
Prompt Learning with Extended Kalman Filter for Pre-trained Language Models
Quan Li1,4 , Xike Xie2,4 * , Chao Wang1,3 * and S. Kevin Zhou2,4,5

1School of Computer Science and Technology, University of Science and Technology of China, China
2School of Biomedical Engineering, University of Science and Technology of China (USTC), China

3School of Software Engineering, USTC, China
4Data Darkness Lab, MIRACLE Center, Suzhou Institute for Advanced Research, USTC, China
5Key Laboratory of Precision and Intelligent Chemistry, USTC, Hefei Anhui, 230026, China

SA21011062@mail.ustc.edu.cn, {xkxie, cswang, skevinzhou}@ustc.edu.cn

Abstract
Prompt learning has gained popularity as a means
to leverage the knowledge embedded in pre-trained
language models (PLMs) for NLP tasks while using
a limited number of trainable parameters. While
it has shown promise in tasks like sentiment clas-
sification and natural language inference, generat-
ing suitable prompts for PLMs, as opposed to hu-
man prompts, remains a challenge. In this paper,
we introduce an abstraction of the prompt learning
process using an Extended Kalman Filter. Our ap-
proach, called Conditional Extended Kalman Fil-
ter based on Neural Networks (CEKFNN), effec-
tively infers more appropriate prompt tokens by en-
hancing the classic Extended Kalman Filter with
PLM’s contextual representation power. Specif-
ically, CEKFNN learns transition and emission
functions from PLM embeddings of input sen-
tences to infer latent prompt tokens. We refine
CEKFNN using an alternate-training approach, re-
training a PLM’s emission function with prompt
tokens inferred by prompt models (PMs), as well
as the initial and transition functions. PLM’s out-
put labels assist in PMs’ training. When updat-
ing the pre-trained language model (PLM), we use
an adapter approach with few trainable parame-
ters, leaving PLM parameters frozen. We evalu-
ate CEKFNN across open-source PLMs, demon-
strating performance improvements over state-of-
the-art methods while using a limited number of
trainable parameters. It shows that CEKFNN per-
forms on-par or better than fine-tuning, which re-
quires updating all parameters in the PLM.

1 Introduction
PLMs (Pre-trained Language Models) have proven success-
ful in numerous natural language processing tasks [Brown et
al., 2020]. Evidence indicates that during pre-training, these
models not only learn contextualized representations but also
acquire knowledge of grammar [Clark et al., 2019b], syn-

*Corresponding authors

tax [Hewitt and Manning, 2019], and commonsense [Davi-
son et al., 2019], representing some of the more abstract and
intangible aspects of human cognition. Stemmed from the ex-
tensive pre-training on diverse datasets, PLMs have become
foundational in advancing the field of natural language under-
standing and generation, driving innovation in areas ranging
from automated text summarization to sophisticated conver-
sational agents. From the perspective of adapting PLMs to
specific tasks, fine-tuning and prompt learning stand out as
two principal approaches [Liu et al., 2023a].

Fine-tuning is a process where a PLM is further trained
on a specific task-oriented dataset, leading to more special-
ized and accurate performance in that domain. The primary
advantage of fine-tuning is its ability to tailor the model pre-
cisely to the task, resulting in high accuracy and efficiency.
However, fine-tuning is resource-intensive, requiring signif-
icant computational power and specific training data. More-
over, the fine-tuned model retains the original model’s param-
eter count, which, although a minor issue for smaller models
like BERT [Devlin et al., 2019] or GPT-2 [Radford et al.,],
poses a substantial challenge for larger models such as T5
[Raffel et al., 2020], GPT-3 [Brown et al., 2020], and other
PLMs with billions of parameters [Hu et al., 2022].

Prompt learning, in contrast, relies on creating and employ-
ing specific prompts to direct a pre-trained model to produce
the desired output without further training. This method is
agile and resource-efficient, as it leverages the existing capa-
bilities of the model. However, it introduces technical chal-
lenges in crafting effective prompts and can sometimes be
less precise than fine-tuning.

For example, recent research has shown that PLMs’ per-
formance in prompt-based tasks can vary greatly, with minor
changes in prompts causing large fluctuations in performance
([Arora et al., 2023]; [Liu et al., 2023b]). Such variability
or inconsistency is influenced by factors such as the type of
PLM used [Ouyang et al., 2022] and its size [Lampinen et al.,
2022]. Efforts to boost the dependability of prompt learning
include crafting ideal prompts or combining several of them.
Methods such as proposed in [Shin et al., 2020] focus on au-
tomating the search for effective discrete prompts, while [Liu
et al., 2023b] suggests the use of trainable continuous tokens
alongside these discrete prompts to improve the performance.
[Arora et al., 2023] investigates the effectiveness of aggregat-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4452

ing predictions from different prompts. However, a common
limitation in existing methods is the repeated use of the same
prompt tokens across various sentences, without considering
the specific information of the sentence involved or the con-
textual relevance.

This paper introduces a cutting-edge method to improve
the accuracy of prompt learning while maintaining its agility.
Building on the idea that a sentence’s information can be
treated as a latent variable shaped by its semantic content
and the preceding sentence’s latent variable ([Li et al., 2021]
and [Revach et al., 2022]), we present a novel Conditional
Extended Kalman Filter based Neural Network (CEKFNN).
This technique refines the training and inference processes
through PLM embeddings, enhancing initial, transition, and
emission function predictions. CEKFNN not only broadens
the context understanding of Extended Kalman Filter beyond
traditional Markov model limitations, but also adapts prompt
tokens dynamically, depending on whether input sentences
are related or independent. In scenarios where input sen-
tences are interconnected, the prompt tokens for a sentence
are derived from the preceding sentence’s tokens. Conversely,
in cases without such a connection, the prompt tokens are de-
termined independently using the sentence’s embeddings and
initial prompt tokens.

