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Abstract
Partial multi-label learning (PMLL) refers to a
weakly-supervised classification problem, where
each instance is associated with a set of candi-
date labels, covering its ground-truth labels but also
with irrelevant ones. The current methodology of
PMLL is to estimate the ground-truth confidences
of candidate labels, i.e., the likelihood of a can-
didate label being a ground-truth one, and induce
the multi-label predictor with them, rather than
the candidate labels. In this paper, we aim to es-
timate precise ground-truth confidences by lever-
aging precise label correlations, which are also
required to estimate. To this end, we propose
to capture label correlations from both measur-
ing and modeling perspectives. Specifically, we
measure the loss between ground-truth confidences
and predictions by employing the Wasserstein dis-
tance involving label correlations; and form a label
correlation-aware regularization to constrain pre-
dictive parameters. The two techniques are cou-
pled to promote precise estimations of label cor-
relations. Upon these ideas, we propose a novel
PMLL method, namely Wasserstein Partial Multi-
Label Learning with dual Label Correlation Per-
spectives (WPML3CP). We conduct extensive ex-
periments on several benchmark datasets. Empiri-
cal results demonstrate that WPML3CP can outper-
form the existing PMLL baselines.

1 Introduction
Multi-label learning (MLL) [Zhang and Zhou, 2014a] refers
to inducing multi-label predictors from the precisely labeled
training dataset, where each instance is annotated with its
ground-truth labels. However, in many real-world scenar-
ios, e.g., annotations from crowdsourcing platforms, only par-
tially valid training dataset is available due to various rea-
sons [Li et al., 2021; Li et al., 2022; Feng et al., 2022;
Li et al., 2023; Xie et al., 2023], such as the difficulty of

∗Corresponding author.

Figure 1: An example of partial multi-label learning. The example
image instance is annotated with 8 candidate labels, but only 5 of
them are ground-truth ones.

accurate supervision collection and human effort cost reduc-
tion, etc. A common situation is that each instance is associ-
ated with a set of candidate labels, which cover the ground-
truth labels but also with some irrelevant ones, e.g., the image
instance illustrated in Fig.1. Learning with such a partially
valid training dataset, formally referred to as partial multi-
label learning (PMLL), is naturally much more challenging
than the traditional MLL since even the number of ground-
truth labels is unknown.

To handle the emerging task of PMLL, many methods
have been recently developed, where the basic idea is to es-
timate the ground-truth confidences of candidate labels, i.e.,
the likelihood of a candidate label being a ground-truth one,
and induce the multi-label predictor with them rather than
candidate labels [Xie and Huang, 2018a; Sun et al., 2019;
Li et al., 2020; Li and Wang, 2020; Xie et al., 2021;
Sun et al., 2022]. Naturally, the primary philosophy of PMLL
is how to estimate precise ground-truth confidences, and to
our knowledge, the prevalent spirit is to promote it by ex-
ploiting the correlations among labels. For example, the GLC
method formulates the ground-truth confidences by integrat-
ing a label correlation matrix [Sun et al., 2022]; the MUSER
method decomposes ground-truth confidences into two parts,
including a low-dimensional label matrix and a label correla-
tion matrix [Li et al., 2020]. Although this spirit is empiri-
cally effective in prior literature, it raises a new problem that
label correlations are also required to estimate, and imprecise
estimations may result in imprecise ground-truth confidence.
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Accordingly, in this paper, we concentrate on estimating
precise label correlations to promote the precision of ground-
truth confidence. To this end, we propose to capture la-
bel correlations from both measuring and modeling perspec-
tives. Specifically, we measure the loss between ground-
truth confidences and predictions by employing the Wasser-
stein distance involving label correlations; and form a label
correlation-aware regularization to constrain predictive pa-
rameters. The two techniques are coupled to promote pre-
cise estimations of label correlations. Upon these ideas,
we propose a novel PMLL method, namely Wasserstein
Partial Multi-Label Learning with dual Label Correlation
Perspectives (WPML3CP), which is optimized within the
framework of the augmented Lagrange multiplier method. To
evaluate the performance of WPML3CP, we conduct exten-
sive experiments on both real-world and synthetic datasets.
Experimental results demonstrate that WPML3CP can outper-
form the existing PMLL baselines in most cases.

To sum up, the main contributions of this paper are pre-
sented as follows:

• We propose a novel PMLL method named WPML3CP,
which promotes precise ground-truth confidences by
capturing label correlations from both measuring and
modeling perspectives.

• We efficiently optimize the proposed WPML3CP
method with the framework of augmented Lagrange
multiplier.

• We empirically validate the effectiveness of WPML3CP
by comparing with the existing PMLL baselines on both
real-world and synthetic datasets.

