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Abstract
Multi-objective reinforcement learning (MORL)
approaches address real-world problems with mul-
tiple objectives by learning policies maximizing re-
turns weighted by different user preferences. Typ-
ical methods assume the objectives remain un-
changed throughout the agent’s lifetime. How-
ever, in some real-world situations, the agent may
encounter dynamically changing learning objec-
tives, i.e., different vector-valued reward functions
at different learning stages. This issue of evolv-
ing objectives has not been considered in prob-
lem formulation or algorithm design. To address
this issue, we formalize the setting as a continual
MORL (CMORL) problem for the first time, ac-
counting for the evolution of objectives through-
out the learning process. Subsequently, we propose
Continual Multi-Objective Reinforcement Learn-
ing via Reward Model Rehearsal (CORE3), incor-
porating a dynamic agent network for rapid adap-
tation to new objectives. Moreover, we develop a
reward model rehearsal technique to recover the re-
ward signals for previous objectives, thus alleviat-
ing catastrophic forgetting. Experiments on four
CMORL benchmarks showcase that CORE3 ef-
fectively learns policies satisfying different pref-
erences on all encountered objectives, and out-
performs the best baseline by 171%, highlighting
the capability of CORE3 to handle situations with
evolving objectives.

1 Introduction
Reinforcement learning (RL) has garnered prominent atten-
tion in recent years [Wang et al., 2022], and made ex-
citing progress in various real-world sequential decision-
making problems, like robotic control [Singh et al., 2022],
autonomous driving [Kiran et al., 2022], and aligning large
language models with human values [Kaufmann et al., 2023],
etc. These problems could be formalized as completing a
specific objective, i.e., maximizing a scalar return. Never-
theless, numerous real-world problems encompass multiple,
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possibly conflicting objectives. An illustrative example is an
autonomous driving agent tasked with multiple objectives,
such as maximizing speed and minimizing fuel consump-
tion. To tackle such complex scenarios, multi-objective rein-
forcement learning (MORL) approaches [Roijers et al., 2013;
Liu et al., 2014] have been introduced to concurrently learn
these multiple objectives with a vector-valued reward func-
tion, obtain a set of policies maximizing returns weighted
by different preferences, and employ the appropriate pol-
icy given a user preference during testing, like driving fast
for a passenger with urgent matters, or driving slowly and
smoothly for a leisurely traveler.

Given the extensive and significant applications of MORL,
many approaches have been developed [Hayes et al., 2022].
Typical methods primarily concentrate on developing vari-
ous techniques to enhance the learning efficiency over the
multiple objectives, including applying meta-learning tech-
niques [Chen et al., 2019], utilizing prediction-guided evo-
lutionary learning [Xu et al., 2020], developing preference-
conditioned network architecture [Abels et al., 2019], propos-
ing novel Bellman update strategies [Basaklar et al., 2023],
etc. Beyond that, these methods assume that throughout the
agent’s entire lifetime, the learning objectives remain un-
changed. However, the agent may encounter dynamically
changing learning objectives, i.e., altering vector-valued re-
ward functions. On one hand, new objectives and their re-
ward signals may appear at different learning stages, as it
is natural and inevitable for human users to propose new re-
quirements. On the other hand, some objectives may be re-
moved from the agent’s perspective, as their reward signals
become inaccessible after a limited training period, yet the
agent must retain the ability to complete them [Chang et al.,
2021]. For instance, the reward for the objective “stay in the
middle lane” will be unavailable after the corresponding sen-
sors run out of power or malfunction [Shaheen et al., 2022;
Wang et al., 2023], while the autonomous driving agent is
still obliged to manage it for certain passengers. Without con-
sidering these scenarios, the underlying assumption of fixed
objectives made by existing methods hinders the further de-
velopment of MORL and its practical application in scenarios
with evolving objectives.

To bridge the gap between existing methods and the men-
tioned scenarios, and endow MORL agents with contin-
ual learning ability, we take the issues into consideration
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and formalize the setting as a continual MORL (CMORL)
problem for the first time, where the agent encounters a
sequence of MORL tasks with objectives altering contin-
ually, and should learn to complete all encountered ob-
jectives (Figure 1). Furthermore, we propose Continual
Multi-Objective Reinforcement Learning via Reward Model
Rehearsal (CORE3), incorporating a dynamic agent net-
work with a multi-head architecture [Kessler et al., 2022;
Zhang et al., 2023a], which enables flexible expansion for
new objectives and effective knowledge transfer [Zhu et al.,
2023]. To avoid catastrophic forgetting about objectives lack-
ing reward signals, inspired by the concept of rehearsal in
continual learning [Parisi et al., 2019], we develop a reward
model rehearsal approach to recover these signals and use
them to update the policy. This approach not only provides a
theoretical guarantee but also effectively alleviates the unique
challenge of catastrophic forgetting in CMORL, ensuring the
agent’s high performance on all encountered objectives.