Further, we integrate CEKFNN with a supervised mode us-
ing an alternating training method. This method involves re-
training the PLM with prompt tokens generated by prompt
models (PMs). By leveraging the pre-trained knowledge con-
tained in PLM, this process aims to retrain the PLM to obtain
true labels. The retrained PLM serves as an emission func-
tion, whose outputs are combined with true labels for the next
round of PMs training. The alternate-training method trains
PMs (initial function of hidden state and transition function)
and PLM (emission function) alternately until the result is op-
timized. When updating the PLM, we use an adapter method
with few trainable parameters to simulate the PLM update.
Figure 1 shows the architecture of CEKFNN framework. An
Initial model generates initial prompt tokens. Given the ini-
tial prompt tokens, we can get different prompt tokens for
different input sentences by using transition model and em-
beddings of current input sentence. When training the whole
model, we use the alternative learning strategy to update the
trainable parameters of PMs and PLM. The contributions of
this paper include:

• We conceptualize the process of prompt learning within
the CEKFNN framework, where prompt tokens are
viewed as time-variant latent variables and task labels
are considered observed variables influenced by these la-
tent variables. CEKFNN is designed with minimal train-
able parameters, effectively adapting to downstream
tasks through initial, transition, and emission functions
specifically for prompt tokens.

• We introduce an alternating training methodology that
sequentially trains PMs for the initial and transition
functions, and the PLM for the emission function. Each
iteration uses the outputs of one to inform the training of
the other in successive iterations.

• Our extensive evaluation covers a range of open-source

Figure 1: An architecture of CEKFNN framework. The models in
the blue region represent PMs, while the model in the orange re-
gion represents PLM. Within all models, parameters within hollow
circles are trainable, while those within solid circles remain fixed.
Regarding the architecture’s variables, solid circles are observed el-
ements; hollow circles are hidden elements.

PLM families, including BERT, GPT-2, and T5, and var-
ious model sizes, ranging from 110M to 3B parame-
ters. It shows enhanced performance compared to ex-
isting methods, with the added advantage of requir-
ing a small set of trainable parameters. Our method
achieves results comparable or superior to those of com-
prehensive fine-tuning, which necessitates updating all
parameters in the PLM. We have made the code for
all tasks involving CEKFNN available in PyTorch at
https://anonymous.4open.science/r/GAP-888F.

2 Related Works
Pre-trained Language Models. The recent breakthrough
in self-supervised pre-trained language models [Dong et al.,
2019] has significantly advanced the development of natural
language processing. Decoder-based language models such
as GPT [Radford et al.,] leverage the Transformer archi-
tecture to pre-train on large-scale web texts. Meanwhile,
encoder-based models like BERT [Devlin et al., 2019] in-
troduce masked language modeling and establish the pre-
training/fine-tuning paradigm. Subsequently, various lan-
guage models have emerged, including encoder-decoder-
based models such as T5 [Raffel et al., 2020], which aim to
unify language understanding and generation. Training larger
language models generally leads to improved performance
and remains an active area of research [Hu et al., 2022].

Prompt Learning and Fine-Tuning. While a Large Lan-
guage Model can adapt its behavior with just a few additional
training examples, the result depends heavily on the input
prompt [Brown et al., 2020]. This necessitates an empiri-
cal art of composing and formatting the prompt to maximize
a model’s performance on a specific task, a practice known as
prompt Learning [Liu et al., 2023a]. Fine-tuning involves re-
training a PLM on general domains for specific tasks [Devlin
et al., 2019]. Variants of fine-tuning include learning only
a subset of the parameters [Devlin et al., 2019]. However,

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4453

https://anonymous.4open.science/r/GAP-888F

practitioners often choose to retrain all parameters to maxi-
mize downstream performance.

Nevertheless, performing fine-tuning in the usual way for
a PLM such as T5 [Raffel et al., 2020] presents challenges.
This is due to the large checkpoint it produces and the high
hardware barrier to entry, as it incurs the same memory over-
head as the pre-training process.

Parameter-Efficient Adaptation. Some methods propose
inserting adapter layers between existing layers of a neural
network ([Zhang et al., 2023]; [Hu et al., 2022]). These meth-
ods aim to reduce memory requirements by utilizing a lim-
ited number of trainable parameters, while keeping the full
model’s parameters fixed. Given the minimal memory over-
head of adapters, recent approaches [Dettmers et al., 2023]
suggest using additional adapters to enhance performance
without substantially increasing the total memory usage.

Neuralizing Hidden Markov Models and the Extended
Kalman Filter. The key distinction between the Extended
Kalman Filter (EKF) and Hidden Markov Models (HMMs)
lies in their modeling of latent variables. The former accom-
modates continuous variables, while the latter limits its la-
tent variables to discrete ones. Some studies aim to neuralize
HMM and EKF to relax the Markov assumption while pre-
serving their generative properties [Kim et al., 2018]. For
instance, [Li et al., 2021] explore learning discrete structures
for text or label generation using neuralized HMMs. Mean-
while, [Revach et al., 2022] focus on learning continuous
variables for safety-critical applications such as self-driving
vehicles and signal processing using neuralized EKFs. We
hypothesize that prompt learning can also be viewed as
Bayesian inference with some continuous trainable prompt
tokens, leading to our proposed CEKFNN approach.

3 Method
In this section, we present the framework of CEKFNN.
CEKFNN formulates the prompt learning as Bayesian infer-
ence process, involving gradient updates that include train-
able prompt tokens and adapter parameters. This training
method mirrors that used in generative adversarial networks,
applied across all trainable parameters, leading to the desig-
nation of this model as CEKFNN.