2 Related Works
2.1 Partial Multi-Label Learning
Recently, several PMLL methods have been proposed. Gen-
erally, they mainly focus on estimating the ground-truth con-
fidences, so as to capture more accurate supervised sig-
nals. At present, the methods to solve PMLL are mainly di-
vided into unified framework method and two-stage method.
Specifically, the unified framework method aims to integrate
label confidence learning and multi-classification model into
a joint framework, then the unified framework is optimized
by iterative strategy. The PMLL framework proposed by
[Xie and Huang, 2018b] is built on a ranking loss objective
weighted by the ground-truth confidence, which is regular-
ized through either label correlation or feature prototype, and
gives two versions, named PML-lc and PML-fp, respectively.
Then both fPML [Yu et al., 2018] and PML-LRS [Sun et
al., 2019] utilize the low-rank decomposition to capture the
ground-truth label matrix from the observed candidate labels.
MUSER [Li et al., 2020] combines label decomposition and
feature mapping to enhance the robustness of the classifier
against redundant labels and noisy features. Another recent
PML-NI [Xie and Huang, 2021] method jointly learns the
multi-label classifier and noise label identifier which com-
bines the label correlation exploitation and feature-induced
noise model. In order to make full use of label correlation
information to deal with noise labels, GLC [Sun et al., 2022]

uses low-rank representation and label manifold regularizer
to capture the global and local label correlation, respectively.
Recently, graph-based methods have been widely used to deal
with PMLL problems. PARD [Hang and Zhang, 2023] first
applies the probabilistic graphical model to disambiguate the
candidate labels. PLAIN [Wang et al., 2023] constructs the
instance graph and the label graph in a data-driven way, and
calculates similarity to generate pseudo-labels through label
propagation.

Different from the unified framework method, the two-
stage method restores the ground-truth label distribution or
learns a label confidence matrix in the first stage, and then
builds a multi-classification prediction model based on the
recovered label distribution or label confidence matrix in the
second stage. PARTICLE [Zhang and Fang, 2021] first es-
timates the ground-truth confidences by iterating label prop-
agation to select credible labels. Then, it induces the pre-
diction model with these credible labels using either VLS or
MAP, respectively. In addition to PARTICLE’s work, PML-
LD [Xu et al., 2020] uses the topological information of fea-
ture space and the correlation between labels to recover the la-
bel distribution. PML-MD [Xie et al., 2021] uses confidence-
weighted ranking loss to process the PMLL data in the first
stage, where confidences are estimated adaptively using a
meta-learning-based approach. Considering that estimating
label confidences may introduce a lot of uncertainty, PAMB
[Liu et al., 2023] uses error-correcting output code (ECOC)
technique to transform PMLL problems into multiple binary
learning problems.

2.2 Learning with Wasserstein Distance
The Wasserstein distance [Villani, 2008] has drawn great at-
tention in the machine learning community, and been widely
applied to various learning tasks [Cuturi and Doucet, 2014;
Rubner et al., 2000; Arjovsky et al., 2017; Frogner et al.,
2015; Kusner et al., 2015; Huang et al., 2016; Zhao and Zhou,
2018]. Recently, the authors of [Frogner et al., 2015] pro-
pose a novel learning framework, which refers to the Wasser-
stein distance as the loss function. Orthogonal to WPML3CP,
this framework is also solved using entropic regularization
approximation [Cuturi, 2013], however, it is only applicable
to precisely annotated datasets. Another representative work
proposed in [Zhao and Zhou, 2018] employs Wasserstein loss
for the task of label distribution learning. It introduces a ker-
nel biased regularization to simultaneously leverage the label
distribution and induce label correlations. However, it is also
assumed that the ground-truth supervision is known.

3 Preliminaries
In this section, we first briefly review the Wasserstein distance
and then introduce its entropic regularization.

The Wasserstein distance [Bogachev and Kolesnikov,
2012] is a special case of optimal transport distance [Vil-
lani, 2008], also referred as earth mover’s distance [Rubner
et al., 2000]. Formally, given any two probability measures
µ(u), ν(v) on a space K (i.e., u,v ∈ K) and a cost function
c : K × K → R, the optimal transport distance measures the
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cheapest way to transport the mass in µ to match that in ν:

Wc (µ, ν) = inf
γ∈Π(µ,ν)

∫
K×K

c (u,v) γ (du, dv), (1)

where Π(µ, ν) denotes the set of all joint probability mea-
sures on K × K with marginals µ(u) and ν(v). The Wasser-
stein distance is the case of Eq.(1), in which the cost function
c is specified by drK, the r-th power of a metric dK on K with
r ∈ [1,∞).
Discrete Wasserstein distance. When K is a finite set of size
|K| = K, both µ(u) and ν(v) are discrete distributions (i.e.,
histograms) in the simplex ∆K , i.e., {µ, ν ∈ RK

+ | µ⊤1 =

1,ν⊤1 = 1}, where 1 denotes the all-one vector. Given a
cost matrix MK computed by the r-th power of pairwise dis-
tances over K, i.e., MK = [drK(ui,vj)]ij ∈ RK×K , the dis-
crete Wasserstein distance between µ(u) and ν(v) can be
written as:

W r
r (µ, ν;MK) = inf

T∈U(µ,ν)
⟨T,MK⟩, (2)

where ⟨·, ·⟩ denotes the Frobenius dot-product, and
U(µ, ν) = {T ∈ RK×K

+ |T1 = µ,T⊤1 = ν} is the trans-
portation polytope.
Regularized Wasserstein distance. The discrete Wasser-
stein distance of Eq.(2) is not smooth with respect to its argu-
ments µ, ν [Cuturi and Doucet, 2014], and its computation
requires costly O(K3 logK) time [Pele and Werman, 2009].
To handle those problems, the authors of [Cuturi, 2013] in-
corporate an entropic regularizer into Eq.(2), leading to the
regularized Wasserstein distance:

