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Abstract
Few-shot learning (FSL) poses a considerable chal-
lenge since it aims to improve the model general-
ization ability with limited labeled data. Previous
works usually attempt to construct class-specific
prototypes and then predict novel classes using
these prototypes. However, the feature distribution
represented by the limited labeled data is coarse-
grained, leading to large information gap between
the labeled and unlabeled data as well as biases
in the prototypes. In this paper, we investigate
the correlation between sample quality and den-
sity, and propose a Density-driven Iterative Pro-
totype Optimization to acquire high-quality proto-
types, and further improve few-shot learning per-
formance. Specifically, the proposed method con-
sists of two optimization strategies. The similarity-
evaluating strategy is for capturing the information
gap between the labeled and unlabeled data by re-
shaping the feature manifold for the novel feature
distribution. The density-driven strategy is pro-
posed to iteratively refine the prototypes in the di-
rection of density growth. The proposed method
could reach or even exceed the state-of-the-art per-
formance on four benchmark datasets, including
miniImageNet, tieredImageNet, CUB, and CIFAR-
FS. The code will be available soon at https://
github.com/tailofcat/DIPO.

1 Introduction
Recently, the significance of employing powerful feature em-
bedding has been comprehensively investigated in FSL [Chen
et al., 2019; Dhillon et al., 2019; Chen et al., 2020; Tian et al.,
2020]. The initial step in most typical FSL methods is to pre-
train a feature extractor using the base classes. Then, for each
meta-testing task, the features extracted from all images in
the support set are utilized to construct a task-specific classi-
fier, facilitating the recognition of image categories within the
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Figure 1: Illustration of the feature distributions in the feature space.
The decision boundary is highly sensitive to the quality of the class-
specific prototypes, and it may be confused by the prototypes in the
lower-density regions (left). Refining the prototypes in the right di-
rection (green and blue arrows) of sample density growth improves
the decision boundary (right).

query set. Although a powerful feature extractor can acquire
a suitable feature space for clustering unseen data, the domain
shift between training and testing [Lichtenstein et al., 2020;
Tao et al., 2022], along with the information gap between
support and query [Liu et al., 2022; Dang et al., 2023], pose a
formidable challenge for estimating novel class distributions
using limited support data. Consequently, the classification
performance is directly influenced by the sample quality of
the class prototype. If the prototype lacks adequate recog-
nizable information to represent the entire class and contains
excessive intra-class diversity to be outlier data, then the con-
structed classifier may exhibit bias.

In our work, we investigate the correlation between sam-
ple quality and density, revealing that sample density plays
a crucial role. Intuitively speaking, the direction of sample
density growth can be considered the direction in which rec-
ognizable information aggregates. In higher-density regions,
samples are tightly clustered within a class, which indicates
the wealth of recognizable information (or the representative
pattern) contained in those regions. Conversely, samples are
sparsely observed in lower-density regions. The increased
intra-class distance in those regions suggests that the sam-
ples tend to be more diverse and have less recognizable in-
formation. In other words, the class-specific prototypes in
lower-density regions have a lower quality that may confuse
the classifier, as shown in Figure 1(left). Thus, to enhance the
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quality of the prototype, refining it in the direction of sample
density growth is necessary. However, only knowing limited
support data is inadequate for obtaining a reliable approx-
imation, the estimation of sample density within a class is
biased. To minimize the bias of empirical estimation, intro-
ducing query samples is the most straightforward way to ex-
pand the support set. Unfortunately, this may suffer because
of the potentially large information gap between support and
query, i.e., the non-estimable intra-class diversity of the novel
class, leading to the wrong direction of sample density growth
within a class, as shown in Figure 1(right).

