, per
capital income}. In both two datasets, oij denotes the first
attribute as i and the second attribute as j.

6.4 Experimental Setup
We partitioned the domains into source, intermediary, and tar-
get domains by the ratio ( 12 : 1

6 : 1
3 ). The source domains are

employed for training the DCFDG, while the intermediary
domains serves as the validation set. All evaluations are con-
ducted within the target domains. For the FairCircle dataset,
direct computation of its counterfactual effect (CE) is unfea-
sible because its features are randomly sampled continuous
numerical values. As for the other two datasets, both the to-
tal causal effect (TCE) and CE were employed for evaluation
purposes. For all the encoders, decoders, classifiers, and dis-
criminators, we employed the most common fully connected
layers and ReLU activation functions. The specific architec-
ture details can be found in Appendix B.3.

6.5 Results Analysis
Overall Performance. We computed the mean performance
across all testing domains, as depicted in Table 1. Smaller
values of TCE and CE indicate closer adherence of the clas-
sification outcomes to counterfactual fairness. To facili-
tate observation, the reported results encapsulate the val-
ues of TCE and CE across all outcomes. Across the three
datasets, DCFDG consistently demonstrates favorable gener-
alization capabilities to unknown domains compared to other
approaches, achieving optimal performance. Notably, its pro-
nounced superiority in accuracy on the FairCircle dataset
is believed to stem from the discernible advantage exhib-
ited as the data distribution between each domain varies to
a greater extent. Regarding TCE and CE, DCFDG consis-
tently achieves optimal or near-optimal outcomes. This un-
derscores the resilience of our approach to maintaining high
performance while simultaneously upholding fairness princi-
ples. For the Chicago Crime dataset, while there hasn’t been
a substantial improvement in decision accuracy, it is notewor-
thy that both its TCE and CE values are considerably lower
than the highest accuracy method: DIVA. In other words, in
the context of comparable accuracy levels, fairness signifi-
cantly outperforms alternative methods.
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Figure 3: Accuracy and total causal effect for each testing domain. The 1st, 3rd, and 5th figures illustrate the accuracy curves, while the 2nd,
4th, and 6th figures depict the total causal effect curves.

Adult Chicago Crime

Metric Acc ↑ TCE ↓
(×10) Acc ↑ TCE ↓

(×10)

w/o disentanglement 71.48 0.47 54.43 1.61
w/o fairness loss 72.24 2.76 54.89 1.75
DCFDG 69.85 0.22 55.93 0.01

Table 2: Ablation study results across the two datasets. The results
in the table represent the mean values of all test domain outcomes.

Performance Across Each Domain. In Figure 3, we
present the results across each testing domain. For the Fair-
Circle dataset, there are four testing domains, while the Adult
and Chicago Crime datasets have six testing domains each.
The 1st, 3rd, and 5th figures represent accuracy outcomes,
with higher curves indicating superior performance. The 2nd,
4th, and 6th figures illustrate TCE results, with lower curves
signifying enhanced compliance with counterfactual fairness,
concurrently denoted by the shaded regions representing stan-
dard deviations. Across all testing domains, DCFDG con-
sistently maintains superior accuracy and minimal TCE val-
ues. Regarding the tabulated data encompassing the mean and
standard deviation of all three metrics across each domain, we
present this information uniformly within the Appendix B.6.

6.6 Ablation Study
We evaluate the effect of components in the design of
DCFDG’s objective. We have specifically examined two vari-
ants of DCFDG as follows.

Without Disentanglement. We attempted to refrain from
decoupling features into domain-specific and semantic infor-
mation, opting instead for utilizing a globally modeled dy-
namic Gaussian distribution for predictions. As indicated
in Table 2, the absence of feature decoupling adversely
impacted classification fairness, particularly evident in the
Crime dataset.

Without Fairness Loss. We eliminated the loss associ-
ated with counterfactual fairness to assess changes in the out-
comes. Despite achieving a marginal advantage in prediction
accuracy on the adult dataset, a sharp increase in the TCE
value resulted in unfair classification outcomes (Table 2).

Experimental results regarding the CE values can be found
in Appendix B.4. The above experiments indicate that de-
coupling domain-specific information and incorporating the
fairness loss are both indispensable for ensuring counterfac-
tual fairness.
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Figure 4: Fairness-accuracy Trade-off on Adult and Crime. Each
baseline is represented by five data points, corresponding to the out-
comes under five distinct fairness parameter λf .

6.7 Fairness-accuracy Trade-off
Due to the absence of fairness loss in certain baselines, we
compare our method with four baselines about the trade-off
between accuracy and fairness on target domains under differ-
ent parameters. We varied the parameter λf across five values
([0.02, 0.1, 0.2, 0.5, 1]) to obtain the results of each baseline
under these five settings. In Figure 4, the horizontal axis rep-
resents TCE values, and the vertical axis represents accuracy,
indicating that data points tending towards the upper-left cor-
ner exhibit superior performance. Experimental results re-
garding the CE values can be found in Appendix B.5. All
the results demonstrate that DCFDG achieves the best overall
performance.

7 Conclusion
In summary, this paper has proposed a novel framework,
DCFDG, to address issues of fairness within continuously
evolving dynamic environments. This method disentangles
exogenous variables based on the relationships among sen-
sitive attributes, domain-specific information, and semantic
information, partitioning them into four latent variables. By
leveraging these latent variables, a causal structure is con-
structed for our method. We establish an appropriate model
and optimize the corresponding objective function through
this causal graph. Theoretical analysis and experimental val-
idation attest to the efficacy of DCFDG.
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