We conduct experiments within four CMORL benchmarks
featuring evolving objective sets. The results showcase that
CORE3 effectively learns to accomplish all encountered ob-
jectives in accordance with different preferences, outperform-
ing the best baseline by 171% on Hypervolume, a widely-
used metric in MORL [Hayes et al., 2022]. More results
further provide insight into how CORE3 successfully tackles
the CMORL problem with the proposed technologies. These
findings highlight the capability of CORE3 to effectively han-
dle real-world situations involving evolving objectives.

2 Related Work
Multi-objective reinforcement learning (MORL) extends
the conventional RL framework with a single objective to
multi-objective settings [Roijers et al., 2013; Liu et al., 2014],
and can be applied to real-world problems like hyperparam-
eter tuning [Chen et al., 2021], canal control [Ren et al.,
2021], etc. Among the approaches, the single-policy se-
ries [Pan et al., 2020; Siddique et al., 2020; Hwang et al.,
2023] predefines objective preferences, converting the prob-
lem into a single-objective one which is solvable by tradi-
tional RL methods. When the preference cannot be known in
advance, multi-policy approaches aim to learn a set of poli-
cies that approximates the Pareto front of solutions, and select
the optimal one for testing given a preference. One classical
work is PG-MORL [Xu et al., 2020], which updates a policy
population using an evolutionary algorithm to approximate
the Pareto front. Another line of works like Envelope [Yang
et al., 2019] and PD-MORL [Basaklar et al., 2023], train a
single preference-conditioned network over multiple prefer-
ences with different Bellman update strategies. To release the
burden of learning multiple policies simultaneously, meta-
policy approaches [Chen et al., 2019; Zhang et al., 2023b]
first train a meta-policy and finetune it with a small amount
of update steps to derive the solution for a given preference.
To test the learning efficiency of various MORL methods, re-
searchers also develop different benchmarks [Xu et al., 2020;
Felten et al., 2023]. Despite these progress, existing MORL
approaches and benchmarks focus on learning a fixed set of
objectives, while our work is the first to explore the MORL

problem with objectives evolving continually.
Continual reinforcement learning (CRL) [Ring, 1995;
Khetarpal et al., 2022] focuses on enabling agents to learn
a sequence of different RL tasks and balance the stability-
plasticity dilemma, i.e., alleviating catastrophic forgetting of
old tasks while adapting to new tasks. One classic method is
EWC [Kirkpatrick et al., 2017], which adds an l2-distance-
based regularizer to constrain the update of the agent net-
work. Another task-agnostic approach CLEAR [Rolnick et
al., 2019] stores the transitions of every encountered task
in the buffer, and uses them to rehearse the agent. Other
works [Huang et al., 2021; Kessler et al., 2023] learn a world
model to assist the agent’s continual learning. OWL [Kessler
et al., 2022] and DaCoRL [Zhang et al., 2023a] utilize
a multi-head architecture to enhance the agent’s continual
learning ability. CSP [Gaya et al., 2023] builds a subspace of
policies continually. CPPO [Anonymous, 2024] continually
learns from human preferences based on PPO [Schulman et
al., 2017]. Other researchers also develop benchmarks [Wol-
czyk et al., 2021; Powers et al., 2022] to test the continual
learning ability of different CRL methods. While these meth-
ods focus on the standard RL tasks with only one objective,
i.e., scalar reward signals, our work presents the first explo-
ration into MORL in the continual learning setting.
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Figure 1: The overall workflow of continual MORL (CMORL).

3 Problem Formulation
A multi-objective sequential decision making problem can
be formulated as a Multi-Objective Markov Decision Process
(MOMDP), with tupleM = ⟨S,A, P,K,R,Ω, fω, γ⟩. Here,
S and A denote the state space and the action space. P :
S×A → Pr(S) is the transition function. K = {k1, · · · , km}
is the set of m different objectives, a subset of all possible
objectives K. R : S × A → Rm is the vector-valued reward
function. Ω is the preference space. fω : Rm → R is the
scalarization function under preference ω ∈ Ω, and γ is the
discount factor. We focus on the linear reward scalarization
setting, i.e., fω(R(s, a)) = ω⊤R(s, a), for s ∈ S, a ∈ A,
and Ω = ∆m is the unit simplex, aligning with the estab-
lished practices in the MORL literature [Hayes et al., 2022].
At each time step t, the agent observes state st, takes ac-
tion at, and receives a reward vector rt = R(st, at) =
(Rk1