Here, we propose a similarity-evaluating strategy to eval-
uate the information gap between support and query. The
similarity-evaluating strategy seeks the base classes for as-
sistance based on the insight: in the feature space, samples
from a novel class tend to cluster in a certain direction [Tao et
al., 2022], which may indicate that the novel class skewed to
that direction has a strong correlation with these base classes.
Besides, the covariance matrix contains the underlying distri-
bution information that can effectively assess the intra-class
diversity of samples from the same feature distribution [Li et
al., 2019; Gao et al., 2018]. Thus, we estimate the covariance
matrix of the novel class using the most similar k base classes
to the support data (with the closest angular similarity). By
normalizing the feature distribution of the novel class using
the covariance matrix, the similarity-evaluating strategy can
reshape the feature manifold, thus effectively evaluating the
information gap between support and query. In addition, we
propose a density-driven strategy to improve the quality of
the prototype in the direction of density growth. As the pro-
totype progressively gets closer to the region with the local
density maximum, the intra-class diversity of the class proto-
type declines and its representativeness rises.

The similarity-evaluating strategy and the density-driven
strategy constitute the Density-driven Iterative Prototype Op-
timization (DIPO) that we propose in this work. The DIPO
is generic, flexible, and can be applied agnostic to the pre-
trained feature extractor without any extra learnable param-
eters. By evaluating the information gap between labeled
and unlabeled samples and refining the quality of class pro-
totypes, DIPO can effectively enhance the decision boundary
of the nearest neighbor classifier. The main contributions of
our paper are as follows:

1. We introduce a novel prototype rectifying method by
refining the quality of the prototype in the direction of
sample density growth for FSL problem.

2. A similarity-evaluating strategy is proposed to adeptly
capture the intra-class diversity to evaluate the informa-
tion gap between labeled and unlabeled samples. Fur-
thermore, a density-driven strategy is proposed to iter-
atively refine the prototype in the direction of density
growth.

3. The proposed method could reach or even exceed
the state-of-the-art performance on four benchmark
datasets, including miniImageNet, tieredImageNet,
CUB, and CIFAR-FS.

2 Related Work
Recently, many FSL techniques can be broadly categorized
into three groups: optimization-based methods, metric-based
methods, and generation-based methods. The optimization-
based approaches, such as MAML [Finn et al., 2017] and
LEO [Rusu et al., 2019], concentrate on learning a set of
model parameters that allow for fast gradient updates of the
initial model for quick adaptation to new tasks. The metric-
based methods aim to encode data in a suitable feature em-
bedding space and predict them using distance-based clas-
sifiers, such as MatchingNet [Vinyals et al., 2016], Pro-
toNet [Snell et al., 2017], RelationNet [Sung et al., 2018], etc.
The generation-based methods aim to address data scarcity
by learning data generation strategies, including AFHN [Li et
al., 2020], Matchinggan [Hong et al., 2020], and DC [Yang
et al., 2021]. More recently, some works [Chen et al., 2019;
Dhillon et al., 2019; Chen et al., 2020; Tian et al., 2020] re-
veal the significance of employing powerful feature embed-
ding in FSL. This paradigm typically trains a general feature
extractor on base classes and then learns a class-specific clas-
sifier with the novel classes.

More recently, some studies have explored transductive in-
ference in FSL. Unlike the inductive setting, which can only
utilize labeled samples, the transductive setting can access all
the query data to restrict the hypothesis space for the novel
classes. Based on this observation, some methods have at-
tempted to learn high-quality prototypes in a transductive set-
ting. BD-CSPN [Liu et al., 2020b] is proposed for prototype
rectification by label propagation and feature shifting. Licht-
enstein [Lichtenstein et al., 2020] aims to utilize subspace
learning to extract discriminant features and then perform
classification with the prototypes. PT+MAP [Hu et al., 2021]
utilizes an optimal-transport-inspired algorithm to adjust the
class prototypes. MetaNODE [Zhang et al., 2022] employs
a meta-learning-based optimization framework to rectify pro-
totypes. protoLP [Zhu and Koniusz, 2023] improves proto-
type estimation through prototype-based label propagation.
Although these methods exhibit effectiveness to some extent,
they are also affected by the information gap [Liu et al., 2022]
between labeled and unlabeled samples, leading to bias in
prototype estimation. Different from them, our method aims
to diminish the damage caused by the potential information
gap and proposes a novel perspective for prototype estimation
in FSL by refining the quality of the prototype in the direction
of sample density growth.

