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Abstract
In reality, it is laborious to obtain complete label
degrees, giving birth to Incomplete Label Distri-
bution Learning (InLDL), where some degrees are
missing. Existing InLDL methods often assume
that degrees are uniformly random missing. How-
ever, it is often not the case in practice, which arises
the first issue. Besides, they often adopt explicit
regularization to compensate the incompleteness,
leading to burdensome parameter tuning and extra
computation, causing the second issue. To address
the first issue, we adopt a more practical setting,
i.e., small degrees are more prone to be missing,
since large degrees are likely to catch more atten-
tion. To tackle the second issue, we argue that label
distribution itself already contains abundant knowl-
edge, such as label correlation and ranking order,
thus it may have provided enough prior for learn-
ing. It is precisely because existing methods over-
look such a prior that leads to the forced adoption
of explicit regularization. By directly utilizing the
label degrees prior, we design a properly weighted
objective function, exempting the need from ex-
plicit regularization. Moreover, we provide rigor-
ous theoretical analysis, revealing in principle that
the weighting plays an implicit regularization role.
To sum up, our method has four advantages, it is
1) model selection free; 2) with closed-form solu-
tion (sub-problem) and easy-to-implement (a few
lines of codes); 3) with linear computational com-
plexity in the number of samples, thus scalable to
large datasets; 4) competitive with state-of-the-arts
in both random and non-random missing scenarios.

1 Introduction
In real applications, labels may be associated with a sam-
ple to some degree, thus soft labels are preferred rather than
the hard ones to describe the label ambiguity [Rupprecht et
al., 2017], where Label Distribution Learning (LDL) [Geng,
2016] originated from. LDL is a learning paradigm that
assigns a sample with different label description degrees,
i.e., the relevance of a sample belonging to different la-
bels, which satisfy the probability simplex constraint. How-

(a) Image from real-world. (b) Incomplete label distribu-
tion in practice.

Figure 1: An illustration of incomplete label distribution in practice.
Figure 1(a) is an image from real-world and Figure 1(b) is the cor-
responding label distribution. Note that, labels with small degrees,
like “house” and “wire pole” are harder to recognize compared to
those with large degrees. This suggests that label degrees are not
randomly missing but small degrees are more likely to be missing.

ever, obtaining complete label degrees is always laborious
and challenging in real-world, thus the desire to get rid of
such predicament drives the emergence of Incomplete LDL
(InLDL) [Xu and Zhou, 2017]. To date, InLDL has wide ap-
plications in facial expression recognition [Yang et al., 2017;
Chen et al., 2020], age estimation [Hou et al., 2017; Gao
et al., 2018], and multi-label ranking [Geng et al., 2021;
Lu et al., 2023].

In the pioneer InLDL work [Xu and Zhou, 2017], the au-
thors assume that label degrees are uniformly random miss-
ing, and subsequent works [Jia et al., 2019a; Li et al., 2022;
Wang and Geng, 2023] just simply follow this assumption.
However, it is often not the case in practice. As shown in Fig-
ure 1, when annotating such a picture from real-world, labels
with small degrees such as “house” and “wire pole” are much
more difficult to recognize compared to those with large de-
grees such as “sky” and “cloud”. This suggests that label
degrees are not randomly missing but small degrees are more
likely to be missing in practice, which arises the first issue.

Besides, to compensate the degree incompleteness, exist-
ing InLDL methods always have to make various assump-
tions, which are then translated into one or more explicit reg-
ularization terms in their objective functions. For example, in
[Xu and Zhou, 2017], the authors assume that the label degree
matrix is low-rank in characterizing the correlation between
labels, and adopt the trace norm as a regularization term; in
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(b) Fbp5500.

Figure 2: The mean relative errors for degrees less than 0.5 and
degrees greater than 0.5 on two datasets Flickr and Fbp5500.

[Wang and Geng, 2023], the authors assume that the predic-
tions of their model lie in the same manifold, and exploit
both the global and local label correlations with three differ-
ent regularization terms. Obviously, each imposed regular-
ization term associates with a hyper-parameter, which leads
to burdensome parameter tuning and extra computation cost
for model selection, causing the second issue.

To address the first issue, we consider a more practical set-
ting in this paper, i.e., small degrees are more likely to be
missing, instead of adopting the uniformly random missing
assumption as in existing InLDL methods. Our setting is
more reasonable since labels with smaller degrees are harder
to recognize as shown in Figure 1, rendering them more sus-
ceptible to being missing, which is more in line with practi-
cality. To our best knowledge, this is the first work that con-
siders non-random missing scenario in the InLDL field.