(st, at), · · · , Rkm
(st, at)), where Rki

(st, at) is the re-
ward signal of objective ki(i = 1, · · · ,m). The agent
knows the objective that each scalar reward corresponds to.
Here, we learn a preference-conditioned agent policy π :
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S × ∆m → Pr(A). The goal is to find the optimal pol-
icy π∗, such that ∀ω ∈ ∆m, π∗ = argmaxπ ω

⊤J(π(·|·;ω)),
where J(π) = Eτ∼π[

∑∞
t=0 γ

tR(st, at)] is the value vector,
and τ = (s0, a0, s1, a1, · · · ) is the trajectory.

In this work, we aim to solve the CMORL problem where
the agent encounters a sequence of multi-objective tasks:
(M1, · · · ,Mn, · · · ), as shown in Figure 1. Each taskMn is
a MOMDP with specific objectives Kn = {kn1 , . . . , knmn

} ⊂
K, reward function Rn = (Rn

1 , · · · , Rn
mn

), and preference
space Ωn = ∆mn . Here, Rn

i denotes Rkn
i
(i = 1, · · · ,mn)

for simplicity. The agent knows if the task has changed. How-
ever, it can only receive the reward signals of the current ob-
jective set Kn, and is evaluated on all encountered ones, i.e.,
Kall

n = ∪ni=1Ki = {k11, · · · , k1m1
} ∪ · · · ∪ {kn1 , · · · , knmn

} =
{k1, · · · , kMn}, whereMn represents the total number of ob-
jectives introduced up to and including task Mn. Note that
Mn ≤

∑n
i=1mn because some objectives may appear re-

peatedly in different tasks (e.g., k11 = k21 = k1). These set-
tings of CMORL necessitate the agent’s rapid adaptation to
new objectives while maintaining the ability to accomplish
the previously encountered ones.

4 Method
In this section, we present the detailed design of our proposed
method CORE3. First, we introduce a novel dynamic agent
network architecture that adaptively expands as new objec-
tives arrive, facilitating rapid adaptation and circumventing
the need to learn the entire network from scratch. Next, we
utilize a multi-objective reward model to recover reward sig-
nals of previously encountered objectives, thereby alleviat-
ing the phenomenon of catastrophic forgetting. Through the
incorporation of these techniques, CORE3 effectively learns
the sequence of multi-objective tasks in a continual manner.

4.1 Dynamic Network for Evolving Objectives
Under the CMORL setting, the learning objectives alter con-
tinually along with the task sequence, leading to an increase
in the number of all encountered objectives. As a result, the
conventional network architecture with fixed input and out-
put shapes will no longer work. To address this problem, we
design a dynamic and expandable network architecture.

Concretely, for discrete action spaces, we learn a vec-
torized Q network Q(s, a, ω; θ) to approximate the action-
value function and use it as the policy. We design the Q
network architecture as a combination of a feature extrac-
tor E(s, a, ω; ξ) and distinct heads {h(e;ψi)}Mn

i=1 for all en-
countered objectives. The feature extractor first transforms
the varying-length preference ω into a fixed-length embed-
ding zω using a GRU [Chung et al., 2014]. Then, a multi-
layer perceptron (MLP) takes the state, action, and embed-
ding zω as input and outputs feature e = E(s, a, ω; ξ). Then,
each MLP head h(e;ψi) takes e as input, and outputs the
Q value of objective ki, forming the overall output Q vec-
tor

(
h
(
e;ψ1

)
, · · · , h

(
e;ψMn

))
= Q(s, a, ω; θ) for all ob-

jectives. With the Q vector, the CMORL agent is able to
select the optimal action a = argmaxã∈A ω

⊤Q(s, ã, ω; θ)
w.r.t. the given preference ω. During training taskMn, the
Q network is optimized to minimize the following loss:

L(θ) = E(s,a,r,s′,ω)∼D [∥y−Q(s, a, ω; θ)∥2] ,
where Q(s, a, ω; θ) =

(
h
(
e;ψ1

)
, · · · , h

(
e;ψMn

))
,

(1)

and D is the replay buffer, θ = (ξ, {ψi}Mn
i=1) are the up-

dated parameters of the networks, y = r + γQ(s′, a′, ω; θ−)
denotes the target value vector which is obtained using
target Q network’s parameters θ− and the action a′ =
argmaxã∈A ω

⊤Q(s′, ã, ω; θ−). When new objectives ar-
rive, we dynamically create new objective heads and ex-
pand the network. For continuous action spaces, we ap-
ply Q(s, a, ω; θ) as the critic and learn an actor π(a|s, ω;ϕ).
When computing the target value vector y to optimize Q, the
action a′ is obtained by the actor: a′ ∼ π(·|s′, ω;ϕ). The
actor π(·|s, ω;ϕ) is also equipped with a GRU to process
the varying-length preference, and is optimized to maximize
ω⊤Q. Such network architecture not only handles the in-
creasing objective number, but also facilitates efficient knowl-
edge transfer between tasks with different objectives. More
details about the network architecture and the optimization
process are provided in Appendix C.1.

