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Abstract

The generalization of neural networks has been a
major focus of research in deep learning. It is of-
ten interpreted as an implicit bias towards solutions
with specific properties. Especially, in practical ap-
plications, it has been observed that linear neural
networks (LNN) tend to favor low-rank solutions
for matrix completion tasks. However, most exist-
ing methods rely on increasing the depth of the neu-
ral network to enhance the low rank of solutions,
resulting in higher complexity. In this paper, we
propose a new explicit regularization method that
calibrates the implicit bias towards low-rank trends
in matrix completion tasks. Our approach automat-
ically incorporates smaller singular values into the
training process using a self-paced learning strat-
egy, gradually restoring matrix information. By
jointly using both implicit and explicit regulariza-
tion, we effectively capture the low-rank structure
of LNN and accelerate its convergence. We also
analyze how our proposed penalty term interacts
with implicit regularization and provide theoretical
guarantees for our new model. To evaluate the ef-
fectiveness of our method, we conduct a series of
experiments on both simulated and real-world data.
Our experimental results clearly demonstrate that
our method has better robustness and generaliza-
tion ability compared with other methods.

1 Introduction

In deep learning, the number of parameters in a network is of-
ten significantly larger than the amount of available training
data. This phenomenon is known as overparameterization.
Despite this, stochastic gradient descent can still yield satis-
factory generalization results on test data without the need
for explicit regularization constraints [Zhang er al., 2021;
Hardt et al., 2016]. This is often attributed to the implicit reg-
ularization [Neyshabur et al., 2017; Neyshabur ef al., 2015;
Vardi, 2023; Li et al., 2023] inherent in deep networks,
which guides them towards solutions with strong generaliza-
tion properties. However, there is currently no consensus on
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the exact reasons behind the effectiveness of this implicit reg-
ularization and how it can be further enhanced to improve the
representation capabilities of networks.

Significant progress has been made in the study of implicit
regularization in nonlinear networks [Zhang et al., 2021;
Belkin et al., 2019; Williams et al., 2019; Smith et al., 2021].
However, the complexity of these networks makes it chal-
lenging to describe them in a formulaic manner. To facilitate
research and eliminate the impact of changes in network ex-
pressive power due to increasing depth [Raghu ef al., 2017,
Arora et al., 2018a], the focus has shifted to exploring lin-
ear neural networks (LNN) for traditional machine learning
tasks such as matrix completion and factorization. In partic-
ular, [Gunasekar er al., 2017] proposes the hypothesis of im-
plicit regularization based on experimental results on matrix
factorization. According to this hypothesis, under sufficiently
small initialization and learning rates, gradient descent will
converge to low-rank solutions, and the implicit regulariza-
tion can be interpreted as minimizing the nuclear norm (the
sum of singular values of a matrix). Further investigation into
LNN [Arora et al., 2018b] has revealed that depth could be
viewed as a preprocessor, accelerating network convergence.

However, doubts are raised by [Arora et al., 2019; Razin
and Cohen, 2020; Li er al., 2021] regarding the theoretical
conclusions of [Gunasekar et al., 2017]. Based on experi-
mental reasoning, it has been pointed out that simple math-
ematical formulas may not accurately describe implicit reg-
ularization. Furthermore, [Arora et al., 2019] deduces that
increased depth accelerates network convergence by hasten-
ing the separation of large and small singular values, en-
hancing the low-rank properties of deep networks. Build-
ing upon [Arora et al., 2019], [Zhao, 2022] proposes a ra-
tio penalty term that improves and utilizes implicit regular-
ization more effectively, achieving stronger low-rank con-
straints. This penalty term ensures network convergence even
in 1-layer networks. Additionally, other researchers [Wu
and Su, 2023; Wang et al., 2022; Orvieto et al., 2022;
Wu et al., 2022] have explored the dynamic stability, mo-
mentum, and noise of networks, offering diverse perspectives
for comprehending and studying implicit regularization.