To tackle the second issue, we argue that label distribu-
tion itself already contains abundant knowledge including la-
bel correlation and ranking order, thus it may have provided
enough prior for learning. Existing methods mainly focus
on mining label correlations while overlooking such a useful
prior that leads to the forced adoption of explicit regulariza-
tion. Contrary to these methods, we highlight the benefits
and importance of the label degrees prior in this paper. In-
triguingly, we discover that when this prior is appropriately
leveraged, the InLDL problem can be resolved even without
any explicit regularization, thereby exempting from parame-
ter tuning and additional computational overhead.

Subsequently, a pivotal question naturally arises: how to
effectively leverage the aforementioned prior? Our solution
is straightforward: we design a properly weighted objec-
tive function by directly integrating the label degrees into a
weighting matrix. Reasons of this solution lie in four aspects.
(1) Intuitively, labels with large degrees are likely to receive
more concern, while those with small degrees are easily over-
whelmed or even overlooked, making them more difficult to
be recognized. (2) Empirically, we conduct experiments to
validate the above intuition. From Figure 2, it is evident that
the mean relative errors are higher for degrees below 0.5 com-
pared to those degrees above 0.5. This observation indicates
that small degrees are underfitted in comparison to those large
degrees. (3) Generally, in label distribution learning, the goal
is to learn a distribution of all labels. Given that small degrees
are underfitted, it is imperative to allocate more attention on
them so as to learn a more accurate label distribution. A nat-
ural and straightforward way is to design a weighting scheme

that puts more emphasis on small degrees. (4) By directly
integrating the label degrees into a weighting matrix, we not
only make a rational use of the label degree prior, but also
save additional overhead of learning a weighted matrix.

Based on the above analyses and with the aim to learn an
accurate label distribution for all labels, we impose larger
weights on the losses of the smaller observed degrees. For
missing degrees, we gradually increase the weights on their
losses, since these degrees should become more reliable as
the training progresses. To make theoretical explanations of
why the proposed method could work without any explicit
regularization, we first define a weighted empirical risk and
derive data-dependent upper bounds between the expected
risk and the weighted empirical risk. These upper bounds
explicitly depend on the weighted matrix, and the generaliza-
tion error can be bounded by this weighted matrix, imply-
ing that such weighting plays a role of implicit regulariza-
tion as no explicit regularization is really imposed. Note that,
by utilizing the Alternating Direction Method of Multipliers
(ADMM) [Boyd et al., 2011] for optimization, we derive the
closed form solution of each sub-problem and implement the
codes in just a few lines. Interestingly, the computational
complexity is linear in the number of samples, making our
method fast and scalable to large datasets.

To sum up, our main contributions are threefold:
(1) We propose an efficient, effective, and easy-to-implement

Weighted method for InLDL, abbreviated as WInLDL,
which is free of any explicit regularization, to the best of
our knowledge, this is the first time in the InLDL field.

(2) We theoretically derive a data-dependent upper bound
between the expected risk and the weighted empirical
risk with the help of Rademacher complexity, which con-
tains the classical risk bounds under single-label and un-
weighted settings as our special cases.

(3) We empirically verify the effectiveness of WInLDL on
ten real-world datasets, and experiments show that it is
competitive with state-of-the-art methods in both random
and non-random missing scenarios.

2 Related Work
In this section, we review the most relevant works to ours.
InLDL was first proposed by [Xu and Zhou, 2017] to address
the problem with incomplete annotations. They assume that
the matrix formed by the label degrees is low-rank to combat
the incompleteness, and adopt the trace norm as a regulariza-
tion term to formulate the label correlations. Later, in [Jia et
al., 2019b], the authors assume the clusters of samples are
low-rank and also utilize the trace norm to characterize such
local label correlations. Recently, in [Wang and Geng, 2023],
the authors argue that the low-rank assumption may not hold,
instead, they assume that the predictions of their model lie on
the same manifold whose structure may encode the correla-
tions among labels. Further, they exploit both the global and
local correlations to learn the label distribution in the InLDL
setting. All the above methods focus on mining label cor-
relations while ignoring the fact that label distribution itself
provides useful even sufficient prior knowledge, as we dis-
sected in the Introduction. We contend that the degree prior
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should not be overlooked but rather utilized rationally. To
the best of our knowledge, [Wang et al., 2022] is the only
work that considers the label degrees to do the weighting.
Compared with our work, there are three main differences,
1) their task focuses on classification, the goal is to learn
the top label(s), thus they put large weights on large degrees,
which will be verified in Table 5 that in the InLDL setting,
such a weighting performs worse than our WInLDL; 2) they
discard the weighting scheme in their theoretical analysis,
thus they do not provide a theoretical guarantee for weight-
ing, which is a main contribution of this paper; 3) they use
the product between the entropy (Ex = −

∑
y∈Y dyx ln d

y
x)

of degree and degree itself as the weights. While in the
InLDL setting, the missing degrees are set to 0, and ln dyx
will be meaningless in such a situation. Therefore, their
weighting scheme cannot be applied to the InLDL setting.
There are other works in the field of InLDL [Jia et al., 2021;
Teng and Jia, 2021; Zhang et al., 2022; Qian et al., 2022a;
Qian et al., 2022b] that either adopt different settings such
as semi-supervised paradigm, or focus on different tasks such
as feature selection. Consequently, they are not highly rele-
vant to the scope of this work. Due to the page limitations,
we have omitted discussing these works here, and interested
readers are referred to these literatures for further details.