4.2 Multi-Objective Reward Model Rehearsal
With the designed network architecture and loss function, the
agent can learn to complete all encountered objectives ef-
fectively. Nevertheless, the computation of the loss function
L(θ) defined in Equation 1 requires access to the reward sig-
nals of all previous objectives, i.e., Kall

n \Kn. Unfortunately,
in the CMORL setting, these reward signals are unavailable
from the environment. Simply neglecting these objectives
would lead to the undesirable consequence of the agent los-
ing its capability to accomplish them, i.e., catastrophic for-
getting phenomenon. These issues pose a great challenge to
the agent’s learning process.

To solve these issues, we propose learning a multi-
objective reward model R̂ to recover the reward signals for
all previous objectives Kall

n \Kn. Concretely, when learning
task Mn, the environment provides reward signals rt =
(Rn

1 (st, at), · · · , Rn
mn

(st, at)) corresponding to objectives
Kn = {kn1 , . . . , knmn

}. Next, we predict reward vector r̂t =

R̂(st, at) = (R̂1(st, at), · · · , R̂Mn
(st, at)). Note that if ob-

jective ki ∈ Kn(i = 1, · · · ,Mn), we directly set R̂i(st, at)
as the ground-truth reward in rt. Then, r̂t is employed to
compute the target value vector in Equation 1, to rehearse the
agent about previous objectives. From the agent’s perspec-
tive, the reward signals for all encountered objectives per-
sist throughout the entire learning process. Consequently, the
agent’s performance significantly depends on the quality of
the multi-objective reward model. Here, we theoretically an-
alyze their relationship.
Theorem 1 (Bounded Performance Gap). Consider two
MOMDPs, M and M̂, differing only in their reward func-
tions: R = (R1, · · · , Rm) and R̂ = (R̂1, · · · , R̂m).
The value vectors of a policy π in M and M̂ are
JM(π) = Eτ∼π[

∑∞
t=0 γ

tR(st, at)] and JM̂(π) =

Eτ∼π[
∑∞

t=0 γ
tR̂(st, at)], respectively. The optimal poli-

cies for M and M̂ are denoted as π∗ and π̂∗, satisfy-
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ing ∀ω ∈ ∆m, π∗ = argmaxπ ω
⊤JM(π), and π̂∗ =

argmaxπ ω
⊤JM̂(π). Define the difference between these re-

ward functions as δ = sups∈S,a∈A ||R(s, a) − R̂(s, a)||∞.
Based on these definitions, the following inequality holds,

∀ω ∈ ∆m, ω⊤JM(π∗)− ω⊤JM(π̂∗) ≤ 2δ

1− γ
. (2)

The proof is provided in Appendix A. As indicated by
Theorem 1, the performance gap between the policy learned
from the recovered rewards r̂t and the policy learned from the
ground-truth rewards rt is bounded by 2δ

1−γ , with δ represent-
ing the prediction error of the multi-objective reward model in
our context. So, we can minimize the performance gap by im-
proving the reward model’s prediction accuracy. To achieve
this goal and circumvent the necessity of training a separate
reward model for each objective, we also design a multi-head
architecture for the reward model network. A dynamic en-
coder F takes the current state and action as input, and out-
puts the dynamic feature z = F(s, a;ϑ). For each objective
ki(i = 1, · · · ,Mn), a reward prediction head g(·;φi) takes z
as input, and predicts reward R̂i(s, a) = g(z;φi). New heads
will be created when novel objectives appear. We also learn
a state prediction head to predict the next state ŝ′ = g(z;φs),
thereby stabilizing training and enhancing the dynamic en-
coder’s ability to capture the fundamental information of the
environment. Let Φ = (ϑ, {φn

i }
mn
i=1, φs) denote the network

parameters. The model is optimized in an end-to-end manner
to minimize the following prediction loss term:

Lpred(Φ) = E(s,a,renv,s′)∼D

[
∥s′ − g(z;φs)∥2

+
∥∥renv − (g(z;φn

1 ), · · · , g(z;φn
mn

))
∥∥
2

]
,

(3)

where D is the replay buffer, renv = Rn(s, a) is the ground-
truth reward vector received from the environment. Specif-
ically, only the reward heads {φn

i }
mn
i=1 corresponding to the

objectives {kn1 , · · · , knmn
} of task Mn are updated when

n > 1. Empirical results showcase that it does not weaken
the expressiveness and accuracy of the model. We also ap-
ply the ensemble technique to improve the robustness of the
model. More details about model learning are provided in
Appendix C.2. With the accurate learned multi-objective re-
ward model, we can recover the lost reward signals to re-
hearse the agent about previously encountered objectives,
alleviating catastrophic forgetting and ensuring the perfor-
mance on all objectives encountered so far.