Current research has shown that explicit regularization can
improve the performance of neural networks. However, most
studies have focused on implicit regularization or adding
penalty terms to strengthen constraints, without considering
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Figure 1: Manifolds of various penalty terms for symmetric 2 x 2
matrices M = [a,b; b, c]. Here, (a) denotes the nuclear norm, (b)
refers to the Schatten-p norm [Nie er al., 2012], (¢) indicates the
ratio norm [Zhao, 2022], and (d) corresponds to the proposed new
regularization.

the impact of network depth. Network depth is a crucial
factor in designing neural networks, as there needs to be a
balance between depth and performance. Additionally, as
network depth increases, adding penalty terms can lead to
a higher computational burden. Therefore, further research
is necessary to determine if implicit regularization is already
strong enough to yield adequate low-rank constraints at dif-
ferent network depths and if there are more efficient meth-
ods related to explicit regularization to calibrate implicit reg-
ularization toward desired properties. The answers to these
questions will greatly impact the design and optimization of
deep neural networks. To this end, we conduct research us-
ing LNN on matrix completion tasks, making the following
specific contributions:

» This paper explores the connections between network
depth with implicit and explicit regularization. It is ob-
served that as the network depth increases, the addition
of explicit regularization does not always bring about
performance improvements. This phenomenon helps us
design more efficient networks.

We propose an effective regularizer that takes advantage
of self-paced learning and the nuclear norm, resulting
in a more precise restoration of matrix information. To
our knowledge, this is the first instance of applying self-
paced learning to the selection of singular values.

We theoretically analyze the rationality of our approach.
Meanwhile, a series of experiments are conducted on
simulated data with varying ranks and real-world data
to further validate the reliability of our model.

2 Related Work

Regularization. During the training of neural networks,
regularization terms are usually added to the loss func-
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tion [Zaremba et al., 2014; Krizhevsky et al., 2017] to im-
prove network generalization and prevent overfitting. How-
ever, explicit regularization is not always necessary. Studies
have shown that implicit regularization [Vardi, 2023] can be
obtained by employing optimization algorithms [Hardt et al.,
2016; Wu and Su, 2023; Wang er al., 2022] or adjusting the
network structure [Li et al., 2023], resulting in strong gen-
eralization abilities. In practice, implicit regularization often
produces impressive results, making it crucial to analyze its
role. This paper investigates the relationship between the pro-
posed penalty term and implicit regularization, as well as the
impact of network depth on this interaction.

Matrix Completion. Matrix completion and matrix sens-
ing are essential techniques for research in recommenda-
tion systems, information retrieval, and related applications.
The commonly used approaches can be categorized into
three types: nuclear norm minimization, low-rank factor-
ization [Yan er al, 2013], and minimal rank approxima-
tion [Wang et al., 2015]. Traditional algorithms often use
nuclear norm minimization to reconstruct matrices. How-
ever, the standard nuclear norm, which is one of the ear-
liest methods used [Cai et al., 2010; Candes and Recht,
2012], does not always adequately resolve issues by mini-
mizing all singular values. Subsequent research [Hu er al.,
2012] introduced the truncated nuclear norm based on ma-
trix properties, imposing constraints solely on smaller sin-
gular values. However, this approach neglects the con-
straints on larger singular values and applies the same penal-
ization to smaller ones, thus failing to adequately constrain
the matrix. [Gu et al., 2014] introduced the Weighted Nu-
clear Norm (WNN), which assigns different weights to sin-
gular values based on their magnitudes for more flexible con-
straints. Following this, [Kim et al., 2015; Peng et al., 2015;
Yang et al., 2018] introduced various adaptations of weighted
nuclear norms. Compared with previous methods, the penalty
terms we introduce not only impose flexible constraints on
singular values but also show superior performance in cop-
ing with matrix noise. Additionally, our approach considers
the relative magnitudes of the singular values rather than their
absolute values when imposing constraints on the matrix.

Self-Paced Learning. The design philosophy behind self-
paced learning [Kumar et al., 2010] emulates the human ten-
dency to learn knowledge from simple to complex concepts,
representing a branch of curriculum learning [Zhou et al.,
2020]. During training, self-paced learning selects the sub-
set with the lowest loss as the easiest part to train. As the
number of iterations increases, it gradually expands to cover
the entire dataset. Self-paced regularization involves varying
weights and can be categorized into three types: Hard [Kumar
et al., 2010], Linear [Jiang et al., 2014], and Mixture [Zhao
et al., 2015]. Each type is suitable for different scenar-
ios, and incorporating prior knowledge [Zhang et al., 2017,
Zhang et al., 2019; Jiang ef al., 2015] may enhance perfor-
mance. Research [Meng er al., 2017; Gong et al., 2016] has
shown that self-paced learning can lead to convergence to flat-
ter minima and reduce the impact of noise. In this paper, a
new penalty term is proposed based on self-paced learning to
impose stronger low-rank constraints, and the matrix comple-



Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

Regularizers

Nuclear Norm Yoo

Schatten-p Norm [Nie et al., 2012] _

Weighted Nuclear Norm [Gu et al., 2014] | > | w;o;
Ratio Norm [Zhao, 2022] Yot T

Table 1: Commonly used low-rank regularizers for a matrix.

tion task is used to examine the effects of implicit and explicit
regularization at different depths.

3 Methodology

In this section, we will provide a detailed explanation of our
motivation, methodology, and theoretical justification.
Setup. In the experimental setup, we use an LNN with
parameters that can be interpreted as a matrix factorization.
Specifically, an N-layer LNN can be formulated as M =
MyMp_1 ... MyM;, where M represents the predicted val-
ues, and M; refers to the parameters of the ¢-th layer of
the network. In matrix completion tasks, for a true matrix

M € R™ ™", we use Po(M) € R™ " represents the pro-

jection of M on the observed dataset (), this notation means
that the values of the data in the ) set remain unchanged,
while the rest are set to zero. And || - || denotes the Frobe-
nius norm. Without loss of generality, we assume the matrix
dimensions satisfy n < m. The optimization objective for
matrix completion can be written as:

min £(M) = HPQ(M) - PQ(M)Hi.

Motivation. There is a prior assumption in matrices that
the magnitude of the singular values represents the amount of
information they contain, with larger singular values encom-
passing the primary information of the matrix, while smaller
ones often correspond to noise signals. For example, in movie
rating datasets, inaccurate ratings by individuals might intro-
duce a certain degree of noise into the data matrix. Table 1
illustrates the commonly used low-rank norms in matrix com-
pletion tasks, where o;(i = 1,2,...,n) is the singular value
of M. Although these methods are somewhat effective, they
do not manage to flexibly constrain the singular values while
effectively dealing with the matrix noise. To address these
issues, we propose a new low-rank regularizer.

According to the definition of self-paced learning [Zhao
et al., 2015], at the beginning stages of the training process,
parts of the data that contribute to larger losses (i.e., noisy
data) are suppressed to minimize their detrimental impact
on training. As the training progresses, noisy data is gradu-
ally introduced, but due to the initial suppression, the overall
convergence direction of the network has been largely deter-
mined. At this point, the noise is unlikely to have a substan-
tial effect. The entire training process is continuously guided
by useful priors, mitigating the likelihood of falling into un-
reasonable local optima and enhancing the model’s robust-
ness to noise. Utilizing this characteristic, we have adapted
its training strategy to the constraint of singular values, sup-
pressing the impact of smaller singular values. In Figure 2,
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Figure 2: Comparison of different methods on the restoration of sin-
gular values of varying magnitudes using simulated data. A network
depth of 2 is employed, utilizing matrix dimensions of 100 x 100
(left) and 400 x 400 (right). To highlight the distinct characteristics
of different methods, matrices of higher rank are used, specifically
ranks of 60 and 240, with singular values ranging from 6 to 10 and
the observation data ratio of 90%.

we compared the effects of various penalty terms on handling
singular values of different magnitudes. The results show that
while other methods shrink singular values to varying extents,
our method precisely restores any singular value, thus better
preserving the properties of the matrix. For visual compre-
hension, we exhibit the manifolds of different norm spheres
with respect to a 2 x 2 matrix in Figure 1.

Self-Paced Weighted Nuclear Norm. Building on the
aforementioned analysis, we propose a novel regularization
method, namely the Self-Paced Weighted Nuclear Norm
(SPWNN), which can impose more effective low-rank con-
straints on the network. Here, the definition of the self-paced
regularizer of SPWNN is given as follows, and for ease of
notation, r;(M): = w;o; /|| M| F.

Definition 1. The function g(c;, A) is referred to as the self-
paced regularizer of SPWNN, satisfying the conditions:

1. g(c;, A) is a convex function, ¢; € [0, 1].