Wλ (µ, ν;MK) = inf
T∈U(µ,ν)

⟨T,MK⟩ −
1

λ
H(T), (3)

where H(T) = −⟨T, logT⟩ is the (strictly concave) en-
tropy function and λ > 0 is the regularization parame-
ter. Accordingly, given models with parameters of interest,
i.e., denoted by {µ, ν,MK}, we can optimize them by the
Sinkhorn’s algorithm with O(K2) complexity [Cuturi, 2013;
Cuturi and Doucet, 2014]. The optimization details are intro-
duced in the Appendix 1 .

4 Proposed WPML3CP Method
In this section, we introduce the proposed PMLL method
named WPML3CP.
Problem formulation of PMLL. Formally, given a partially
valid training dataset D = {(xi,yi)}i=n

i=1 with n instances
and l category labels, let xi ∈ Rd and yi ∈ {0, 1}l denote
the d-dimensional feature vector and the candidate label set
associated with the i-th instance, respectively. For yi, the
candidate label is signed by 1, otherwise 0. For each instance
xi, its ground-truth label set y∗

i ∈ {0, 1}l is unknown, but it
is covered by yi, i.e., y∗

i ⪯ yi. The objective of PMLL is
to induce a classifier over D, which can predict the labels for
unseen instances.

1https://github.com/daidai1118/WPML3CP/blob/main/
WPML3CP Appendix.pdf

4.1 Method Description
For each instance xi, its (normalized) ground-truth confi-
dence is defined by pi ∈ Rl such that 0 ⪯ pi ⪯ yi, p

⊤
i 1 =

1, where 0 denotes the all-zero vector. And the label corre-
lation matrix is denoted by C ∈ Rl×l

+ with each c:,j being
the coefficient vector for label j with respect to labels l. The
basic idea of WPML3CP is to estimate precise p by capturing
precise C from both measuring and modeling perspectives.

Specifically, from the measuring perspective, we specify
each pi as a discrete distribution, and measure the loss be-
tween it and the prediction model by exploiting the regular-
ized Wasserstein distance Wλ(·). Toward this goal, we em-
ploy a normalized linear model f(xi|W) = Wxi, W =
[w1, · · · ,wl]

⊤ ∈ Rl×d such that (Wxi)
⊤1 = 1, ensuring

the prediction also as a discrete distribution. From the mod-
eling perspective, we form a label correlation-aware mani-
fold regularization term to constrain the parameter W of the
model. Upon the above ideas, we formulate the objective of
WPML3CP with a squared Frobenius norm of W as follows:

min
W,P,C

n∑
i=1

Wλ

(
pi,Wxi;m(C)

)
+

β1

2

l∑
i=1

l∑
j=1

Cij∥wi −wj∥22 +
β2

2
∥W∥2F

s.t. 0 ⪯ pi ⪯ yi, p
⊤
i 1 = 1, (Wxi)

⊤1 = 1, ∀i ∈ [n],
(4)

where m(·) = 1 − sigmoid(·) is utilized to transform the la-
bel correlation matrix C to the cost matrix of Wasserstein
distances; and {β1, β2} are the regularization parameters.

Since the constraints of Eq.(4) tend to increase the opti-
mization complexity, we leverage two surrogate heuristics to
eliminate them. First, for the two equality constraints of pi

and Wxi, we exploit the softmax function s(·) to directly
satisfy them. Specifically, for each pi we introduce an aux-
iliary softmax parameter qi, i.e., pi = s(qi), and therefore
learn Q = [q1, · · · ,qn]

⊤ ∈ Rn×l, instead of P. Sec-
ond, for the inequality constraint of pi, we consider the ir-
relevant labels existed in the observed candidate label matrix
Y = [y1, · · · ,yn]

⊤, and decompose it into the matrix Q and
a noise matrix E. Considering that the ground-truth labels
are correlated in the multi-label learning case and the noise
is always sparse in many real-world scenarios, we introduce
a nuclear norm regularization for Q and ℓ1-norm regulariza-
tion for E. Accordingly, we achieve the final objective of
WPML3CP with respect to {W,Q,C,E} below:

min
W,Q,C,E

n∑
i=1

Wλ

(
s(qi), s(Wxi);m(C)

)
+

β1

2

l∑
i=1

l∑
j=1

Cij∥wi −wj∥22 +
β2

2
∥W∥2F

+ β3∥Q∥∗ + β4∥E∥1
s.t. Y = Q+E. (5)

Here, the equality constraint of Eq.(5) can be eliminated eas-
ily by employing the augmented Lagrange multiplier tech-
nique [Zhang et al., 2017].
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4.2 Optimization
The objective of WPML3CP in Eq.(5) refers to four param-
eters of interest, i.e., {W,Q,C,E}. We optimize them
with the gradient decent approach under the augmented La-
grange multiplier framework. Specifically, the augmented
Lagrangian of Eq.(5) is given with an auxiliary variable H:

min
W,Q,C,E,H

n∑
i=1

Wλ

(
s(hi), s(Wxi);m(C)