3 Proposed Method
3.1 Problem Setting
Let X ⊆ Rk be the feature space and Y = {y1, y2, · · · , yC}
be the label space, where k is the dimension of the feature,
and C is the number of labels. In LDL, each sample x ∈ X is
assigned with a label distribution dx = [dy1

x , dy2
x , · · · , dyC

x ]⊤,
where dyi

x is called the label description degree, which indi-
cates the relevance of sample x belonging to the i-th label.
Note that, dx satisfies the probability simplex constraints,
i.e., dyj

x ≥ 0 and
∑C

j=1d
yj
x = 1. Given a training dataset

S = {(xi,dxi)}Ni=1, where N is the number of samples,
X = [x1,x2, · · · ,xN ]⊤ ∈ RN×k is the feature matrix,
D = [dx1

,dx2
, · · · ,dxN

]⊤ ∈ RN×C is the label distri-
bution matrix. The goal of LDL is to learn a function f
: X 7→ RC , which minimizes the difference between the
prediction of f and the ground-truth label distribution, i.e.,
minf L(f(X),D), where L is the loss function.

In the scenario of InLDL, label degrees may be incom-
plete. In this paper, we consider a more practical scenario,
i.e., small degrees are more prone to be missing. Formally,
let Ω ∈ [N ] × [C] and U ∈ [N ] × [C] denote the indices
of the observed and the unobserved entries from D, respec-
tively. The unobserved entries of the label distribution matrix
are set to 0, i.e., the observed label matrix D̃ can be defined
as, ∀(i, j) ∈ [N ]× [C],

D̃ij =

{
Dij if (i, j) ∈ Ω

0 if (i, j) ∈ U.
(1)

Then in InLDL, the goal is to minf L(f(X), D̃). Note that,
to eliminate any potential bias for our WInLDL, we also con-
duct experiments in the random missing scenario as in the
compared methods for a fair comparison.

3.2 Proposed WInLDL
In this subsection, we first design a weighted method named
WInLDL and then apply the ADMM to solve the objective,
by which an efficient algorithm is derived.

Specifically, given a feature matrix X and an observed la-
bel matrix D̃, let f(X) = XW and L be the ℓ2 loss, then we
can define the following weighted function,

g(W) =
1

2

N∑
i=1

C∑
j=1

Pij((XW)ij − D̃ij)
2 (2)

=
1

2

∥∥∥P 1
2 ⊙ (XW − D̃)

∥∥∥2
F
, (3)

where W ∈ Rk×C is the transformation matrix to be op-
timized, and ⊙ is the Hadamard product. Since the label
distribution satisfies the probability simplex constraint, then
XW1C = 1N and XW ≥ 0N×C should hold, where
1C and 1N are column vectors of size C and N with all
ones, “≥” here means that all elements are greater than or
equal to 0. For simplicity of notation, let Q = P

1
2 , and

ProS(Z) := {Z ∈ RN×C |Z1C = 1N ,Z ≥ 0N×C}. By
incorporating the probability simplex constraint, the final ob-
jective function of WInLDL can be written as:

g(W) =
1

2

∥∥∥Q⊙ (XW − D̃)
∥∥∥2
F
, (4)

s.t. XW ∈ ProS(XW). (5)

Remark 1. Eq. (5) is not an additional regularization that we
impose on our method, but a constraint inherent in label dis-
tribution learning by its definition, and all label distribution
learning algorithms must satisfy such a probability simplex
constraint. To deal with it, we can utilize off-the-shelf pro-
jection methods[Wang and Carreira-Perpinán, 2013; Condat,
2016] to avoid introducing extra model hyper-parameters.

With WInLDL in hand, our main concern in the follow-
ing is how to design the weighting matrix Q. Motivated by
the intuition mentioned in the Introduction, to learn an accu-
rate label distribution for InLDL, it is crucial not to ignore
the small observed degrees but to impose large weights on
them, while gradually increasing the weights of the missing
degrees. In order to directly exploit the degree prior of the
label distribution, we subtract the observed degrees from 1 to
give large weights on small degrees, formally, the weighting
matrix Q composed of QΩ and QU is defined as:

Qij =

{
1− D̃ij if (i, j) ∈ Ω

1−DUij
if (i, j) ∈ U,

(6)

where DUij = 1
N

∑N
i=1 D̃ij , that is, the missing label de-

grees are estimated by the mean value of the observed degrees
in the corresponding column.