2. The self-paced learning weight c;(ri(M),\) is
monotonically decreasing with respect to r; and
llmr7_>oo CZ'(’I"i(M), )\) = O, limm_m Cl'(T‘i(M), )\) =1

3. The self-paced learning weight c¢;(ri(M),\) is
monotonically increasing with respect to A, and
limy—o ¢;(r; (M), N) = 0, im0 ¢; (r; (M), A) < 1.

where
ci(ri, A) = argmin ¢;r; + g (ci, A) . 1

The specific form of SPWNN is as follows:

R(M) = Zci (ri(M)>/\) Tz(M) + g<ci(ri(M)7)‘)v)‘)

1, if l; < A
Ci (Ti(M)v/\) :{ 0,ifl; >\

where A\ > 0 represents the growth factor of self-paced reg-
ularization. o; represents the ¢-th singular value arranged in
descending order. w; denotes the weight of the singular value
o;, wherew; = 1/0;? andp € (0,1). The term ¢;(r; (M), \)
indicates the weight of self-paced learning. The function
g(ci(ri (M), X),\) = =AY ci(ri (M), ) acts as the
self-paced regularizer.
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Specifically, guided by the prior of progressing from eas-
ier to more challenging tasks from self-paced learning, we
gradually incorporate smaller singular values into the training
process to restore the characteristics of the matrix M. Since
the larger singular values often contain the primary informa-
tion of a matrix, we prioritize the restoration of larger singu-
lar values before moving on to the smaller ones. Meanwhile,
we employ the weighted nuclear norm that applies different
weight constraints based on the magnitude of the singular val-
ues, offering flexible control over the importance of each di-
rection. In practical applications, this allows for assigning
greater weight to factors representing user preferences. The
normalization by ||M|| r ensures that the importance of each
direction in the matrix is dependent not on the absolute mag-
nitude of the singular values but on their relative magnitude.

Upon incorporating the penalty term, the final optimization
target is expressed as follows:

min £(M) = |[Po(N1) ~ Po)| + uROD), @)

where the penalty term R (M) is our SPWNN and g > 0 is
the balance parameter.

4 Theoretical Analysis

Efficiency Calibration of Implicit Regularization. We an-
alyze the trajectory of singular values and the matrix M to
show how the proposed SPWNN calibrates the implicit reg-
ularization. The following theorem elucidates the changes in
singular values and matrix trajectories without the inclusion
of any explicit regularizers:

Lemma 1 (Theorem 1 from [Zhao, 20221). Under the as-
sumptions specified in [Arora et al., 2019], without any ex-
plicit regularization, for a depth greater than 2 and when us-
ing the Adam optimizer, the trajectory of singular values and
the matrix can be described as follows:

_QM,GUeC(VE(M))
—vec(viul )T Qu,gvec(VL(M)),

vec(M) =

o}

where

N N-j izt
Quic =3 (M) ™ o (™) ¥ )G, 3

J

In the above, Qas,¢ is positive semi-definite, M denotes
the derivative of M with respect to time ¢, and ¢ represents
the derivative of the singular values o with respect to time ¢.
The Kronecker product is symbolized by ®, j indexes the net-
work layers, and vec denotes the vectorization of a matrix by
column order. G; = diag(vec(S;)) defines a matrix with the

elements of vec(S;) on the diagonal, and zeros elsewhere.
Here, S; is a matrix with values (Var, £L(M)* + 53) 2
where Vy, L(M) = 0L(M)/0M; represents the derivative
of the loss function with respect to the parameters of the j-th
layer, 53 = var(Vag, £L(M)), u; and v; respectively repre-
sent the left and right singular value vectors, corresponding
to the ¢-th singular value o; of the matrix M.
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The function @)/ ¢ is the result of the combined effect of
the Adam optimizer and the depth. When the depth is greater
than or equal to 2, Qs ¢ acts as a preprocessor that facilitates
the separation of large and small singular values, thereby ac-
celerating network convergence and promoting low-rank rep-
resentation within the network. Based on the expression (3)
for Qar,q, It is evident that the magnitude of Qs ¢ is re-
lated to the depth NV, indicating that this implicit regulariza-
tion increases with the depth, showcasing the effect of im-
plicit regularization in the network. Comparing the trajecto-
ries of gradient singular values with matrix changes [Arora et
al., 2018b], we observe that this preprocessor benefits from
an additional term G;. The Adam optimizer utilizes informa-
tion on gradient variance and past momentum to facilitate a
fast and precise convergence of the network during the opti-
mization process.