3 Method
3.1 Problem Definition
We follow a common few-shot classification framework.
Given a dataset with data-label pairs {(xi, yi)} where xi ∈
Rd is the d-dimensional feature vector of a sample and yi ∈
C is the corresponding label. C represents the set of all
base classes Cb, validation classes Cv , and novel classes
Cn, where Cb ∩ Cv ∩ Cn = ∅ and Cb ∪ Cv ∪ Cn = C.
For the N-way K-shot task T , there are a support set S =

{(xi, yi)}N×K
i=1 and a query set Q = {(xi, yi)}N×q

i=1 , where
N is the number of classes within the task, and K and q are
the labeled support samples and unlabeled query samples per
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novel class, respectively. The novel class dataset Dnovel is
defined as Dnovel = S ∪ Q. Furthermore, there is a fully
annotated dataset comprising abundant labeled images from
base classes, designated as Dbase = {(xi, yi)}Bi=1, where B
denotes the total number of images within Dbase.

3.2 Similarity-Evaluating Strategy
Many transductive FSL methods focus on leveraging the la-
tent relationships between support and query samples, aiming
to maximize the utility of few-shot datasets. However, given
that a few labeled samples can solely represent the local fea-
ture distribution (especially in a 1-shot setting), the intra-class
diversity of the novel class is hard to estimate. Consequently,
these methods suffer from the information gap between sup-
port and query, i.e., the non-estimable intra-class diversity of
the novel class, which makes it difficult to model the latent re-
lationships between labeled and unlabeled samples. We pro-
pose an easy-plug-in similarity-evaluating strategy to effec-
tively capture the information gap between support and query.

Step 1: Seeking the relevant base classes. The similarity-
evaluating strategy is based on the insight that the domain
shift between the base and novel classes results in the skew-
ness of the novel class distribution in a certain direction [Tao
et al., 2022].This may indicate that the novel class skewed in
that direction has a strong correlation with these base classes.
Inspired by the insight, we employ a mechanism to transfer
the diversity of the relevant base classes, thereby quantifying
the non-estimable intra-class diversity inherent in the novel
class. Specifically, we first calculate the mean feature of each
novel class using the following formulation:

µj =
1

|Sj |
∑

(xi,yi)∈Sj

xi, (1)

where Sj denotes the subset of samples belonging to the
j-th novel class within the support set, expressed as S =
{S1, ...,SN}. The notation |Sj | signifies the count of sam-
ples contained within Sj , xi represents the feature vector cor-
responding to the sample i, and yi denotes the assigned label.

We then select the top k base classes based on the closest
angular similarity between the mean of the support features
and the mean of the features from base classes, as quantified
by the cosine distance:

Dj = {cos(µj , µ
b
i ) | i ∈ Cb},

Ij = {i | cos(µj , µ
b
i ) ∈ Topk(Dj)},

(2)

where µb
i is the mean of the features from base class i, the

notation cos(·, ·) represents the cosine distance, and Topk(·)
represents the operator for selecting k elements possessing
the highest values from Dj . Ij contains the most relevant k
base classes with respect to the mean feature µj .

Step 2: Making the distribution more Gaussian-like.
We assume that the features of each class follow a multivari-
ate Gaussian distribution, where the intra-class diversity can
be effectively embedded in a covariance matrix. To reduce the
domain shift as mentioned above and improve the consistency
of the feature distribution with the Gaussian distribution, we
transform the features in base and novel classes using Tukey’s

Algorithm 1 The prediction procedure of the proposed DIPO
for an N-way-K-shot task
Require: Dbase

Require: Dnovel = S ∪ Q
1: Select the most similar base classes for each novel class (Equa-

tion 1, 2).
2: Transform the features from Dbase and Dnovel with Tukey’s

Ladder of Power Transform (Equation 3).
3: Approximate the covariance matrix for each novel class (Equa-

tion 4, 5).
4: Calculate the initial prototype for each novel class (Equation 7).