)
+

β1

2
tr(W⊤LW) +

β2

2
∥W∥2F + β3∥Q∥∗ + β4∥E∥1

+ ⟨Y1,Y −Q−E⟩+ µ1

2
∥Y −Q−E∥2F

+ ⟨Y2,Q−H⟩+ µ2

2
∥Q−H∥2F , (6)

where L = diag(C1)−C is the Laplacian matrix of C. Ac-
cording to the LADMAP method [Lin et al., 2011], it can be
rewritten as:

min
W,Q,C,E,H

n∑
i=1

Wλ

(
s(hi), s(Wxi);m(C)

)
+

β1

2
tr(W⊤LW) +

β2

2
∥W∥2F + β3∥Q∥∗

+ β4∥E∥1 +
µ1

2
∥Y −Q−E+

Y1

µ1
∥2F

+
µ2

2
∥Q−H+

Y2

µ2
∥2F . (7)

Accordingly, we employ the gradient decent approach to op-
timize {W,C,H}, whose gradients can be easily calculated
with some simple derivations and the Sinkhorn algorithm,
and update {Q,E} as well as {Y1,Y2, µ1, µ2} with the lin-
ear ADM method following [Liu et al., 2010]. Due to the
space limitation, the optimization details are presented in the
Appendix 2 .
Initialization of label correlation matrix C: We initial-
ize the label correlation matrix C with the cosine similari-
ties among label prototypes, which are calculated by averag-
ing the training features X = [x1, · · · ,xn]

⊤ weighted with
Y. Specifically, given the label prototypes O = Y⊤X =
[o1, · · · ,ol]

⊤, the initialization of the label correlation ma-
trix C is given by:

Cij =
o⊤
i oj

∥oi∥2∥oj∥2
, ∀i, j ∈ [l].

5 Experiment
In this section, we empirically evaluate the proposed
WPML3CP method.
Datasets. To thoroughly evaluate WPML3CP, we employ 5
real-world PMLL datasets,3 including Music emotion, Mir-
flickr, YeastBP, YeastCC, and YeastMF, and generate syn-
thetic PMLL datasets by using 4 MLL datasets,4 including

2https://github.com/daidai1118/WPML3CP/blob/main/
WPML3CP Appendix.pdf

3http://palm.seu.edu.cn/zhangml/
4http://mulan.sourceforge.net/datasets-mlc.html, https://github.

com/fcharte/mldr.datasets

Dataset |S| dim(S) L(S) LCard(S) Domain
Music emotion 6,833 98 11 2.42 Music

Mirflickr 10,433 100 7 1.77 Images
YeastBP 6,139 6,139 217 5.537 Biology
YeastCC 6,139 6,139 50 1.348 Biology
YeastMF 6,139 6,139 39 1.005 Biology

Birds 645 260 19 1.014 Audio
Medical 978 1,449 45 1.140 Text
Genbase 662 1,186 27 1.252 Biology

Entertainment 12,730 32,001 21 1.414 Text

Table 1: Detailed characteristics of datasets. |S|: the number of
instances of dataset S. dim(S): the number of features. L(S):
the number of category labels. LCard(S): the average number of
labels per instance.

Birds, Medical, Genbase, and Entertainment. For clarity, we
present the detailed characteristics of all datasets in Table 1.

Besides, the synthetic versions are generated by the follow-
ing policies. For each instance, we randomly choose some ir-
relevant labels, and then mix them with the ground-truth ones,
leading to the set of candidate labels. The number of irrele-
vant noisy labels is denoted by m%∥y∗

i ∥0, where the value of
m is varied over [50, 100, 150]. Accordingly, in our experi-
ments, we generate 12 synthetic PMLL datasets in total.
Baseline methods. We employ 7 the state-of-the-art PMLL
methods for comparison. They include PAMB [Liu et al.,
2023], GLC [Sun et al., 2022], PMLNI [Xie and Huang,
2021], PML-MD [Xie et al., 2021], PML-LRS [Sun et al.,
2019], PAR-MAP and PAR-VLS [Zhang and Fang, 2021].
We set the parameters as suggested in their original papers.
For our WPML3CP, across Mirflickr and Music emotion the
parameters are set as: β1 = 1, β2 = 10−3, β3 = 10−1,
and β4 = 1, and across YeastBP, YeastCC and YeastMF the
parameters are set as: β1 = 10−3, β2 = 10−1, β3 = 102,
and β4 = 102. Furthermore, about the parameter λ of the
regularized Wasserstein distance, we set λ = 1 for Mirflickr
and λ = 50 for others.
Evaluation metrics. We employ 5 widely-used MLL met-
rics to measure the performance, including Average Preci-
sion (AP), Coverage Error (CError), Ranking Loss (RLoss),
Macro Averaging F1 (Macro F1) and Micro Averaging F1
(Micro F1). Those evaluation metrics cover both ranking-
and binary-based ones and their detailed definitions can refer
to the descriptions in [Zhang and Zhou, 2014b]. For CError
and RLoss, the smaller value implies better performance (de-
noted by ↓); and for AP, Macro F1, and Micro F1, the larger
value is better (denoted by ↑).