For the convenience, let C' = [cy,ca,...,c,]T and W =
[w,ws, ..., w,]T € R". For the matrix M, we perform sin-
gular value decomposition as M = USVT. The following
theorem describes the trajectories of singular values and ma-
trix changes:

Theorem 1. In the case of incorporating SPWNN and using
the Adam optimizer, the trajectories of singular values and
matrix changes are as follows:

vece(M) = —Qnr,gvec(VL(M) + M UsvT)
F
A A
(5’1- = —vec(viugp)TQMVGvec(Vﬁ(M) + WUSVT),
F
where
S=cwT|M|p - Ltr(WCTS).
M|

We give complete proof in Appendix A. Comparing the
trajectory expression in Lemma 1, the inclusion of an addi-
tional term U SV offers supplementary acceleration toward
low rank for matrix M during the training process.

When the depth is set to 1, Qas,¢ degenerates to G, re-
sulting in the loss of the acceleration effect on the network.
Despite this loss, the additional penalty term still serves its
purpose in separating large and small singular values, allow-
ing for convergence even with a depth of 1. Our experiments
also show that without explicit regularization, an LNN cannot
converge. However, the introduction of explicit regularization
leads to significant improvement in the results, highlighting
its dominant role in this scenario.

When the depth is within an appropriate range, the effect of
Q¢ allows for convergence with just a LNN. Additionally,
the convergence speed increases as the depth increases, indi-
cating the start of implicit regularization. When explicit reg-
ularization is incorporated, it interacts with implicit regular-
ization, resulting in faster convergence and stronger low-rank
constraints compared to the original scenario. The penalty
term provided by Q¢ also enhances the acceleration ef-
fect as the depth increases. By observing the trajectory after
adding the penalty term, it can be seen that S acts as a scal-
ing factor on the spectrum of .S, affecting the entire evolution
trajectory from a frequency domain perspective. Looking at
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the singular values, the self-paced regularization guides the
training process by selectively incorporating singular values
based on their magnitudes, allowing for less noise interfer-
ence and convergence in the correct direction. Furthermore,
by assigning different weights to each singular value, more
flexible constraints can be imposed on the matrix. The in-
troduction of || M || r modifies the effect of singular values on
training by considering their relative magnitudes instead of
just their absolute magnitudes. This strengthens the impact
of larger singular values on optimization while reducing the
influence of smaller singular values, further promoting low-
rank constraints. At this point, the implicit and explicit reg-
ularization work together to promote low-rank properties in
the network, achieving a balanced state.

When the depth is deep enough and the rank is high, we
have noticed a trend in experiments where using only a LNN
yields better results than incorporating a regularization term.
This suggests that the implicit regularization is strong enough
to serve as an effective regularizer, achieving satisfactory
low-rank constraints without the need for extra regularization
terms. This highlights the fact that explicit and implicit reg-
ularization do not always have a mutually beneficial impact.
In this case, the implicit regularization of the network takes
on a dominant role.

Convergence analysis. We will analyze the convergence
of our method from the view of Majorization Minimization
(MM) Algorithm [Sun et al 2017] For the convenience, let’s

define f (r = fo cdr . First, we present the

following theorem to establish an upper bound for the func-

tion f (r (M)).

Theorem 2. Given a parameter M*, the function f (r (M))

and the self-paced weight c have the following relationship:
F(r(M)) < f(r(M7)) + c(r(M) —r(M7)).

The proof is given in Appendix A. Let’s assume that the
optimization objective has reached the k-th iteration and use
M to represent the parameters at the k-th iteration.

Majorization: The objective of this stage is to obtain an up-
per bound for the optimization objective. According to The-
orem 1, we can derive the upper bound for f (r; (M)):

R (M|M®): = f(ri(M*)) + ci(ri(M) —ri(M")).  (4)
Furthermore, it can be established that:

> Fri(M)) <RI (M|MP). )
i=1 i=1

The computation of A’ (M | M k) can be obtained at each
iteration using equations (4) and (1).