3.1 Preliminaries
We analyze models pre-trained on masked language model-
ing (MLM) objectives. X denotes a finite vocabulary of input
tokens.

Pre-training and Downstream Task. Consider the MLM,
denoted as G(x) = ⟨G1(x), G2(x), ...⟩, which is responsible
for predicting some vectors associated with input sentence
x. Additionally, let ⟨G(x1), G(x2), ...⟩ represent the MLM
that predicts some vectors for each time step in the input se-
quence xi. Each component Gi calculates the embedding of
the i-th token, denoted as Xi, conditioned on all other tokens.
The main task involves labeled examples in the form of pairs
⟨x,H∗(x)⟩ ∈ X × Y . Here,. H∗ : X → Y serves as the
source of ground-truth labels for downstream tasks, and Y
represents a discrete set of classification labels.

Figure 2: An illustration of CEKFNN’s architecture. Shaded circles
are observed elements; white circles are hidden elements; rectangles
are functions. The arrows between xt and et denote the context
representation ability of PLM.

Prompt Learning. Prompt learning requires viewing the
pre-trained model G as a function of the token embedding.
We denote this model as G. If we represent the token em-
beddings of input x as e(x) = ⟨e(x1), ..., e(xm)⟩, then
G(e(x)) = G(x). m is the length of sentence x.

In prompt learning, a trainable prompt u is concatenated
with the token embeddings to produce the model’s output,
which can be expressed as G((u, e(x))). It’s important to
note that “u” is considered an unobserved variable since we
don’t have direct knowledge of the information incorporated
by the model from the input. In some research, “u” is referred
to as an unobserved concept [Xie et al., 2022].

Other Notations. Let △d denote the space of d-
dimensional probability vectors. Pr(V = v) ∈ [0, 1] denotes
the probability that V assumes the specific value v. For a se-
quence v = ⟨v1, . . . , vt⟩, we use the notation v⟨i:j⟩ for i ≤ j
to denote ⟨vi, . . . , vj⟩, and v−i to denote ⟨v1:i−1, vi+1:t⟩.

3.2 CEKFNN Prompt Learning
In this section, we formulate prompt learning for linking
pre-training and downstream tasks using the Conditional Ex-
tended Kalman Filter. Consider a sequence of input sen-
tences containing T sentences, denoted as X⟨1:T ⟩. A down-
stream task can be formulated as a sequence labeling task
that assigns a label to each sentence. Suppose we have some
prompt tokens consisting of T parts, labeled as U ⟨1:T ⟩, where
U ⟨0:T ⟩ = u⟨0:T ⟩, ut = ⟨ut

1, . . . , u
t
k⟩, and ut

i ∈ Rd. Here, k
is the length of the sentence ut and d is the dimension of the
continuous vector ut

i. For the input sentences X⟨1:T ⟩, we use
Y ⟨1:T ⟩ to represent the true labels and E⟨1:T ⟩ to represent the
sentences’ embedding. Each eti|i∈{1,2,...,m} has the same di-
mension as ut

j |j∈{1,2,...,k}.
Defining a relation between pre-training and downstream

tasks with prompt learning is the primary challenge. We pro-
pose to establish this connection via prompt tokens, which
can be considered as latent variable assumptions about the
input. In supervised downstream tasks with prompt learn-
ing, the goal is to find the appropriate underlying sequence
of prompt tokens Û ⟨1:T ⟩ given E⟨1:T ⟩, Y ⟨1:T ⟩. We use U =
⟨U0, U1, . . . , UT ⟩ ∈ U∗ to denote the sequence of hidden

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4454

Figure 3: The example of prompts for “Yes, she used.[MASK] ”. Given the context, the colorful zone refer to the prompt tokens. These
prompt tokens can be fixed prompt tokens. (e.g., “The sentence ... is grammatically ... ”, “The sentence’s knowledge ... is ... ”), unified
trainable tokens (e,g., “u1 ... uk ... ”), or time-related trainable tokens (e.g., “ut

1 ... ut
k ... ”, “ut+1

1 ... ut+1
k ... ”) and their positions are flexible

and adjustable. The models within the dashed box in figure are trainable. In (a), the prompt encoder only generates unified prompt tokens
across different et; on the contrary, in (b) the prompt initial model and prompt transition model can generate time-related trainable prompt
tokens by optimizing trainable model in a differentiable way.

states. For all timesteps i ≥ 1, the transition probabilities
are time-invariant, i.e., P (U i|U i−1, Ei). For each timestep
i ≥ 1, U i is emitted following some time-invariant probabil-
ity: P (Y i|U i, Ei).

Figure 2 shows the schematic architecture of CEKFNN.
Here, ut|t∈{0,1,··· ,T} represents the continuous hidden states
of CEKFNN, which correspond to the underlying appropriate
prompt tokens. The transition function f(·) is implemented
using a single layer of a transformer encoder, where

ut = f(ut−1, et) (1)
describes the transition from prompt tokens ut−1 to ut at time
step t. The emission function h(·) is implemented using an
adapter-based PLM. A emission function is utilized to obtain
ŷt, which is formalized as:

ŷt = h(ut, et) (2)
To further elucidate the implementation and details of

CEKFNN, we illustrate with a specific example. Given
a PLM denoted as G, a sequence of input tokens
x⟨1:T ⟩ = ⟨x1, x2, . . . , xT ⟩ is mapped to input embeddings
⟨e1, e2, . . . , eT ⟩ through a PLM’s embedding layer. Here,
xt = ⟨xt

1, x
t
2, . . . , x

t
m⟩ and et = ⟨et1, et2, . . . , etm⟩, where

m represents the length of a sentence xt. The purpose of a
prompt is to organize the context xt and itself into a template
T t. For instance, in a task involving sentence correctness pre-
diction, a template might be expressed as:

⟨ut
1, ..., u

t
i, e(x

t), ut
i+1, ..., u

t
k⟩ (3)

where e(xt) is equivalent to et. Figure 3 complements the ar-
chitecture with the integration of PLMs and some examples,
providing further details about CEKFNN.