5.1 Results on Real-world Datasets
For each dataset, we conduct five-fold cross-validation and
report the average results in Tables 2 and 3. We can clearly
observe that WPML3CP can outperform the baseline methods
in most cases. Across all datasets and evaluation criteria on
real-world datasets, WPML3CP ranks 1st in 80% and 2nd in
12% cases. More detailed observations are made below.

Comparisons via the perspective of evaluation criteria: We
can observe that, on the ranking based metrics (i.e., AP,
CError and RLoss), WPML3CP ranks first in 73.3% cases.
Specifically, WPML3CP dominates all seven PML baselines
on CError and performs similarly on AP and Rloss: It outper-
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Dataset WPML3CP PAMB GLC PML-NI PML-MD PML-LRS PAR-MAP PAR-VLS

AP ↑
YeastBP .552±.009 .353±.206 .466±.016 .402±.007 .218±.013 .432±.002 .386±.203 .332±.012
YeastCC .836±.007 .653±.133 .790±.018 .833±.008 .785±.009 .722±.007 .684±.121 .630±.014
YeastMF .779±.009 .638±.111 .703±.008 .770±.001 .736±.016 .685±.009 .688±.108 .603±.016
Mirflickr .858±.006 .753±.038 .765±.008 .789±.008 .859±.007 .793±.001 .795±.181 .673±.024

Music emotion .623±.004 .642±.008 .515±.005 .599±.007 .636±.012 .617±.008 .620±.010 .585±.008

CError ↓
YeastBP .281±.005 .560±.189 .325±.012 .416±.011 .572±.010 .410±.008 .452±.193 .689±.012
YeastCC .090±.007 .271±.119 .124±.012 .101±.003 .140±.011 .171±.004 .219±.104 .376±.015
YeastMF .104±.009 .249±.096 .149±.008 .119±.010 .149±.016 .190±.005 .184±.085 .397±.017
Mirflickr .209±.004 .276±.050 .289±.006 .229±.005 .220±.005 .231±.001 .242±.055 .315±.004

Music emotion .405±.001 .407±.007 .494±.004 .411±.007 .409±.007 .408±.006 .423±.006 .431±.007

RLoss ↓
YeastBP .146±.002 .389±.119 .197±.008 .218±.005 .300±.013 .258±.005 .254±.100 .693±.012
YeastCC .063±.004 .231±.103 .089±.009 .072±.004 .101±.012 .142±.002 .158±.068 .396±.015
YeastMF .088±.008 .235±.083 .132±.005 .105±.007 .121±.012 .180±.006 .153±.062 .423±.017
Mirflickr .094±.004 .147±.039 .185±.007 .123±.006 .089±.005 .122±.001 .134±.124 .230±.017

Music emotion .242±.003 .234±.006 .345±.006 .250±.008 .239±.011 .243±.005 .241±.005 .268±.007

Macro F1 ↑
YeastBP .339±.012 .010±.006 .016±.001 .297±.020 .149±.009 .181±.008 .015±.007 .004±.002
YeastCC .536±.008 .010±.004 .069±.004 .281±.017 .187±.025 .252±.021 .017±.006 .017±.002
YeastMF .404±.018 .014±.007 .035±.006 .197±.013 .144±.036 .197±.013 .019±.007 .019±.009
Mirflickr .607±.016 .567±.079 .157±.006 .564±.014 .533±.019 .571±.005 .346±.079 .480±.012

Music emotion .429±.012 .256±.008 .053±.001 .286±.013 .388±.023 .388±.010 .253±.009 .205±.006

Micro F1 ↑
YeastBP .384±.008 .046±.026 .044±.006 .311±.018 .211±.006 .184±.007 .080±.028 .008±.004
YeastCC .569±.013 .033±.007 .152±.013 .297±.018 .271±.022 .263±.021 .078±.019 .045±.006
YeastMF .418±.022 .037±.014 .079±.009 .204±.014 .206±.044 .223±.014 .079±.007 .056±.008
Mirflickr .748±.008 .743±.042 .553±.006 .685±.008 .748±.011 .659±.002 .531±.189 .667±.007

Music emotion .529±.007 .386±.005 .238±.003 .458±.012 .538±.008 .524±.009 .446±.009 .425±.008

Average Rank 1.32 5.68 5.32 3.28 3.36 3.96 5.36 7.52

Table 2: Experimental results of each comparing method (mean ± std) in terms of AP, CError, RLoss, Macro F1 and Micro F1, where the
best performance is shown in boldface.

forms most baselines on these criteria but slightly worse than
PAMB in music emotion and PML-MD in mirflickr. On bi-
nary prediction-based metrics (i.e., Macro F1 and Micro F1),
WPML3CP ranks first in 90% cases. Specifically, WPML3CP
dominates all seven PML baselines under these two crite-
ria, except in music emotion where PML-MD outperforms
WPML3CP over Micro F1. This probably because that our
method primarily guiding prediction model generation based
on label correlation, resulting in many irrelevant labels shar-
ing similar features being predicted as correlated. As a result,
the binary prediction is perceived as more accurate but ranks
slightly lower. In particular, PAMB performs very well in
music emotion on three ranking based metrics, but poorly on
two binary prediction based metrics, which indicates that the
binary decomposition technique still has some limitations for
PMLL problems.