Minimization: The objective of this stage is to optimize the
upper bound function & (M|M*) for f(r (M)) and obtain
the optimized parameters. Based on (2), (4) and (5), we can
derive the optimization objective as follows:

+Zf ri(MF))

=1

+ (1 (M) = ri(M"))c.

M = arg mlnﬁ

= arg m]\14n L(M) + Z ciri(M). (6)

i=1
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Observing that this optimization objective (6) is consistent
with the original objective (2), it indicates that our proposed
algorithm is equivalent to the MM Algorithm. This proves
that our algorithm has reliable convergence properties.

Complexity Analysis. In this section, we will analyze the
time complexity of the algorithm. To simplify our discussion,
we will assume that the matrix completion uses a matrix with
dimensions of n X n and that the depth of the network is
denoted as h.

For the LNN, each layer has n inputs and n outputs. With
a depth of h, the corresponding time complexity is O(hn?).
Regarding the penalty term R(M ), during each training pro-
cess, the matrix needs to undergo singular value decompo-
sition, which has a time complexity of O(2n?). Computing
the Frobenius norm of the matrix requires a time complex-
ity of O(n?). Similarly, calculating the self-paced regular-
izer g(c;(r;(M),\), \) and the weight w; corresponding to
the singular values both have a time complexity of O(n).
Therefore, the overall time complexity of the algorithm is
O(hn? 4+ 2n3 4+ n? + 2n). Since the dimension of the ma-
trix is typically much larger than the depth of the network,
the dominant time complexity is O(n?). Similarly, for the ra-
tio penalty term, since it also involves computing the singular
values, its corresponding time complexity is also O(n?).

Through the analysis of time complexity, it can be ob-
served that the SPWNN algorithm improves network perfor-
mance without significantly increasing computational com-
plexity compared to other methods, highlighting the superi-
ority of our algorithm.

S Experiments

In this section, we will compare our method with other meth-
ods listed in Table 1, using both synthetic and real datasets.
The evaluation criterion will be the root mean square er-
ror (RMSE) of the test data, with a lower RMSE indicat-
ing better results. All experiments will be conducted us-
ing the Adam optimizer. Furthermore, we will utilize the
effective rank (denoted by e_rank(-)) [Arora et al., 2019]
to track and measure the rank of the matrix. Specifically,
erank(M) = exp{H(a1,...,a,)}, where a; = o;/||o||1,
H is the Shannon entropy, and ||-||, denotes the L; norm.
More experiments are found in the supplementary materials.

5.1 Implementations

The results of the experiments are obtained by taking the av-
erage of multiple runs. The stopping condition for the exper-
iment is when the iteration reaches 4 x 10° or when the test
results remain unchanged after 2 x 10* iterations. For the ex-
perimental parameter settings, the networks used in this study
do not include bias terms. The network initialization method
is the same as [Arora ef al., 20191, where the weights are ini-
tialized to 1073, In the case of simulated data with a depth
greater than or equal to 2, the learning rate is set to 1072,
while for a depth of 1, the learning rate is set to 1073, The
penalty coefficient y is set to 107>, and its impact on the ex-
periments is depicted in Figure 3a. In the case of real data
with a depth greater than or equal to 2, the learning rate is
set to 1074, and for a depth of 1, the learning rate is set to
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5 10 20 30 40 50 60
LNN 1.00e+00 1.05e+00 1.00e+00 1.01e+00 9.82e-01 9.91e-01 9.87e-01
Schatten-p | 5.23e-01  5.79e-01  6.84e-01  7.43e-01 7.87e-01 8.33e-01 8.34e-01
Depth=1 Ra}io 2.52e-06 5.15¢-06 1.27e-05 2.99e-05 5.72e-05 1.66e-04 1.61e-01
Weight 3.04e-02 2.01e-02  1.86e-02 3.74e-02 1.67e-01 3.57e-01 4.60e-01
Nuclear 1.33e-03  4.85e-03  1.10e-02  2.50e-02 1.64e-02 1.69e-02 1.12e-01
Ours 2.21e-06 4.11e-06 1.03e-05 2.49e-05 4.88e-05 1.43e-04 5.49e-04
LNN 3.00e-02  4.88e-02  8.36e-02 1.66e-01 2.56e-01 3.83e-01 5.65e-01
Schatten-p | 3.06e-04 7.21e-04 2.06e-03 4.14e-03  9.60e-03 2.12e-02  7.10e-02
Depth=2 Ratio 2.98e-06 4.13e-06 1.57e-05 2.87e-05 6.32¢-05 1.49¢-04 1.69¢e-01
Weighted | 5.12e-05 9.15e-05 1.98e-04  3.40e-04 7.11e-04 1.48e-03 5.45e-03
Nuclear 1.36e-03  2.24e-03 4.47e-03 7.23e-03 1.49e-02 9.77e-02 9.77e-02
Ours 2.36e-06 3.29¢-06 1.27e-05 2.40e-05 5.40e-05 1.30e-04 5.37e-04
LNN 4.15e-05 4.92e-05 5.12e-05 6.03e-05 6.46e-05 9.79e-05 3.00e-04
Schatten-p | 2.98e-04  7.20e-04 2.06e-03 4.13e-03  9.60e-03 2.12e-02 7.37e-01
Depth=>5 Ratio 3.58e-05 2.02e-05 3.09e-05 4.20e-05 8.25e-05 1.64e-04 9.11e-04
Weighted | 4.91e-04 9.07e-04 1.98e-03  3.39¢-03 7.03e-03 1.43e-02 4.60e-02
Nuclear 1.36e-04  2.26e-04 4.59e-04 7.34e-04 1.48e-03 3.03e-03 7.74e-02
Ours 1.68e-05  1.79e-05  2.05e-05 3.04e-05 5.88e-05 1.33e-04 5.50e-04