3.3 Alternate Training Procedure
The alternate training method involves training two compo-
nents of the CEKFNN, based on a deep neural network: a
set of PMs and a PLM, sequentially using the output of each
other. The PMs generate all prompt tokens U t|t∈{0,1,...,T},
while the PLM refines them leveraging its language model-
ing capabilities acquired during pre-training. This training
process is divided into two distinct phases.

• In phase I, PMs receive E⟨1:T ⟩ = e⟨1:T ⟩ and output
U ⟨0:T ⟩ = u⟨0:T ⟩, which are then utilized to retrain the
PLM.

• In phase II, PMs and PLM engage in mutual enhance-
ment through several loops. Each loop begins with
training the PMs with e⟨1:T ⟩, Y ⟨1:T ⟩ = y⟨1:T ⟩, and
Ŷ ⟨1:T ⟩ = ŷ⟨1:T ⟩ provided by the fixed PLM. Then, the
predictions prompt tokens u⟨0:T ⟩ are used to retrain the
PLM with keeping a small set of trainable parameters.

Figure 4: The illustration of the alternate training method.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4455

Model & Method # Trainable GLUE
Parameters WNLI RTE CoLA MRPC STS-B SST-2 QNLI QQP MNLI-m/-mm AX-m/-mm

BERTbase (FT) 110M 56.5 65.0 59.6 85.1 81.9 92.4 90.7 89.8 82.7/83.5 73.3/74.5
BERTbase (P-Tuning) 11.8M 61.9 61.0 47.5 61.1 73.8 90.8 80.5 77.2 65.2/67.9 46.8/51.6
BERTbase (LoRA) 0.6M 62.3 62.2 57.5 81.0 78.51 91.9 90.5 88.0 82.5/83.2 73.3/73.8
BERTbase (AdaLoRA) 0.4M 66.1 61.5 50.5 72.0 77.5 91.1 89.7 86.7 80.5/81.4 69.7/70.9
BERTbase (CEKFNN) 12.4M 72.9 63.7 60.5 82.0 80.4 92.3 91.0 88.7 83.5/83.7 73.5/74.0

SuperGLUE
BoolQ CB COPA WiC WSC

BERTbase (FT) 110M 74.1 92.7 57.8 65.7 58.5
BERTbase (P-Tuning) 11.8M 63.0 71.8 51.5 62.7 60.9
BERTbase (LoRA) 0.6M 68.4 71.3 52.3 64.4 58.5
BERTbase (AdaLoRA) 0.4M 66.0 69.8 56.3 59.1 62.2
BERTbase (CEKFNN) 12.4M 68.6 76.0 61.7 65.1 64.1
BERTlarge (FT) 340M 62.3 82.8 61.7 50.0 59.4
BERTlarge (P-Tuning) 21.1M 62.5 71.3 63.2 59.8 61.7
BERTlarge (LoRA) 1.6M 65.5 69.8 53.9 66.4 58.6
BERTlarge (AdaLoRA) 1.2M 63.2 67.7 54.7 63.2 57.8
BERTlarge (CEKFNN) 22.6M 69.9 78.6 70.3 66.9 63.3

Table 1: BERTbase and BERTlarge with different methods on the GLUE and SuperGLUE benchmarks. We report the overall (matched and
mismatched) accuracy for MNLI and AX, Matthew’s correlation for CoLA, Pearson correlation for STS-B, and accuracy for other tasks. For
all metrics, higher is better. CEKFNN outperforms several baselines.

Figure 4 illustrates the alternate-training method. Overall,
the PMs generate increasingly suitable prompt tokens for the
PLM, which in turn uses these prompts to more effectively
adapt to downstream tasks.This synergy, amplified by the al-
ternate training approach, significantly enhances the overall
performance.

3.4 Model Training
CEKFNN undergoes supervised training using the avail-
able labeled data yt|t∈{1,2,...,T}. We employ an integrated
model to generate both the estimate ŷt|t∈{1,2,...,T} and
ut|t∈{0,1,...,T}, allowing us to train CEKFNN end-to-end. In
other words, we calculate the loss function L based on the
discrete set Y , in which ŷt takes values. The joint distribu-
tion of the hidden states and the observed labels for a single
sequence, denoted as p(u⟨0:T ⟩, y⟨1:T ⟩|θ), can be expressed as
a factorized form:

p(u⟨0:T ⟩, y⟨1:T ⟩) = p(u0)p(y⟨1:T ⟩|u⟨1:T ⟩)

= p(u0)

T∏
t=1

p(ut|ut−1, et)

T∏
t=1

p(yt|ut−1, et)
(4)

where θ represents all the trainable parameters. The Extended
Kalman Filter is typically trained with both predictions and
update phases.

The first step predicts the current a-priori statistic based on
the previous a posteriori estimates. Specifically, we compute
ut|t∈{0,1,...,T} and ŷt|t∈{1,2,...,T} using the transition func-
tion f(·) and the emission function h(·) as shown in Equa-
tions (1) and (2). During the first time step, we determine u1

through the expression u1 = f(u0, e1), with u0 being derived
from an initial function constructed using [Liu et al., 2023b].