4.3 Overall Learning Procedure
Through the incorporation of the technologies mentioned
in Section 4.1 and 4.2, we formulate our overall method,
Continual Multi-Objective Reinforcement Learning via
Reward Model Rehearsal (CORE3), which can effectively
learn the sequence of multi-objective tasks in a continual
manner. In this section, we outline the overall learning pro-
cedure of CORE3 in Algorithm 1.

For each learning taskMn, we use a replay buffer to store
and only store its transition data (Line 3), obviating the ex-
plicit storage of transition data of each encountered task, and

Algorithm 1 CORE3
Input: Multi-objective task (M1,M2, · · · ), policy π, multi-
objective reward model R̂, and replay buffer D.
Parameter: Q function θ = (ξ), actor ϕ (for continuous ac-
tion spaces), and multi-objective reward model Φ = (ϑ, φs).

1: Kall
0 ← ∅,Mn ← 0.

2: for n = 1, 2, · · · do
3: Clear replay buffer D.
4: Kall

n ← Kall
n−1 ∪ Kn,mn ← |Kn|,Mn ← |Kall

n |.
5: if Kall

n \Kall
n−1 ̸= ∅ then

6: // Dynamic Network Expansion
7: Create objective heads {ψi}Mn

i=Mn−1+1, add to θ.
8: Create reward heads {φi}Mn

i=Mn−1+1, add to Φ.
9: end if

10: while taskMn has not ended do
11: Uniformly sample preference ω ∼ ∆Mn .
12: Execute π(·|·, ω) in task Mn to collect transitions

{(s, a, renv, s
′, ω)} and append to D.

13: Update Φ = (ϑ, {φn
i }

mn
i=1, φs) of the multi-

objective reward model R̂ to minimize Lpred in
Equation 2. // Reward Model Learning

14: Sample transitions {(s, a, renv, s
′, ω)} ∼ D, replace

renv with prediction r̂, as mentioned in Section 4.2.
// Reward Model Rehearsal

15: Update θ = (ξ, {ψi}Mn
i=1) of the Q function to mini-

mize L in Equation 1. // Policy Learning
16: (For continuous action spaces) Update actor ϕ.
17: end while
18: Evaluate π on all encountered objectives Kall

n .
19: end for

ensuring the scalability of our approach. If novel objectives
appear in the current task Kn, we dynamically expand the
policy network and the multi-objective reward model network
(Lines 5∼ 9). Then, the agent exploresMn, and collect tran-
sitions into the replay buffer D. With the collected data, we
finetune the reward model so that it can predict the reward of
novel objectives (Line 13). Leveraging this reward model, we
recover the reward signals of previously encountered objec-
tives, and utilize them to train and rehearse the agent (Line
14). Finally, the policy is optimized based on the reward
signals for all encountered objectives, alleviating the catas-
trophic forgetting phenomenon (Lines 15 ∼ 16). To assess
the efficacy of CORE3 in addressing the CMORL problem,
we evaluate the learned policy on all encountered objectives
(Line 18), as elaborated in Section 5.

5 Experiments
In this section, we conduct experiments to answer the follow-
ing questions: (1) Can CORE3 better accomplish all encoun-
tered objectives compared with the baselines, and alleviate
forgetting about previous objectives lacking reward signals
(Section 5.2) ? (2) How does CORE3 adapt to new objec-
tives, and learn previous objectives from the perspective of
Pareto fronts (Section 5.3) ? (3) How does the hyperparame-
ters influence the performance of CORE3 (Section 5.4) ?
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Envs Metrics Finetune CLEAR EWC CORE3 (Oracle) CORE3 (Ours)

FTN
HV (↑) 1.00 ± 0.07 0.85 ± 0.07 1.04 ± 0.07 1.10 ± 0.04 1.06 ± 0.001.06 ± 0.001.06 ± 0.00
SP (↓) 1.00 ± 0.14 0.73 ± 0.02 0.58 ± 0.060.58 ± 0.060.58 ± 0.06 0.72 ± 0.01 0.82 ± 0.02