Table 2: The outcomes of different methods at varying depths on simulated data, utilizing matrix dimensions of 100 x 100, with rank ranging

from 5-60, and an observation data proportion of 90%.
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Figure 3: (a) depicts the impact of hyperparameters u at a depth of 2;
(b) shows the variation of effective rank restoration under different
depths and methods. The experiments utilized matrices of 100 x 100
dimensions with a 90% observation ratio.

102, Due to significant differences in data structures, the
penalty coefficient i varies with different real data. The ini-
tial value of the threshold for self-regularization is set to 1,
and the growth factor for the threshold is set to 1.08.

5.2 Experiments on the Simulated Data

Simulated data are generated using a Gaussian distribution.
Specifically, a matrix W of a designated rank is first con-
structed, followed by computation of W/ to obtain the true
data matrix W. In the experiments, the chosen matrix dimen-
sions are 100 x 100, with tests carried out at various depths
and ranks. The specific results are provided in Table 2. Fur-
thermore, robustness tests were conducted on matrices of dif-
ferent dimensions and diverse proportions of observed data,
with detailed results presented in Appendix B.

The experiments conducted on synthetic data consistently
demonstrate the same outcome: our penalty term shows a
significant improvement over previous methods at any depth.
This results in better restoration of the intrinsic properties of
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Figure 4: Performance comparison of various methods on simulated
data using a 2-layer network. The matrix dimension employed is
100 x 100, with the ratio of observed data at 70%, and a rank of 30.

the matrices, as shown in Figure 4. Additionally, we visual-
ize the experimental outcomes in Figure 5, where the data re-
stored by our approach more closely matches the distribution
of the original data. Furthermore, at a depth of 1, the net-
work only converges after the inclusion of the penalty term.
In the case of a depth of 2, the network can still converge to
satisfactory results even without explicit regularization, due
to the effect of implicit regularization. However, the perfor-
mance of the network is significantly enhanced with the addi-
tion of explicit regularization. These findings suggest that at
an appropriate depth, the interplay between explicit and im-
plicit regularization leads to a stronger low-rank constraint,
thus confirming the validity of our theory.