In the update step, utilizing the downstream loss func-
tion L, we can differentially enhance the continuous prompt
tokens ut (where 0 ≤ t ≤ T) by adjusting the trainable pa-
rameters of the entire model M as follows:

θ̂ = argmin
θ̂

L(M(x⟨1:T ⟩, y⟨1:T ⟩)) (5)

Note that when updating parameters in PLM, the presence
of large number of parameters leads to a significant training
overhead. In order to tackle this challenge, we employ the
adapter method, which involves introducing a small number
of parameters into the PLM while keeping all other PLM pa-
rameters frozen. In this study, we utilize the Lora adapter
method [Hu et al., 2022] to simulate the PLM updates.

The key insight is that the entire process of CEKFNN can
be viewed as Extended Kalman Filter (EKF). Consequently,
we must determine the appropriate initial probability distri-
bution for the hidden state, the transition function, and the
emission function, employing an alternate training strategy.

4 Experiments
We evaluate the downstream task performance of CEKFNN
first on BERT [Devlin et al., 2019] and GPT-2 [Radford et
al.,], before scaling up to T5-3B [Raffel et al., 2020]. To val-
idate the effectiveness of our approach, we select three main-
stream language model architectures: BERT, a encoder-based
model; GPT-2, a decoder-based model; and T5, an encoder-
decoder based model. Our experiments cover a wide range
of tasks, including those with single-sentence inputs, seman-
tic similarity detection, question answering, and natural lan-
guage inference. These tasks are part of the GLUE [Wang
et al., 2019b] and SuperGLUE [Wang et al., 2019a] bench-
marks. Specifically, we evaluate BERT and GPT-2 on the
GLUE benchmark, following their setup, and conduct large-
scale experiments on T5 using the SuperGLUE benchmark.
All experiments are performed with NVIDIA A100s.

4.1 Datasets
To evaluate CEKFNN, we perform experiments on a total 15
natural language understanding tasks. These tasks cover a
wide spectrum of challenges and can be categorized as fol-
lows: single-sentence inputs, including Corpus of Linguistic
Acceptability (CoLA; [Warstadt et al., 2019]), Stanford Sen-
timent Treebank (SST-2; [Socher et al., 2013]), and Wino-
grad Schema Challenge (WSC; [Levesque et al., 2012a]);

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4456

Model & Method # Trainable GLUE
Parameters WNLI RTE CoLA MRPC STS-B SST-2 QNLI QQP MNLI-m/-mm AX-m/-mm

GPT-2 M (FT) 355M 56.5 66.6 50.1 81.0 83.6 94.0 89.9 89.7 84.7/85.0 75.8/79.0
GPT-2 M (P-Tuning) 21.1M 63.9 51.1 24.8 51.0 46.8 77.9 80.3 77.2 63.4/56.1 51.8/53.2
GPT-2 M (LoRA) 1.6M 52.9 52.8 44.5 72.5 80.1 92.1 88.2 85.9 80.8/81.3 69.9/70.8
GPT-2 M (AdaLoRA) 1.2M 57.6 56.5 39.0 71.2 77.7 93.8 89.6 86.7 80.9/81.8 70.1/71.8
GPT-2 M (CEKFNN) 22.6M 70.8 58.4 51.2 81.9 83.1 94.1 90.5 87.6 83.8/84.2 74.4/74.9

SuperGLUE
BoolQ CB COPA WiC WSC

GPT-2 M (FT) 355M 64.3 65.6 54.5 66.6 61.6
GPT-2 M (P-Tuning) 21.1M 62.4 67.1 48.4 56.4 58.5
GPT-2 M (LoRA) 1.6M 69.4 45.3 52.3 65.0 57.0
GPT-2 M (AdaLoRA) 1.2M 64.2 68.8 60.1 64.2 59.4
GPT-2 M (CEKFNN) 22.6M 70.0 69.3 62.5 66.9 61.8
GPT-2 L (FT) 774M 67.5 89.6 53.9 69.6 60.2
GPT-2 L (P-Tuning) 32.8M 63.9 72.4 59.4 57.9 62.5
GPT-2 L (LoRA) 3.0M 68.5 67.7 53.1 67.7 62.5
GPT-2 L (AdaLoRA) 2.2M 65.5 65.6 51.8 60.8 61.6
GPT-2 L (CEKFNN) 35.8M 72.3 86.5 62.5 69.1 64.1

Table 2: GPT-2 medium (M) and GPT-2 large (L) with different methods on the GLUE and SuperGLUE benchmarks. We report the
overall(matched and mismatched) accuracy for MNLI and AX, matthew’s correlation for CoLA, Pearson correlation for STS-B, and accuracy
for other tasks. For all metrics, higher is better. CEKFNN outperforms several baselines.

four tasks involve detecting semantic similarity, such as Mi-
crosoft Research Paraphrase Corpus (MRPC; [Dolan and
Brockett, 2005];), Quora Question Pairs (QQP; [Alishahi et
al., 2019]), Semantic Textual Similarity Benchmark (STS-
B; [Cer et al., 2017]), and Word-in-Context (WiC; [Pile-
hvar and Camacho-Collados, 2019]); one question-answering
task, Boolean Question (BoolQ; [Clark et al., 2019a]); and
five tasks structured as natural language inference problems,
including Multi-Genre NLI corpus (MNLI; [Williams et al.,
2018]), Recognizing Textual Entailment (RTE; [Bentivogli
et al., 2009]), SQuAD [Rajpurkar et al., 2016], Winograd
Schema Challenge (WNLI; [Levesque et al., 2012b]), and
Choice of Plausible Alternatives (COPA; [Roemmele et al.,
2011]). The individual datasets are released under different
permissive licenses.

4.2 Baselines
To facilitate a broad comparison with other baseline methods,
we seek to replicate the setups employed by prior research
whenever feasible.