Moreover, to gradually increase the weights of the miss-
ing degrees, we take a number greater than 1 that increases
monotonically with the number of iterations as the base of
the power function. Since the observed degrees are more re-
liable than the missing ones, the base of its power function is
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set at 2, which is larger than the number “a” during the whole
iterations.

Qij =

{
2(1−D̃ij) if (i, j) ∈ Ω

a(1−DUij
) if (i, j) ∈ U, a = 1 + iter

maxIter ,
(7)

where maxIter is the maximum iterations, in this paper,
fixed at 50. By such a design, three benefits can be obtained,
1) smaller degrees are imposed with larger weights, 2) the
weights of the observed degrees are larger than the missing
ones, 3) the weights of the missing degrees are gradually in-
creased. Note that the above three benefits can also be re-
garded as three principles for designing the weighting matrix.
Any matrix that satisfies three principles can be utilized as
a weighting matrix. In the experimental section, we report
the performance of various weighting matrices in Table 5. It
is important to highlight that the main focus of this paper is
to leverage the useful prior knowledge of label distribution
to create an efficient and effective method, rather than exten-
sively exploring the design of an optimal weighting matrix.

3.3 Optimization
In this subsection, we apply ADMM to design an efficient al-
gorithm for solving the objective of WInLDL. Let Z = XW,
the augmented Lagrangian function can be written as:

Φ =
1

2

∥∥∥Q⊙ (Z− D̃)
∥∥∥2
F
+ tr(Λ⊤(XW − Z))

+
µ

2
∥XW − Z∥2F ), (8)

s.t. Z ∈ ProS(Z). (9)

where tr is the trace operator, and µ is a penalty factor. Note
that, µ is NOT a model hyper-parameter BUT a parameter of
the ADMM algorithm, it is introduced for the convenience of
optimization. In this paper, µ is fixed at 2, which does not
need to be tuned. We also conduct experiments in section 4.6
to verify that µ only affects the convergence rate and does not
affect performance.

Sub-problem of W. With Z and Λ fixed, W can be up-
dated by,

W = (X⊤X)−1(X⊤(Z− Λ

µ
)). (10)

Sub-problem of Z. With W and Λ fixed, Z can be up-
dated by,

Z =
µXW +Λ+Q⊙Q⊙ D̃

Q⊙Q+ µIN×C
, (11)

Z = proj(Z), (12)

where IN×C is a matrix with all ones, and the division in
Eq. (11) is element wise. Eq. (12) projects Z onto the prob-
ability simplex to satisfy the constraint of Eq. (9), and the
proj is a projection operator that can be found in [Wang and
Carreira-Perpinán, 2013; Condat, 2016].

Sub-problem of Λ. With W and Z fixed, Λ can be up-
dated by,

Λ←− Λ+ µ(XW − Z). (13)

Complexity Analysis. The computational complexity of
the ADMM algorithm is dominated by matrix multiplication
and inverse operations. In each iteration, the complexity of
updating W in Eq. (10) is O(Nk2) + O(k3) + O(NkC),
the complexities of updating Z in Eq. (11) and Eq. (12)
are O(NkC) + O(NC) and O(NC) [Condat, 2016], re-
spectively, the complexity of updating Λ in Eq. (13) is
O(NkC), and the complexity of updating QU in Eq. (7)
is O(|U |), where |U | is the cardinality of set U , usually
smaller than NC. Thus, the total computational complexity
is O(max(Nk2, NkC) + k3), which is linear in the number
of samples N . In Table 1, we list computational complexities
of different methods, where ‘g’ of LDM is the number of the
clusters. While the computational complexity of LDM is also
linear in the number of samples, it involves clustering, thus in
practice, its running time is much longer than our WInLDL,
details can be referred to Figure 3.

Methods Computational complexity

InLDL-a(p) O(N2C + C3)
EDL-LRL O(N2C +NkC + C3 + k2C2)

LDM O(NC3 +NkC + gC4)
WInLDL(ours) O(max(Nk2, NkC) + k3)

Table 1: Computational complexities of different methods.

3.4 Theoretical Analyses
To make theoretical explanations of why the proposed
WInLDL could work without any explicit regularization, we
first define a weighted empirical risk. Formally, the definition
is detailed as follows.