However, as the rank increases and the depth grows, even
with explicit regularization, the performance of matrix com-
pletion may not surpass that of a LNN. This phenomenon
varies depending on the required depth, which is influenced



Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

Depth=1 Depth=2 Depth=5

MLIOOK MLIM FilmTrust | ML100OK MLIM FilmTrust | MLIOOK MLIM  FilmTrust
LNN 3.695 3.748 3.149 0.933 0.923 1.022 0.943 0.885 1.026
Schatten-p 0.986 0.921 1.052 0.926 0.915 1.033 0.959 0.915 1.029
07 Ratio 0.940 0.868 1.018 0.922 0.850 1.021 0.945 0.886 1.057
' Weighted 0.947 0.890 1.087 0.924 0.858 1.043 0.946 0.913 1.033
Nuclear 0.992 0.903 1.124 0.925 0.851 1.053 0.944 0.920 1.036
Ours 0.937 0.862 1.011 0.911 0.845 1.022 0.944 0.885 1.029
LNN 3.720 3.740 3.120 0.916 0.842 0.990 0.925 0.874 0.963
Schatten-p 0.972 0.910 1.036 0.917 0.843 0.975 0.947 0.911 0.973
09 Ratio 0.915 0.857 0.942 0.906 0.837 0.958 0.926 0.883 0.967
’ Weighted 0.932 0.869 1.031 0.910 0.846 0.970 0.926 0.882 0.970
Nuclear 0.963 0.884 1.097 0.909 0.849 0.991 0.928 0911 0.974
Ours 0.910 0.852 0.935 0.895 0.831 0.951 0.925 0.877 0.964

Table 3: The experiments conducted on the ML100K, ML1M, and FilmTrust datasets utilized observed data ratios of 70% and 90%.

® Turth
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t-SNE Dimension 2

t-SNE Dimension 1

Figure 5: Comparison of t-SNE Visualization Methods at a Network
Depth of 2, with an Observation Data Proportion of 90%. The matrix
dimensions employed is 100 x 100; for ease of comparison, we
present the varied data in a dispersed format.

by the structure of the data set. As shown in Figure 3b, the
change in effective rank indicates that as the depth increases,
the implicit regularization becomes more effective in con-
straining the rank, eventually achieving results comparable
to or even better than those with explicit regularization. The
figure also demonstrates that our proposed method maintains
a consistently strong low-rank constraint at any depth.

The phenomena described above suggest that at shallower
depths, the implicit regularization provided by the network
itself may not serve as an effective regularizer, necessitat-
ing explicit regularization for constraint. However, as the
depth increases, the implicit regularization of the network be-
comes stronger and can lead to excellent results without the
need for explicit regularization. However, a deeper network
structure will lead to higher computational complexity, which
is obviously impractical in the real world. Thus, compared
with those methods that only have implicit regularization, our
method may be a better choice for practical applications.

5.3 [Experiments on the Real-World Data

The real datasets employed are ML100K [Harper and Kon-
stan, 2016], ML1M, and FilmTrust [Guo ef al., 2013]. Unlike
simulated data, real data consists of discrete values, and they
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tend to have a high rank close to full rank. Specifically, the
ML100K dataset contains 100,000 ratings from 943 users for
1,682 movies, while the ML1M dataset is composed of rat-
ings from 6,400 users for 3,900 movies, totaling one million
ratings. In the MovieLens series, rating values range from 1
to 5 and are integer values. The FilmTrust dataset includes
35,497 ratings from 1,508 users for 2,071 movies, with a rat-
ing scale of 0.5 to 4, and increments in multiples of 0.5. We
conducted similar experiments on the real datasets. The spe-
cific results are presented in Table 3.

The experiments demonstrate that the results are consistent
for both real and simulated data sets. However, at a depth
of 1, the explicit regularization is necessary for convergence.
On the other hand, when the depth is optimal, explicit reg-
ularization significantly improves network performance. In-
terestingly, when the depth is large enough, the results with
explicit regularization and those with only an LNN show min-
imal differences, with a slight advantage for the latter. While
there may be slight deviations from the simulated data re-
sults, this also highlights the power of the network’s implicit
regularization at sufficient depths and with higher ranks, ren-
dering explicit regularization unnecessary. Additionally, our
introduced regularization term remains superior to the current
best regularizer across all depths.

6 Conclusion

This paper introduces the SPWNN, which not only enables
more flexible constraints on singular values compared to pre-
vious methods but also exhibits stronger robustness to noise.
We have validated its effectiveness and convergence through
experiments and theoretical analysis. Moreover, we have in-
vestigated the relationship between explicit and implicit reg-
ularization as a function of depth. Our results show that at
shallow depths, the addition of explicit regularization signif-
icantly promotes network convergence. However, at greater
depths with higher rank, the inclusion of explicit regulariza-
tion does not contribute to performance enhancement.
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