BWT (↑) −0.12 ± 0.02 0.00 ± 0.01 −0.14 ± 0.01 0.03 ± 0.00 0.02 ± 0.010.02 ± 0.010.02 ± 0.01

Grid
HV (↑) 1.00 ± 0.82 4.21 ± 0.66 2.26 ± 1.34 4.60 ± 0.26 4.54 ± 0.604.54 ± 0.604.54 ± 0.60
SP (↓) 1.00 ± 0.58 0.42 ± 0.110.42 ± 0.110.42 ± 0.11 0.47 ± 0.10 0.37 ± 0.02 0.44 ± 0.10

BWT (↑) −0.44 ± 0.07 −0.14 ± 0.17−0.14 ± 0.17−0.14 ± 0.17 −0.58 ± 0.05 −0.07 ± 0.12 −0.17 ± 0.15

Ant
HV (↑) 1.00 ± 0.42 1.78 ± 0.37 1.03 ± 0.60 2.30 ± 0.18 1.89 ± 0.351.89 ± 0.351.89 ± 0.35
SP (↓) 1.00 ± 0.56 0.33 ± 0.060.33 ± 0.060.33 ± 0.06 1.43 ± 1.78 1.06 ± 0.57 0.73 ± 0.72

BWT (↑) −0.27 ± 0.02 0.01 ± 0.18 −0.35 ± 0.1 0.34 ± 0.18 0.11 ± 0.160.11 ± 0.160.11 ± 0.16

Hopper
HV (↑) 1.00 ± 1.22 2.03 ± 3.49 1.01 ± 1.43 7.84 ± 0.29 8.23 ± 1.428.23 ± 1.428.23 ± 1.42
SP (↓) 1.00 ± 0.76 7.59 ± 2.98 4.76 ± 3.54 0.35 ± 0.11 0.21 ± 0.100.21 ± 0.100.21 ± 0.10

BWT (↑) −0.40 ± 0.07 −0.38 ± 0.22 −0.37 ± 0.07 0.11 ± 0.09 0.06 ± 0.050.06 ± 0.050.06 ± 0.05

API (%) (↑)
HV \ 121.72 33.61 296.03 293.18293.18293.18
SP \ −126.81 −80.85 37.61 45.3745.3745.37

BWT \ 69.09 −17.87 145.36 109.09109.09109.09

Table 1: Metric values are presented as mean ± std for different methods across four CMORL benchmarks. For simplicity, we re-scale HV
and SP values by taking the Finetune’s results as an anchor and present the average performance improvement (API, %) relative to it. The best
results except the Oracle baseline in each row is highlighted in bold. ↑ indicates bett er performance with higher values, and ↓ the opposite.

5.1 Benchmarks, Baselines, and Metrics

To provide a testbed for CORE3, we first design four
CMORL benchmarks with both discrete and continuous ac-
tion spaces, by extending widely-used MORL benchmarks
into continual learning settings. The first benchmark is Fruit
Tree Navigation (FTN) [Yang et al., 2019], a task with a full
binary tree, and an agent navigating from the root node to one
of the leaf node to receive a 6-dimension reward, represent-
ing the amount of six different nutrients. Next, inspired by
the four-room [Alegre et al., 2022] environment, we design
a more complicated Grid world benchmark with five goal
positions. The agent is rewarded when navigating closer to
the goals, and should navigate to the optimal position given
a preference on the goals. Both FTN and Grid are environ-
ments with discrete action spaces, and we design two contin-
uous control CMORL benchmarks based on MuJoCo physics
engine [Todorov et al., 2012; Xu et al., 2020]. In the Ant
benchmark, the agent controls the ant robot to complete five
objectives, including saving energy and moving in {±x,±y}-
axes. Another MuJoCo benchmark is Hopper, where the five
objectives of the hopper robot include saving energy, mov-
ing forward, moving backward, jumping high, and staying
low. In the CMORL setting, the agent learns a sequence of
five MOMDPs. Each MOMDP is trained for 100k steps in
FTN and 500k steps otherwise, with two objectives drawn
from the objectives mentioned above. More details about the
benchmarks are in Appendix B.1.