Fine-Tuning (FT) is common approach for adaptation.
During fine-tuning, the model is initialized to the pre-trained
weights and biases, and all pre-trained model parameters un-
dergo gradient updates. A simplified variant involves updat-
ing only specific layers while keeping others frozen.

P-Tuning [Liu et al., 2023b] involves inserting special to-
kens among the input tokens. These special tokens have
trainable word embeddings and generally do not exist in the
model’s vocabulary. The placement of these tokens can sig-
nificantly impact performance.

LoRA introduces trainable pairs of rank decomposition
matrices in parallel to the existing weight matrices. One
of the most popular adapter approaches is low-rank adap-
tation (LoRA), which leverages the insight of decomposing
the adapter weights into the product of two low-rank matri-
ces. LoRA has claimed comparable performance to full fine-

tuning while utilizing significantly fewer trainable parame-
ters.

AdaLoRA [Zhang et al., 2023] parametrizes the incremen-
tal updates of weight matrices using singular value decompo-
sition and dynamically allocates the parameter budget among
incremental matrices based on a novel importance metric.
AdaLoRA has claimed to achieve performance on par with
or surpassing LoRA while employing fewer trainable param-
eters.

4.3 Evaluation across Models
BERT Base/Large. While BERT [Devlin et al., 2019] has
been surpassed by much larger models on NLP leaderboards,
such as the GLUE benchmark, in recent years, it remains a
competitive and popular pre-trained model among practition-
ers due to its manageable size. We utilize the pre-trained
BERT base (110M) and BERT large (340M) models from
the HuggingFace Transformers library [Wolf et al., 2020]
to evaluate their performance using various efficient learning
approaches on tasks from both the GLUE and SuperGLUE
benchmarks. We also replicate the experimental setups of
[Devlin et al., 2019], [Liu et al., 2023b], [Hu et al., 2022],
and [Zhang et al., 2023]. A consistent batch size is main-
tained across all tasks, and a sequence length of 512 is em-
ployed to align with the baselines. The results can be found in
Table 1. For detailed information regarding the hyperparam-
eters used, please refer to Section A.1 in the supplementray
materials.

GPT-2 Medium/Large. We obtain the pre-trained GPT-2
[Radford et al.,] medium (355M) and GPT-2 large (774M)
models from the HuggingFace Transformers library and eval-
uated their performance using various efficient learning ap-
proaches on tasks from the GLUE and SuperGLUE bench-
marks. Additionally, we replicate the experimental setups of
[Radford et al.,], [Liu et al., 2023b], [Hu et al., 2022], and
[Zhang et al., 2023]. We maintain a consistent batch size for
all tasks and utilize a sequence length of 512 to align with the

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4457

Model & Method # Trainable Parameters SuperGLUE
BoolQ CB COPA WiC WSC RTE

T5 (FT) 3B 88.2 89.3 53.8 71.4 63.5 88.6
T5 (P-Tuning) 21.1M 62.2 50.0 54.5 52.8 58.6 54.8
T5 (LoRA) 11.8M 83.9 65.6 57.0 61.6 58.6 60.6
T5 (AdaLoRA) 8.9M 85.5 60.9 58.0 66.5 58.6 68.6
T5 (CEKFNN) 32.8M 87.4 71.9 60.9 69.9 60.9 69.0

Table 3: T5-3b with different methods on the SuperGLUE benchmarks.

Method # Trainable Parameters RTE CoLA STS-B
PA 22.6M 53.4 1.1 12.4
CEKFNN 22.6M 58.4 51.2 83.1

Table 4: CEKFNN and PA methods on the three different NLP tasks
for evaluation. We report the Matthew’s correlation for CoLA, Pear-
son correlation for SST-B, and accuracy for RTE.

baselines. The results are presented in Table 2. For detailed
information regarding the hyperparameters used, please refer
to Section A.2 in the supplementray materials.

Scaling up to T5-3B. As a final stress test for CEKFNN,
we scale up to T5 [Raffel et al., 2020], an encoder-decoder
based model with 3 billion parameters. Due to the high train-
ing cost, we only report partial tasks in SuperGLUE. We
utilize the pre-trained T5-3B model from the HuggingFace
Transformers library and replicated the setups from [Raffel et
al., 2020], [Liu et al., 2023b], [Hu et al., 2022], and [Zhang
et al., 2023]. We maintain a consistent batch size across all
tasks and use a sequence length of 512 to match the base-
lines. The results are presented in Table 3. For further details
on the hyperparameters used, please refer to Section A.3 in
the supplementray materials.

5 Understanding the CEKFNN

CEKFNN achieves either the best or second-best perfor-
mance in all experiments, thereby substantiating the efficacy
of conceptualizing prompt learning through the lens of a Con-
ditional Extended Kalman Filter. Considering the empirical
advantage and theoretical analysis of CEKFNN, we aim to
further elucidate the properties of CEKFNN when applied
to downstream tasks. In this section, our focus is primarily
on the widely used GPT-2 medium model, where we have
achieved a reduction in trainable parameters while maintain-
ing superior performance compared to some state-of-the-art
(SOTA) methods.

We conduct a series of empirical studies to address the fol-
lowing questions: 1) Is the alternative learning method pro-
posed in CEKFNN truly necessary when we have the same
number of CEKFNN trainable parameters? 2) How does
CEKFNN perform with various adapters?

We believe that our answers to these questions will provide
valuable insights into the fundamental principles of using pre-
trained language models for downstream tasks, a critical topic
in the field of natural language processing (NLP).