Definition 1. Given a training dataset S = {(xi,dxi)}Ni=1,
a class of functions F , a loss function L, and a weighted
matrix P ∈ RN×C , the weighted empirical risk of function
f ∈ F can be defined as:

R̂S(f) =
1

N

N∑
i=1

C∑
j=1

PijL(f(xi)j ,Dij), (14)

where f(xi)j denotes the j-th element of f(xi). Suppose the
population data follow an underlying probability distribution
D, then the expected risk can be written as:

RD(f) = ES∼D[R̂S(f)] (15)

Before deriving the risk bound, we also provide the definition
of empirical Rademacher complexity and Rademacher com-
plexity for self-containment.

Definition 2. [Koltchinskii, 2001; Bartlett and Mendelson,
2002] Let F be a class of functions, S = {(xi,dxi

)}Ni=1 be
a fixed size dataset with N samples, and L be a loss func-
tion. Then, the empirical Rademacher complexity of F with
respect to the sample set S is defined as:

R̂S(F) = E
σ
[sup
f∈F

1

N

N∑
i=1

σiL(f(xi),dxi
)], (16)
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where σ = (σ1, σ2, · · · , σN )⊤, with independent
rademacher random variables σis uniformly taking val-
ues in {−1,+1}. Then the Rademacher complexity of F is
the expectation of the empirical Rademacher complexity over
all samples of size N drawn according to the distribution D:

RN (F) = E
S∼DN

[R̂S(F)]. (17)

In the following, we will derive an upper bound between the
expected risk and the weighted empirical risk with the help of
Rademacher complexity.

Theorem 1. Let F be a class of functions, L =∑C
j=1 ℓ(f(x)j , d

yj
x ) is a loss function, where ℓ is bounded by

a constant B, and ∥P∥∞ = maxij Pij . Then, ∀δ > 0, with
probability at least 1 − δ over the draw of an i.i.d. sample S
of size N from the distribution D, the following bound holds
for all f ∈ F :

RD(f) ≤ R̂S(f) + 2 ∥P∥∞ RN (F) + CB ∥P∥∞

√
log 1

δ

2N
.

(18)

The proof of this theorem primarily relies on the McDi-
armid inequality [McDiarmid and others, 1989], and details
can be found in the Appendix. Notably, the above bound
can be seen as a generalization of the single-label and un-
weighted cases. When C = 1 (single-label), and P is
a matrix with all ones (unweighted), Eq. (18) degenerates
into the classical form in [Bartlett and Mendelson, 2002;
Shalev-Shwartz and Ben-David, 2014; Mohri et al., 2018].
Moreover, the derived upper bound between the expected
risk and the weighted empirical risk explicitly depends on
the weighted matrix P, and the generalization error can be
bounded by this weighted matrix, which implies that the
weighting plays an implicit regularization role since no ex-
plicit regularization is really imposed. Theorem 1 provides a
rational explanation why our WInLDL could work even with-
out any explicit regularization.

Furthermore, let F be a linear function class and assume
that L is Lipschitz continuous, then we can derive the follow-
ing theorem.

Theorem 2. Let F be a linear function class with a
bounded linear transformation W, defined as F = {x 7→
Wx : ∥W∥F ≤ B0}, where ∥•∥F is the Frobenius norm.
Assume L =

∑C
j=1 ℓ(f(x)j , d

yj
x ), where ℓ is a Lipschitz

continuous loss function with Lipschitz constant L, and ℓ
is bounded by a constant B. ∥P∥∞ = maxij Pij . Then,
∀δ > 0, with probability at least 1− δ/2 over the draw of an
i.i.d. sample S of size N from the distribution D, the follow-
ing bound holds for all f ∈ F :

RD(f) ≤ R̂S(f) +
2
√
2LB0C

1
2

√
N

max
i
∥xi∥2 ∥P∥∞

+ 3CB ∥P∥∞

√
log 2

δ

2N
. (19)

Theorem 2 can be proven by leveraging the main results of
[Maurer, 2016], and the detailed proof is provided in the Ap-
pendix. By further assuming L is ℓ∞ continuous, another

relevant bound can be obtained, interested readers can refer
to [Foster and Rakhlin, 2019] for details.

4 Experiments
4.1 Experiments Settings
Datasets. In this paper, we use 10 real datasets covering
fields of biology, natural scene recognition, facial expression,
movie-rating, and image visual sentiment. The statistics of
the datasets are summarized in Table 2. The first five datasets
are collected by Geng [Geng, 2016], the sixth to tenth datasets
are from [Peng et al., 2015], [Liang et al., 2018], [Yang et al.,
2017], [Li and Deng, 2019], [Xie et al., 2015], respectively.

Datasets #Samples(N ) #Features(k) #Labels(C)

Gene 17892 36 68
Movie 7755 1869 5
Scene 2000 294 9

SBU3DFE 2500 243 6
SJAFFE 213 243 6

Emotion6 1980 1000 7
Fbp5500 5500 512 5

Flickr 11150 200 8
RAF ML 4908 200 6

SCUTFBP 1500 300 5

Table 2: Statistics of the datasets.