Next, we compare CORE3 with multiple strong baselines.
To evaluate the impact of reward model rehearsal on the
agent’s learning process, we compare CORE3 with Fine-
tune, which can be seen as an ablation of CORE3 with-
out reward model rehearsal, and directly tunes the policy
on the current task, ignoring previous objectives lacking re-
ward signals. Additionally, we extend representative works
in single-objective CRL into multi-objective settings as base-
lines. CLEAR [Rolnick et al., 2019] is a task-agnostic
method which stores transitions of all previous tasks and use
them to rehearse the agent. EWC [Kirkpatrick et al., 2017]

adds an l2-distance-based regularizer to constrain the update
of the agent network. We further investigate CORE3 (Or-
acle), representing a performance upper bound of CORE3,
as it has access to the rewards of previous objectives, i.e.,
CORE3 with ground-truth multi-objective reward model. We
run each method for five distinct seeds. More details about
the baselines are in Appendix B.2.

To evaluate the methods’ performance on completing all
encountered objectives, we randomly sample multiple prefer-
ences to test the agent, deriving a set V of all non-dominated
return vectors, i.e., the approximated Pareto front. To mea-
sure the quality of V , we adopt two metrics widely used
in the MORL literature [Hayes et al., 2022]. The first one
is Hypervolume (HV) :=

∫
H(V )

I{z ∈ H(V )}dz, where
H(V ) := {z ∈ Rm : ∃vvv ∈ V,vvv ≻ z ≻ vvv0}, m is
the number of objectives, vvv0 is a predefined reference point,
≻ is the Pareto dominance relation, and I is the indicator
function. A larger HV indicates a better approximation of
the optimal Pareto front. The second one Sparsity (SP)
:= 1

|V |−1

∑m
j=1

∑|V |−1
i=1 (Ṽj(i) − Ṽj(i + 1))2 measures the

density of V , where Ṽj(i) is the i-th value in the sorted list for
the j-th objective values in V . Given two Pareto fronts with
close HV, the one with smaller SP is denser and considered
better. As we study a continual learning problem, it is nec-
essary to measure the forgetting phenomenon. We therefore
calculate Backward Transfer (BWT) [Wang et al., 2023]
:= 1

N−1 (
∑N

n=2
1

n−1

∑n−1
j=1 [(α

j
n − α

j
j)/α

j
j ], where N = 5 is

the number of tasks, αj
i is the HV tested on objectivesKj after

training on taskMi with objectives Ki. BWT evaluates the
influence of learning new objectives on completing the previ-
ous ones. A larger BWT indicates a better anti-forgetting.

5.2 Competitive Results
In this section, we compare CORE3 with the baselines on
the four CMORL benchmarks. The overall results on all
three metrics are shown in Table 1, and the learning curves
on the primary metric, HV of all objectives encountered so
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Figure 2: Performance comparison during the learning process on metric HV in four benchmarks. Each benchmark has a sequence of five
MORL tasks, and each plot denotes the HV value on all objectives encountered so far. As the numerical range of HV varies greatly with the
number of objectives, we re-scale the HV values in each task to the range of [0, 1] for a comprehensive visualization.
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Figure 3: The learning curves of HV on each encountered task in the Hopper benchmark. Each of the five plots corresponds to a specific task,
and a gray background within each plot signifies the period during which the agent is training on that particular task. There is blank space in
the plots for task n > 1 because the task has not yet appeared. The results on other benchmarks are provided in Appendix D.1.

far, are displayed in Figure 2. We find that Finetune has the
most inferior overall performance on HV and suffers from
forgetting according to a low BWT, showing that ignoring
the lost reward signals cannot perform well in CMORL set-
tings, even with a well-designed multi-head policy network.
To alleviate forgetting, CLEAR uses transitions of previous
tasks to rehearse the agent, but still suffers from perfor-
mance degradation, because the transitions trading off ob-
jectives in different tasks are still lacking. Another widely-
used approach for single-objective CRL, EWC, also cannot
perform well, demonstrating the necessity of specific con-
siderations for multi-objective scenarios. Having access to
ground-truth reward signals for all encountered objectives,
CORE3 (Oracle) can be seen as an upper bound of perfor-
mance, and achieves the best overall results, demonstrating
the reward rehearsal strategy can solve the CMORL prob-
lem while conventional CRL approaches fail. Our approach
CORE3, achieves comparable performance to Oracle on all
four benchmarks and all three metrics, and outperforms the
best baseline CLEAR on the average HV improvement by
293.18%−121.72% = 171.46%, indicating the effectiveness
of reward model rehearsal.

We further display the learning curves of HV on each en-
countered task in the Hopper benchmark in Figure 3. We
observe the catastrophic forgetting phenomenon, where base-
lines suffer from performance degradation on tasks after
training on them. Take task 1 as an example, all methods dis-

play similar learning curves when training on it, but baselines
Finetune, EWC, and CLEAR suffer from performance degra-
dation after starting to train on task 2 or task 3. On the con-
trary, CORE3 shows non-decreasing learning curves, which
are comparable to CORE3 (Oracle) on every task, indicat-
ing that our approach successfully alleviates the catastrophic
forgetting phenomenon, and maintains the agent’s ability to
complete previous objectives. The results on other bench-
marks are provided in Appendix D.1.