Method # Trainable Parameters CB COPA WSC
LoRA 1.6M 45.3 52.3 57.0
AdaLoRA 1.2M 68.8 60.1 59.4
CEKFNN 22.6M 69.3 62.5 61.8
CEKFNN (AdaLoRA) 22.2M 98.4 68.0 61.7

Table 5: GPT-2 M with CEKFNN uses different adapters on the
three tasks. we report accuracy for all tasks.

5.1 Is the Alternate Learning Procedure
Necessary?

To address this question, we compare the performance of
CEKFNN with that of PA, which updates all trainable pa-
rameters of the models in each loop. We select three differ-
ent NLP tasks: Single-Sentence Task (CoLA), Similarity and
Paraphrase Task (STS-B), and Inference Task (RTE) for eval-
uation. The results are presented in Table 4. Based on these
results, we can observe a significant decline in performance
without the alternate learning strategy. This further illustrates
the necessity of the CEKFNN method.

5.2 How Does CEKFNN Fare With Various
Adapters?

To address this question, we implement CEKFNN using the
AdaLoRA adapter and select several tasks where AdaLoRA
outperforms Lora. We evaluat the effectiveness of CEKFNN
on these tasks, and the results are presented in Table 5.
Based on the results, it is evident that CEKFNN (AdaLoRA)
achieves better results than AdaLoRA and outperforms most
performances compared to CEKFNN with the Lora adapter.
These results further demonstrate the generality and effective-
ness of the CEKFNN framework.

6 Conclusions
In this work, we study how to improve the accuracy of prompt
learning by generating high-quality prompt tokens. To this
end, we propose the CEKFNN framework, which models the
prompt learning with Extended Kalman Filter to integrate tra-
ditional prompt learning methods and adapter methods. The
CEKFNN framework enables the generation of time-variant
prompt tokens and the updating of the initial, transition, and
emission functions with only a small set of trainable pa-
rameters. We conduct extensive experiments with diversi-
fied model families (BERT, GPT-2, and T5) and model sizes
(117M-3B). It shows that the CEKFNN framework achieves
comparable or superior performance in comparison to com-
prehensive fine-tuning methods. In future, we will study how
to extend the applications of the CEKFNN framework from
NLP tasks to other tasks, such as computer vision and signal
processing.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4458

Acknowledgments
This work was supported in part by the National Natural
Science Foundation of China under Grant 61772492, Grant
62072428, Grant 62271465, in part by the Open Fund Project
of Guangdong Academy of Medical Sciences, China under
Grant YKY-KF202206, in part by the Suzhou Basic Research
Program under Grant SYG202338, and in part by OPPO Re-
search Fund. Xike Xie and Chao Wang are both correspond-
ing authors.

References
[Alishahi et al., 2019] Afra Alishahi, Grzegorz Chrupała,

and Tal Linzen. Analyzing and interpreting neural net-
works for nlp: A report on the first blackboxnlp workshop.
Natural Language Engineering, 25(4):543–557, 2019.

[Arora et al., 2023] Simran Arora, Avanika Narayan,
Mayee F. Chen, Laurel J. Orr, Neel Guha, Kush Bhatia,
Ines Chami, and Christopher Ré. Ask me anything:
A simple strategy for prompting language models. In
The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net, 2023.

[Bentivogli et al., 2009] Luisa Bentivogli, Peter Clark, Ido
Dagan, and Danilo Giampiccolo. The fifth pascal recog-
nizing textual entailment challenge. TAC, 7:8, 2009.

[Brown et al., 2020] Tom Brown, Benjamin Mann, Nick Ry-
der, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, et al. Language models are few-shot
learners. Advances in neural information processing sys-
tems, 33:1877–1901, 2020.

[Cer et al., 2017] Daniel Cer, Mona Diab, Eneko Agirre,
Inigo Lopez-Gazpio, and Lucia Specia. Semeval-
2017 task 1: Semantic textual similarity-multilingual
and cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055, 2017.

[Clark et al., 2019a] Christopher Clark, Kenton Lee, Ming-
Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

[Clark et al., 2019b] Kevin Clark, Urvashi Khandelwal,
Omer Levy, and Christopher D Manning. What does bert
look at? an analysis of bert’s attention. In Proceedings
of the 2019 ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, pages 276–286,
2019.

[Davison et al., 2019] Joe Davison, Joshua Feldman, and
Alexander M Rush. Commonsense knowledge mining
from pretrained models. In Proceedings of the 2019 con-
ference on empirical methods in natural language process-
ing and the 9th international joint conference on natu-
ral language processing (EMNLP-IJCNLP), pages 1173–
1178, 2019.

[Dettmers et al., 2023] Tim Dettmers, Artidoro Pagnoni, Ari
Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetun-
ing of quantized llms. arXiv preprint arXiv:2305.14314,
2023.

[Devlin et al., 2019] Jacob Devlin, Ming-Wei Chang, Ken-
ton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 4171–4186. Association
for Computational Linguistics, 2019.

[Dolan and Brockett, 2005] Bill Dolan and Chris Brockett.
Automatically constructing a corpus of sentential para-
phrases. In Third International Workshop on Paraphrasing
(IWP2005), 2005.

[Dong et al., 2019] Li Dong, Nan Yang, Wenhui Wang, Furu
Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. Unified language model pre-
training for natural language understanding and gener-
ation. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and
Roman Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32: Annual Conference on Neu-
ral Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pages
13042–13054, 2019.

[Hewitt and Manning, 2019] John Hewitt and Christopher D
Manning. A structural probe for finding syntax in word
representations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4129–4138,
2019.

[Hu et al., 2022] Edward J. Hu, Yelong Shen, Phillip Wallis,
Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large
language models. In The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net, 2022.

[Kim et al., 2018] Yoon Kim, Sam Wiseman, and Alexan-
der M Rush. A tutorial on deep latent variable models of
natural language. arXiv preprint arXiv:1812.06834, 2018.