Compared methods. We compare WInLDL with six
methods, including two baselines named BFGS-LDL [Geng,
2016] and IIS-LDL [Geng, 2016], and four SOTA methods
named InLDL-p [Xu and Zhou, 2017], InLDL-a [Xu and
Zhou, 2017], EDL-LRL [Jia et al., 2019b], and LDM [Wang
and Geng, 2023]. BFGS-LDL and IIS-LDL are two max-
imum entropy models optimized with the BFGS [Fletcher,
2013] and the IIS [Della Pietra et al., 1997] algorithm.
InLDL-p and InLDL-a are two InLDL models that optimized
by the proximal gradient descend and ADMM algorithms, re-
spectively. EDL-LRL assumes local low-rank structure on
clusters of samples, and LDM exploits both the global and
local label correlations. All the compared methods consider
the incomplete setting in the LDM paper. Codes of the com-
pared methods are shared by the original authors, and the best
parameters suggested by their papers are used.

Evaluation metrics. Five commonly used metrics are ap-
plied to evaluate the performance in this paper, including Co-
sine, Intersection, Chebyshev, Clark, and Canberra. The first
two compute the similarity between two vectors, thus they are
the higher the better, whereas the last three quantify the dis-
tance between two vectors, thus they are the lower the better.
For two vectors p,q ∈ RC , the definitions of the five metrics
are listed as below. 1) Cosine ↑: p⊤q/(∥p∥2∥q∥2); 2) Inter-
section ↑:

∑
i min (pi, qi); 3) Chebyshev ↓: maxi |pi − qi|;

4) Clark ↓:
√∑

i (pi − qi)
2
/ (pi + qi)

2; 5) Canberra ↓:∑
i |pi − qi| /(pi + qi), where ↑ means the higher the bet-

ter, and ↓ means the lower the better. Here we omit the KL-
divergence metric just as in [Xu and Zhou, 2017], since KL-
divergence is calculated by log(dyx/d̂

y
x), and in InLDL, the d̂yx
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Datasets WInLDL LDM EDL-LRL InLDL-p InLDL-a BFGS-LDL IIS-LDL

Gene 0.8359(.0044) 0.8303(.0044) 0.8082(.0080) 0.8297(.0044) 0.8285(.0044) 0.8322(.0044) 0.8314(.0044)
Movie 0.9351(.0012) 0.9031(.0040) 0.8428(.0064) 0.9078(.0028) 0.9050(.0028) 0.8956(.0011) 0.8924(.0020)
Scene 0.7513(.0080) 0.6159(.0132) 0.5598(.0265) 0.7033(.0084) 0.6958(.0057) 0.6359(.0073) 0.6620(.0065)

SBU3DFE 0.9430(.0021) 0.9174(.0022) 0.9161(.0016) 0.9249(.0035) 0.9239(.0033) 0.9165(.0020) 0.9145(.0020)
SJAFFE 0.9494(.0021) 0.9312(.0037) 0.9326(.0038) 0.9078(.0047) 0.9344(.0020) 0.9299(.0064) 0.9262(.0047)

Emotion6 0.8025(.0033) 0.6711(.0168) 0.2485(.0142) 0.6654(.0051) 0.6561(.0067) 0.4103(.0111) 0.5465(.0100)
Fbp5500 0.9455(.0011) 0.9443(.0017) 0.6482(.0255) 0.9512(.0014) 0.9500(.0015) 0.7950(.0031) 0.8881(.0024)

Flickr 0.8335(.0032) 0.8142(.0015) 0.8224(.0017) 0.8319(.0024) 0.8306(.0025) 0.8286(.0028) 0.7602(.0033)
RAF ML 0.8874(.0021) 0.8797(.0033) 0.9229(.0017) 0.8892(.0013) 0.8975(.0014) 0.8300(.0048) 0.7200(.0061)

SCUTFBP 0.8151(.0062) 0.6607(.0046) 0.6119(.0444) 0.5822(.0120) 0.5629(.0091) 0.6523(.0073) 0.6529(.0065)

Table 3: Cosine↑ (the higher the better) results in the non-random missing scenario (at 50% missing rate). Values in parentheses are
standard deviations. The best result is in bold and the second best result is underlined.