5.3 Pareto Front Analysis
To provide a more comprehensive illustration of how CORE3
adapts to new tasks and alleviates catastrophic forgetting, we
further analyze the learning process by visualizing the Pareto
fronts in Figure 4. As shown in Figure 4(a), after learning
previous tasks, the CMORL agent is now confronted with a
new task with two objectives. One objective (moving in +y
axis) has been learned before, and the other one (moving in
−x axis) is new. To provide reference and comparison, we
introduce Learning-From-Scratch (LFS), which trains a ran-
domly initialized policy network to complete these two objec-
tives from scratch, and expands the Pareto front stating from
a position near (0, 0). The markers with different colors in
the figure ( → ) demonstrate the progression of the learn-
ing process. We then display the learning process of CORE3
in the same manner ( → ). At the early beginning of the
task, CORE3 already achieves a Pareto front that surpasses
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(a) CORE3 v.s. LFS on learning a new task.
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(b) CORE3 v.s. Finetune on an ended task.

Figure 4: Comparison of Pareto fronts on the Ant benchmark. The x, y-axes represent the returns of two different objectives. Each marker is a
found solution, and markers in the same color form an approximation of the optimal Pareto front. Different colors represent different training
periods. (a) CORE3 v.s. Learning-From-Scratch (LFS) on learning a new task. LFS trains a random initialized policy network from scratch.
(b) CORE3 v.s. Finetune on a task whose training period has ended. The displayed training period begins at 500k steps (lower right corner)
instead of 0, indicating the solutions are induced by policies learning subsequent tasks with objectives different from the ones in x, y-axes.

the one obtained by LFS at the task’s conclusion. It indi-
cates that, by learning from previous objectives, CORE3 has
acquired fundamental and transferable task knowledge, like
controlling the joints of the Ant robot in a reasonable way.
Armed with this knowledge and the continual learning of the
new task, CORE3 further effectively expands the Pareto front
to a broader and denser curve, better approximating the opti-
mal Pareto front of the task.

Next, we display the Pareto fronts of a task after training on
it. As shown in Figure 4(b), the reward signal of one objective
(moving in +x axis) is lost in the subsequent task while the
other remains. Without specific consideration, Finetune suf-
fers from a significant performance degradation about 50%
of the objective lacking reward signal ( → ), i.e., catas-
trophic forgetting. On the contrary, with the reward model re-
hearsal technique, CORE3 retains and continually improves
the ability of completing this objective ( → ), explaining
how CORE3 successfully alleviates catastrophic forgetting.

5.4 Sensitivity Studies
The performance of CORE3 significantly depends on the
quality of the multi-objective reward model, which is learned
through established world model learning techniques [Luo et
al., 2022]. As the learning process includes multiple hyperpa-
rameters, we here conduct experiments on the Hopper bench-
mark to investigate how each one influences the performance
of CORE3. One important hyperparameter is the ensemble
size, as we learn multiple ensemble models to improve ro-
bustness. On one hand, a small ensemble size is insufficient
for robustness. On the other hand, learning an excessively
large number of ensemble models will reduce the overall ef-
ficiency. As shown in Figure 5, we find that CORE3 achieves
the highest HV and lowest sparsity when the ensemble size
is equal to 5. CORE3 with 10 ensemble models performs
similar to the former, meaning that an ensemble size of 5 is

enough to learn a robust multi-objective reward model. When
the ensemble size is less than 5, the reward model is not stable
enough, resulting in worse performance. More detailed anal-
ysis of other important hyperparameters like the batch size of
model learning is provided in Appendix D.2.

Hv Sp
BwT

Figure 5: Sensitivity studies on model ensemble size in Hopper.

6 Final Remarks
Recognizing the significance of continual learning, this work
takes a further step towards continual multi-objective RL
(CMORL). We formulate this problem for the first time,
where learning objectives may evolve throughout the agent’s
lifetime. Then, we propose Continual Multi-Objective
Reinforcement Learning via Reward Model Rehearsal
(CORE3), which utilizes a dynamic agent network for adap-
tation to new objectives, and a multi-objective reward model
to rehearse the agents about objectives lacking reward signals.
Experiments demonstrate the effectiveness of our approach.
Furthermore, an intriguing avenue for future exploration is
extending multi-objective RL to the domain of multi-agent
reinforcement learning (MARL) [Yuan et al., 2023], thereby
fostering progress in both these vital fields.
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