[Lampinen et al., 2022] Andrew Lampinen, Ishita Dasgupta,
Stephanie Chan, Kory Mathewson, Mh Tessler, Antonia
Creswell, James McClelland, Jane Wang, and Felix Hill.
Can language models learn from explanations in context?
In Findings of the Association for Computational Linguis-
tics: EMNLP 2022, pages 537–563, 2022.

[Levesque et al., 2012a] Hector Levesque, Ernest Davis, and
Leora Morgenstern. The winograd schema challenge. In
Thirteenth international conference on the principles of
knowledge representation and reasoning, 2012.

[Levesque et al., 2012b] Hector Levesque, Ernest Davis, and
Leora Morgenstern. The winograd schema challenge. In

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4459

Thirteenth international conference on the principles of
knowledge representation and reasoning, 2012.

[Li et al., 2021] Yinghao Li, Pranav Shetty, Lucas Liu, Chao
Zhang, and Le Song. Bertifying the hidden markov model
for multi-source weakly supervised named entity recogni-
tion. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 6178–6190, 2021.

[Liu et al., 2023a] Pengfei Liu, Weizhe Yuan, Jinlan Fu,
Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. ACM
Computing Surveys, 55(9):1–35, 2023.

[Liu et al., 2023b] Xiao Liu, Yanan Zheng, Zhengxiao Du,
Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt
understands, too. AI Open, 2023.

[Ouyang et al., 2022] Long Ouyang, Jeffrey Wu, Xu Jiang,
Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, et al. Training language models to follow instruc-
tions with human feedback. Advances in Neural Informa-
tion Processing Systems, 35:27730–27744, 2022.

[Pilehvar and Camacho-Collados, 2019] Mohammad Taher
Pilehvar and Jose Camacho-Collados. Wic: the word-
in-context dataset for evaluating context-sensitive mean-
ing representations. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages 1267–
1273, 2019.

[Radford et al.,] Alec Radford, Jeffrey Wu, Rewon Child,
David Luan, Dario Amodei, Ilya Sutskever, et al. Lan-
guage models are unsupervised multitask learners.

[Raffel et al., 2020] Colin Raffel, Noam Shazeer, Adam
Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits
of transfer learning with a unified text-to-text transformer.
J. Mach. Learn. Res., 21:140:1–140:67, 2020.

[Rajpurkar et al., 2016] Pranav Rajpurkar, Jian Zhang, Kon-
stantin Lopyrev, and Percy Liang. Squad: 100,000+ ques-
tions for machine comprehension of text. In Proceedings
of the 2016 Conference on Empirical Methods in Natural
Language Processing, pages 2383–2392, 2016.

[Revach et al., 2022] Guy Revach, Nir Shlezinger, Xiaoyong
Ni, Adria Lopez Escoriza, Ruud JG Van Sloun, and Yon-
ina C Eldar. Kalmannet: Neural network aided kalman
filtering for partially known dynamics. IEEE Transactions
on Signal Processing, 70:1532–1547, 2022.

[Roemmele et al., 2011] Melissa Roemmele, Cos-
min Adrian Bejan, and Andrew S Gordon. Choice
of plausible alternatives: An evaluation of commonsense
causal reasoning. In 2011 AAAI Spring Symposium Series,
2011.

[Shin et al., 2020] Taylor Shin, Yasaman Razeghi, Robert L
Logan IV, Eric Wallace, and Sameer Singh. Autoprompt:
Eliciting knowledge from language models with automati-
cally generated prompts. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 4222–4235, 2020.

[Socher et al., 2013] Richard Socher, Alex Perelygin, Jean
Wu, Jason Chuang, Christopher D Manning, Andrew Y
Ng, and Christopher Potts. Recursive deep models for
semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical methods
in natural language processing, pages 1631–1642, 2013.

[Wang et al., 2019a] Alex Wang, Yada Pruksachatkun,
Nikita Nangia, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. Superglue:
A stickier benchmark for general-purpose language un-
derstanding systems. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pages
3261–3275, 2019.

[Wang et al., 2019b] Alex Wang, Amanpreet Singh, Julian
Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for
natural language understanding. In 7th International Con-
ference on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[Warstadt et al., 2019] Alex Warstadt, Amanpreet Singh,
and Samuel R Bowman. Neural network acceptability
judgments. Transactions of the Association for Compu-
tational Linguistics, 7:625–641, 2019.

[Williams et al., 2018] Adina Williams, Nikita Nangia, and
Samuel Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In Proceedings
of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), pages
1112–1122, 2018.

[Wolf et al., 2020] Thomas Wolf, Lysandre Debut, Victor
Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, et al. Transformers: State-of-the-art natural lan-
guage processing. In Proceedings of the 2020 conference
on empirical methods in natural language processing: sys-
tem demonstrations, pages 38–45, 2020.

[Xie et al., 2022] Sang Michael Xie, Aditi Raghunathan,
Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. In The Tenth Inter-
national Conference on Learning Representations, ICLR
2022, Virtual Event, April 25-29, 2022. OpenReview.net,
2022.

[Zhang et al., 2023] Qingru Zhang, Minshuo Chen, Alexan-
der Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen,
and Tuo Zhao. Adaptive budget allocation for parameter-
efficient fine-tuning. In The Eleventh International Con-
ference on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net, 2023.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4460

	Introduction
	Related Works
	Method
	Preliminaries
	CEKFNN Prompt Learning
	Alternate Training Procedure
	Model Training

	Experiments
	Datasets
	Baselines
	Evaluation across Models

	Understanding the CEKFNN
	Is the Alternate Learning Procedure Necessary?
	How Does CEKFNN Fare With Various Adapters?

	Conclusions