Comparisons via the perspective of datasets: We can ob-
serve that, on the datasets with a large number of features
(i.e. YeastBP, YeastCC and YeastMF), WPML3CP shows the
best under all evaluation metrics. On datasets with a small
number of features (i.e. Mirflickr and Music emotion), the
average rank of WPML3CP ranks first, slightly better than
that of PML-MD. This might be caused by the too large av-
erage number of labels per instance of Yeast compared with
the number of category labels, leading to the very sparse label
vector of each instance. Fortunately, our method fully consid-
ers the label correlation from both measuring and modeling.

5.2 Results on Synthetic Datasets
Across all datasets and evaluation criteria on synthetic
datasets, WPML3CP ranks 1st in 76.7% and 2nd in 20% cases.
We can observe that WPML3CP consistently outperforms
all baselines for both medical and entertainment datasets in
terms of all five evaluation metrics. For genbase, WPML3CP
only has a small performance gap compared with PAR-MAP
on CError and RLoss metrics but still competitive. In addi-
tion, PAMB outperforms WPML3CP over Macro F1 metric.
One exception is in birds, where PML-NI outperforms our
method over CError and RLoss evaluation metrics. This may
be caused by the noise label identifier proposed in PML-NI,
which leads to the improvement of performance. Besides, the
performance gain of WPML3CP tends to be more significant
with the proportions of irrelevant labels increasing.

Additionally, we examine whether the performance gain of
WPML3CP is statistically significant. To answer this ques-
tion, for each PMLL dataset and evaluation metric, we con-
duct a pairwise t-test over the results of the corresponding
five train/test splits. The resulting win/tie/loss counts over
425 statistical tests (17 PMLL datasets × 5 evaluation met-
rics × 5-fold cross-validation) are reported in Table 4. In
summary, out of all the tests, WPML3CP significantly out-
performs recent PMLL algorithms in 88.9% (PAMB), 96.5%
(GLC), 77.4% (PML-NI), 88% (PML-MD), 91.8% (PML-
LRS), 80.2% (PAR-MAP) and 96% (PAR-VLS) cases, respec-
tively. This further indicates the effectiveness of WPML3CP.
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Dataset AN.#Per WPML3CP PAMB GLC PML-NI PML-MD PML-LRS PAR-MAP PAR-VLS

AP ↑

birds
50 .777±.030 .760±.030 .684±.035 .786±.020 .728±.035 .639±.040 .752±.024 .734±.027
100 .787±.024 .743±.032 .682±.023 .781±.031 .745±.042 .671±.014 .737±.010 .745±.020
150 .775±.035 .683±.024 .678±.023 .757±.036 .733±.025 .696±.021 .754±.018 .734±.029

genbase
50 .477±.017 .288±.044 .421±.044 .455±.020 .376±.059 .415±.034 .453±.099 .418±.107
100 .481±.020 .211±.037 .420±.027 .451±.035 .381±.066 .422±.045 .458±.097 .426±.107
150 .466±.017 .345±.055 .356±.050 .444±.037 .396±.058 .396±.053 .453±.097 .429±.113

medical
50 .900±.028 .486±.038 .657±.020 .888±.016 .820±.028 .494±.025 .810±.014 .746±.030
100 .894±.032 .482±.039 .653±.028 .883±.013 .788±.042 .497±.020 .801±.025 .747±.028
150 .890±.031 .482±.033 .658±.010 .863±.015 .779±.025 .492±.074 .813±.014 .711±.024

entertainment
50 .697±.028 – .611±.006 .662±.009 .405±.058 .358±.003 .583±.011 .533±.006
100 .694±.011 – .610±.004 .650±.009 .445±.047 .345±.003 .570±.009 .522±.006
150 .691±.034 – .607±.005 .620±.005 .386±.053 .306±.005 .539±.004 .518±.005

CError ↓

birds
50 .135±.021 .147±.020 .187±.038 .136±.018 .166±.029 .289±.032 .113±.021 .171±.027
100 .138±.019 .170±.027 .187±.008 .141±.020 .161±.025 .148±.021 .108±.008 .172±.019
150 .145±.025 .193±.022 .194±.014 .151±.030 .163±.014 .197±.017 .103±.014 .179±.023

genbase
50 .153±.020 .322±.052 .196±.017 .176±.008 .192±.026 .247±.038 .156±.035 .222±.065
100 .147±.019 .362±.064 .192±.017 .177±.024 .210±.020 .216±.053 .150±.035 .209±.054
150 .163±.020 .319±.058 .215±.012 .196±.010 .217±.024 .273±.021 .155±.034 .197±.059

medical
50 .030±.015 .188±.015 .071±.008 .038±.002 .062±.014 .322±.028 .060±.008 .099±.011
100 .030±.013 .198±.026 .077±.013 .036±.009 .067±.011 .307±.036 .074±.022 .113±.023
150 .034±.016 .168±.019 .076±.018 .045±.006 .079±.010 .313±.058 .070±.013 .134±.017

entertainment
50 .129±.012 – .149±.003 .172±.004 .284±.068 .400±.007 .171±.005 .206±.003
100 .128±.016 – .151±.003 .183±.001 .246±.050 .403±.004 .179±.002 .222±.002
150 .138±.014 – .153±.005 .199±.006 .261±.014 .425±.005 .199±.002 .229±.003