Datasets WInLDL LDM EDL-LRL InLDL-p InLDL-a BFGS-LDL IIS-LDL

Gene 0.8356(.0044) 0.8355(.0038) 0.8350(.0040) 0.8352(.0043) 0.8353(.0043) 0.8331(.0044) 0.8338(.0044)
Movie 0.9351(.0013) 0.9329(.0017) 0.8517(.0125) 0.8824(.0019) 0.8886(.0017) 0.8475(.0016) 0.8536(.0056)
Scene 0.7418(.0085) 0.7291(.0040) 0.6577(.0062) 0.6955(.0052) 0.6956(.0069) 0.6320(.0065) 0.6613(.0064)

SBU3DFE 0.9417(.0021) 0.9224(.0018) 0.9191(.0022) 0.9329(.0035) 0.9335(.0036) 0.9170(.0020) 0.9189(.0020)
SJAFFE 0.9517(.0043) 0.9341(.0018) 0.9343(.0019) 0.9344(.0020) 0.9037(.0102) 0.9340(.0019) 0.9309(.0040)

Emotion6 0.7961(.0045) 0.7094(.0087) 0.4232(.0184) 0.6119(.0098) 0.6090(.0085) 0.4103(.0111) 0.5029(.0121)
Fbp5500 0.9445(.0013) 0.9469(.0015) 0.7402(.0433) 0.9482(.0019) 0.9485(.0018) 0.7850(.0047) 0.8869(.0028)

Flickr 0.8315(.0029) 0.8097(.0020) 0.7486(.0114) 0.8304(.0024) 0.8307(.0024) 0.7537(.0089) 0.7431(.0034)
RAF ML 0.8831(.0016) 0.8720(.0036) 0.9153(.0048) 0.8733(.0021) 0.8828(.0013) 0.7807(.0055) 0.6867(.0061)

SCUTFBP 0.8138(.0054) 0.6575(.0085) 0.6435(.0060) 0.5663(.0104) 0.5909(.0087) 0.6447(.0078) 0.6531(.0053)

Table 4: Cosine↑ (the higher the better) results in the random missing scenario (at 50% missing rate). Values in parentheses are standard
deviations. The best result is in bold and the second best result is underlined.

may be zero, which makes the KL-divergence meaningless.
Two incomplete scenarios. We conduct experiments in
two different incomplete scenarios. The first one is the non-
random missing scenario, i.e., 50% of the smallest degrees
are missing. For fair comparisons, we also consider the sec-
ond scenario, i.e., 50% of the degrees are uniformly random
missing, just as in the compared InLDL work [Xu and Zhou,
2017]. Each method is run for five times with five random
data partitions, and for each partitions, 80% of the data are
used for training, and the remaining 20% are used for testing.
In each trial, all methods are run with exactly the same miss-
ing and partitioned dataset. Finally, both the mean and the
standard deviation of the results are reported 1.

4.2 Results of the Non-Random Missing Scenario
In this subsection, we report the results of different methods
in the non-random missing scenario (50% of the smallest de-
grees are missing) on ten real datasets. Due to the page lim-
itations, here we only list the results of the Cosine ↑ metric,
and results of other metrics can be found in the Appendix.

From Table 3 we can discover that our WInLDL ranks first
on eight datasets, and the average rank is 1.5. Overall, we
win 55 times out of 60 comparisons, with a 91.67% rate to
win. Besides, we also conduct the Nemenyi test [Nemenyi,
1963; Demšar, 2006] as the statistic significance test, due to
the page limitations, details can be found in the Appendix.

1Code is available at https://github.com/EverFAITH/WInLDL

4.3 Results of the Random Missing Scenario
For fair comparisons, we also report the results of different
methods in the random missing scenario (50% of the degrees
are uniformly random missing) as in the compared methods.

Table 4 has shown that our WInLDL ranks first on eight
datasets and second on one dataset, and the average rank is
1.4. Overall, we win 57 times out of 60 comparisons, with a
95% rate to win.

From Tables 3 and 4, we can conclude that WInLDL
achieves better performance in most cases, which verifies its
effectiveness in addressing the InLDL problem in both ran-
dom missing and non-random missing scenarios. The rea-
son may be attributed to the weighting scheme adopted by
WInLDL, which can better solve the issue that small degrees
are easily overlooked, whereas other methods either only fo-
cus on mining the correlations between labels or merely adopt
an entropy maximization strategy to learn the label distribu-
tion, neither of them can well address the above issue, thus
leading to the suboptimal performance.