RLoss ↓

birds
50 .105±.019 .117±.009 .154±.022 .102±.015 .131±.018 .252±.028 .090±.014 .133±.017
100 .105±.013 .131±.016 .156±.012 .108±.019 .127±.023 .205±.011 .090±.004 .132±.010
150 .110±.016 .160±.012 .157±.012 .116±.020 .130±.010 .161±.011 .083±.009 .140±.013

genbase
50 .136±.018 .301±.047 .175±.019 .157±.009 .170±.019 .233±.040 .138±.029 .194±.053
100 .132±.013 .354±.060 .171±.015 .156±.016 .184±.015 .200±.054 .133±.027 .192±.046
150 .142±.016 .300±.052 .191±.013 .167±.010 .195±.026 .253±.016 .135±.026 .177±.051

medical
50 .020±.011 .172±.015 .058±.012 .026±.003 .048±.012 .293±.022 .045±.005 .080±.007
100 .020±.011 .177±.023 .063±.010 .026±.007 .052±.011 .283±.035 .059±.010 .090±.017
150 .024±.012 .151±.018 .061±.003 .033±.004 .061±.010 .033±.004 .053±.009 .105±.013

entertainment
50 .092±.013 – .106±.002 .127±.003 .240±.070 .360±.007 .135±.005 .165±.002
100 .093±.018 – .106±.003 .138±.001 .204±.049 .365±.005 .141±.002 .179±.002
150 .100±.013 – .109±.002 .153±.004 .224±.014 .385±.004 .162±.002 .185±.003

Macro F1 ↑

birds
50 .267±.016 .173±.038 .031±.005 .277±.041 .211±.047 .097±.012 .189±.029 .099±.022
100 .305±.019 .151±.019 .030±.005 .297±.043 .206±.034 .102±.019 .187±.028 .072±.016
150 .291±.046 .105±.021 .025±.011 .213±.033 .205±.036 .179±.036 .205±.012 .104±.011

genbase
50 .272±.034 .243±.060 .209±.073 .219±.068 .253±.092 .256±.043 .310±.067 .287±.072
100 .272±.033 .204±.050 .231±.059 .210±.029 .236±.045 .260±.079 .309±.069 .287±.072
150 .273±.034 .226±.054 .233±.088 .258±.085 .257±.043 .244±.062 .312±.071 .287±.072

medical
50 .368±.028 .029±.007 .058±.004 .270±.020 .260±.018 .040±.003 .223±.032 .140±.016
100 .346±.016 .029±.008 .053±.009 .252±.017 .215±.037 .040±.002 .207±.020 .141±.014
150 .341±.028 .029±.008 .060±.007 .263±.011 .194±.017 .047±.008 .224±.017 .154±.019

entertainment
50 .295±.021 – .101±.003 .236±.007 .109±.031 .160±.003 .179±.007 .152±.002
100 .290±.022 – .102±.002 .217±.004 .115±.031 .155±.000 .175±.006 .148±.006
150 .272±.034 – .101±.003 .206±.006 .105±.018 .127±.010 .184±.003 .150±.003

Micro F1 ↑

birds
50 .483±.044 .278±.028 .177±.029 .418±.034 .400±.053 .256±.035 .242±.017 .260±.030
100 .498±.045 .256±.029 .174±.023 .399±.053 .428±.054 .297±.019 .249±.030 .193±.063
150 .480±.057 .171±.032 .163±.063 .331±.052 .396±.063 .328±.037 .251±.025 .210±.018

genbase
50 .264±.017 .129±.031 .236±.042 .169±.110 .142±.086 .241±.026 .251±.116 .012±.001
100 .245±.017 .130±.045 .236±.022 .191±.063 .176±.065 .243±.037 .259±.111 .012±.001
150 .277±.021 .127±.021 .147±.072 .242±.039 .220±.067 .217±.062 .247±.108 .012±.001

medical
50 .835±.036 .291±.045 .442±.020 .758±.025 .734±.030 .390±.025 .583±.029 .433±.086
100 .830±.036 .289±.042 .438±.031 .751±.025 .701±.049 .385±.016 .585±.030 .460±.051
150 .820±.037 .287±.044 .444±.022 .706±.025 .682±.031 .377±.060 .571±.016 .463±.085

entertainment
50 .563±.042 – .361±.009 .392±.011 .256±.042 .242±.003 .376±.008 .347±.009
100 .556±.015 – .360±.004 .361±.008 .312±.063 .233±.002 .366±.008 .332±.008
150 .543±.040 – .361±.007 .334±.003 .243±.090 .188±.009 .338±.005 .324±.005

Average Rank 1.40 6.87 6.11 2.71 4.24 6.36 2.82 5.44

Table 3: Results of each comparing method (mean ± std) in terms of AP, CError, RLoss, Macro F1 and Micro F1, where the best performance
is shown in boldface. The notation “AN.#Per” denotes the percentage of ground-truth labels added to each instance as irrelevant noisy labels.
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Figure 2: Sensitivity analysis of regularization parameters {β1, β2, β3, β4} on two real PMLL datasets Mirflickr (top) and YeastCC (bottom).

Baseline Method AP CError RLoss Macro F1 Micro F1 Total

PAMB [Liu et al., 2023] 74/3/8 76/0/9 76/0/9 68/3/14 84/0/1 378/6/41
GLC [Sun et al., 2022] 85/0/0 85/0/0 85/0/0 76/9/0 79/3/3 410/12/3

PML-NI [Xie and Huang, 2021] 54/7/24 55/5/25 60/3/22 78/6/1 82/0/3 329/21/75
PML-MD [Xie et al., 2021] 72/6/7 82/3/0 77/1/7 70/15/0 73/8/4 374/33/18
PML-LRS [Sun et al., 2019] 82/3/0 83/1/1 82/0/3 70/3/12 73/5/7 390/12/23

PAR-MAP[Fang and Zhang, 2019] 63/4/18 62/1/22 58/3/24 76/6/3 82/0/3 341/14/70
PAR-VLS [Fang and Zhang, 2019] 79/0/6 79/0/6 82/0/3 84/0/1 84/0/1 408/0/17

Table 4: Win/tie/loss counts of pairwise t-test between WPML3CP and each comparing method.

5.3 Parameter Evaluation

In this subsection, we evaluate the sensitivity of the regular-
ization parameter {β1, β2, β3, β4} of WPML3CP. To this end,
we examine the impact of varying {β1, β2, β3} values across
the range {10i|i = −3, · · · , 3} and varying β4 values across
the range {10i|i = −1, · · · , 5} on two real PMLL datasets
Mirflickr and YeastCC, measured by the ranking based metric
(i.e., AP) and the binary prediction based metric (i.e., Macro
F1). The results are presented in Figure 2. Roughly, we can
observe that WPML3CP tends to achieve higher scores with
relatively smaller values of {β1, β2} and higher value of β4,
and excepts a smaller (higher) value of β3 on the dataset with
a large (small) number of features. We empirically recom-
mend selecting the values of {β1, β2} from 10−3 to 101, β3

inversely proportional to dim(S) and β4 from 10−1 to 103.

5.4 Ablation Study

In this subsection, we conduct ablative studies of different
strategies (terms in the loss) by setting the corresponding reg-
ularization parameters to zero (see Figure 2). Specifically,
{β1 = 0, β3 = 0, β4 = 0} represents the versions without
the manifold regularization, ∥Q∥∗, and ∥E∥1 terms, respec-
tively. Furthermore, to validate the effectiveness of Wasser-
stein distance, we compare substituting it with Euclidean dis-
tance in Table 5, serving as an ablation experiment for the la-
bel correlation-aware Wasserstein distance. The results on all
real datasets demonstrate the superiority of the Wasserstein
distance over the Euclidean distance.

Dataset Ver. AP CError RLoss MacroF1 MicroF1

YeastBP Eucli .370±.009 .504±.008 .286±.004 .031±.003 .114±.007
Wass .552±.009 .281±.005 .146±.002 .339±.012 .384±.008

YeastMF Eucli .650±.003 .215±.005 .199±.006 .024±.005 .065±.010
Wass .779±.009 .104±.009 .088±.008 .404±.018 .418±.022

YeastCC Eucli .661±.008 .251±.014 .195±.005 .035±.011 .091±.016
Wass .836±.007 .090±.007 .063±.004 .536±.008 .569±.013

Mirflickr Eucli .790±.009 .228±.005 .122±.006 .577±.010 .659±.008
Wass .858±.006 .209±.004 .094±.004 .607±.016 .748±.008

Music
emotion

Eucli .617±.004 .408±.003 .243±.003 .389±.008 .526±.004
Wass .623±.004 .405±.001 .242±.003 .429±.012 .529±.007

Table 5: Ablation study results about Wasserstein distance.

6 Conclusion
In this paper, we investigate the paradigm of PMLL with
noise supervised signals. A novel PMLL method, namely
WPML3CP, is proposed. In WPML3CP, we specify the
ground-truth confidence as the normalized discrete distribu-
tion, i.e., latent label distribution, to describe the probability
of a candidate label being a ground-truth one. Considering
it as a latent distribution variable, we jointly learn it and a
normalized linear prediction model by minimizing the robust
regularized Wasserstein distance. To reduce the optimization
complexity, we eliminate the normalized constraints by ex-
ploiting the softmax function, leading to a surrogate objective
without any constraint. The gradient descent with Adam is
used to solve it. Extensive experimental results demonstrate
that WPML3CP outperforms the state-of-the-art baseline algo-
rithms, and specifically it works well with high proportions of
irrelevant labels.
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