4.4 Different Weighting Schemes
To verify the effectiveness of imposing large weights on
the small degrees, we conduct experiments on five different
weighted schemes and list the results in Table 5. The for-
mal definitions are: (1) InLDL-U: Qij = 1, if (i, j) ∈ Ω,
and Qij = 0, if (i, j) ∈ U ; (2) InLDL-I: Qij = D̃ij , if
(i, j) ∈ Ω, and Qij = DUij

, if (i, j) ∈ U ; (3) InLDL-II:
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Datasets WInLDL InLDL-U InLDL-I InLDL-II InLDL-Rand

Gene 0.8356(.0044) 0.8350(.0044) 0.7894 (.0055) 0.8351(.0044) 0.8349(.0044)
Movie 0.9351(.0013) 0.9349(.0014) 0.9110 (.0078) 0.9196 (.0008) 0.9161 (.0010)
Scene 0.7418(.0085) 0.7343(.0059) 0.5548 (.0113) 0.7136 (.0065) 0.7065 (.0078)

SBU3DFE 0.9417(.0021) 0.9426(.0017) 0.9327 (.0024) 0.9364(.0017) 0.9303 (.0022)
SJAFFE 0.9517(.0043) 0.9555(.0043) 0.9459 (.0065) 0.9160 (.0046) 0.9086 (.0083)

Emotion6 0.7961(.0045) 0.7929 (.0048) 0.7305 (.0080) 0.7786 (.0022) 0.7619 (.0037)
Fbp5500 0.9445(.0013) 0.9436 (.0014) 0.9396 (.0008) 0.9192 (.0018) 0.8977 (.0026)

Flickr 0.8315(.0029) 0.8321(.0028) 0.8107 (.0037) 0.8134 (.0027) 0.7880 (.0030)
RAF ML 0.8831(.0016) 0.8798 (.0020) 0.8661 (.0038) 0.8682 (.0025) 0.8460 (.0017)

SCUTFBP 0.8138(.0054) 0.8137 (.0039) 0.8009 (.0087) 0.7952 (.0105) 0.7791 (.0108)

Table 5: Cosine↑ (the higher the better) results for five different weighting schemes. Values in parentheses are standard deviations. The best
result is in bold and the second best result is underlined.

Qij = 2D̃ij , if (i, j) ∈ Ω, and Qij = aDUij , if (i, j) ∈ U ,
a = 1 + iter/maxIter; (4) InLDL-Rand: Q = Ra, where
Ra is a random matrix whose entries are uniformly distribute
in (0, 1), for WInLDL, referring to Eq. (7). First, the results
show that WInLDL consistently performs better than InLDL-
I, InLDL-II, and InLDL-Rand, where InLDL-I and InLDL-
II impose large weights on large degrees, and InLDL-Rand
adopts random weighting. These comparisons demonstrate
that imposing large weights on the small degrees is effec-
tive. Besides, WInLDL wins 7 times out of 10 comparisons
with InLDL-U. Note that, some LDL datasets are transformed
from multi-label datasets, thus the ground truth of some de-
grees may be 0, and in the setting of InLDL, the missing de-
grees are also set to 0. In such a situation, WInLDL may put
too much emphasis on the degrees whose ground truth is 0,
while InLDL-U happens to treat these missing degrees as 0,
which may explain why WInLDL is inferior to InLDL-U on
some datasets.

4.5 Running Time Comparisons

In this subsection, we compare the running time of the differ-
ent methods and report the total time for ten datasets. All the
methods are running on a Linux server with an Intel Xeon(R)
W-2255 3.70GHz CPU and 64GB memory. The running time
of our WInLDL is 10.95 seconds, which is orders of magni-
tude faster than most of the compared methods and verifies
the efficiency of WInLDL.

The total run time of different methods on 10 datasets

0 500 1000 1500 2000 2500 3000 3500
time (seconds)

 WInLDL

InLDL-p

IIS-LDL

LDM

BFGS-LDL

InLDL-a

EDL-LRL

Figure 3: The total runtime of different methods on ten real datasets,
where WInLDL is our method.

4.6 Impacts Study of µ
In this subsection, we conduct experiments to confirm that
the parameter µ in the ADMM algorithm does not change the
performance of our method. From Figure 4(a) we find that
all the five metrics remain the same regardless of variations
in µ, and from Figure 4(b) we can see that µ only affects
the convergence rate. In our WInLDL method, we fix µ at
2, eliminating the need for tuning. Consequently, µ does not
impose any additional burden.
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Figure 4: The performance of all five metrics and the convergence
rates under different µ.

5 Conclusion
We propose an efficient, effective, and easy-to-implement
method called WInLDL without any explicit regularization
by properly utilizing the label distribution prior. More im-
portantly, we present two upper bounds between the expected
risk and weighted empirical risk, which explicitly depend on
the weighted matrix. Furthermore, the generalization error
can be bounded by the weighted matrix, implying that such
weighting plays an implicit regularization role and may ex-
plain why WInLDL still works without any explicit regular-
ization. Besides, by conducting extensive experiments, we
have verified that WInLDL achieves better performance in
both random missing and non-random missing scenarios. Fi-
nally, a promising research in future work would be the non-
linearization of the proposed method and its corresponding
theoretical study, potentially through its kernelized version,
which may overcome the limitations of the linear model and
uncover the complex non-linear relationships.
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