5: for iter in {1, · · · , Niter} do
6: Select the most similar query neighbors to form the neigh-

borhood set for each novel class (Equation 8, 9).
7: Refine the initial prototype in the global direction of sample

density growth for each novel class (Equation 10, 11).
8: end for
9: Predict the labels of query samples via a nearest neighbor clas-

sifier (Equation 12).

Ladder of Power transform [Tukey, 1977]:

x̂i =

{
xβ
i , if β ̸= 0

log(xi), if β = 0
, (3)

where β denotes a hyperparameter utilized to fine-tune the
skewness of the feature distribution. Modifying the value of
β brings the distribution closer to a Gaussian-like distribution
and makes the intra-class diversity across different classes
more relevant. After the Tukey’s transformation, the sup-
port set and the query set in the novel classes are updated
to S = {(x̂i, yi)}N×K

i=1 and Q = {(x̂i, yi)}N×q
i=1 .

Step 3: Normalizing the feature distribution for the
novel class. We evaluate the information gap between sup-
port and query by normalizing the feature distribution for
each novel class. More precisely, we first approximate the
covariance matrix for each novel class using the weighted co-
variance of the relevant base classes. The weight factor is
expressed as follows:

wi =
cos(µj , µ

b
i )∑

k∈Ij cos(µj , µb
k)

, (4)

The approximated covariance of the novel class j is formu-
lated as:

Σj =
∑
i∈Ij

wiΣ
b
i ,

Σj = Σj + σ̄I,

(5)

where Σb
i is the corresponding covariance matrix of the

base class i after Tukey’s transformation, and σ̄ is the av-
erage diagonal variance of Σj , as the regularization term to
prevent Σj from being non-invertible. By this approxima-
tion, the covariance of the novel class j is more accurate and
stable than the covariance calculated using the support set.
With only a few labeled samples (especially in a 1-shot set-
ting), the covariance of the support set is unable to capture the
entire intra-class diversity of the novel class. Given the cor-
relation between the novel class and the relevant base classes,
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Figure 2: The process of the density-driven strategy for refining
the initial prototype at the n-th iteration. Given the prototype of
the novel class, the density-driven strategy consists of three steps:
1) identifying the lower-density region A using the high-confident
query neighbors; 2) determining the local direction of sample den-
sity growth (the blue arrow) by locating the center of higher-density
region B; 3) refining the initial prototype in the global direction of
sample density growth (the orange arrow).

extrapolating the intra-class diversity of the novel class from
the base classes is considered a more accurate alternative.

For a feature vector within a class, there are locations
encoding class-specific information and locations encoding
class-independent information, thus reflecting the intra-class
diversity. Values at class-specific locations tend to demon-
strate high correlations, playing a significant role in distin-
guishing the class. Conversely, values derived from class-
independent locations are similar among all samples, which
indicates redundant information and has little effect on clas-
sification. To emphasize the locations encoding class-specific
information and mitigate interference from the locations en-
coding class-independent information, we normalize the fea-
ture distribution for the novel class j as follows:

d(x̂i, x̂j) =

√
(x̂i − x̂j)TΣj

−1(x̂i − x̂j), (6)

where x̂i is the unlabeled feature after Tukey’s transforma-
tion corresponding to the sample i in the query set, x̂j is the
labeled feature after Tukey’s transformation corresponding to
the sample j in Sj , and Σj is the approximated covariance
matrix of the novel class j. And the information gap across
features under the same distribution is represented by the
d(·, ·), which is known as the Mahalanobis distance. Through
this normalization process, the feature manifold for the novel
feature distribution is reshaped to amplify the distinctions be-
tween features. This effectively evaluates the information gap
between features, thus facilitating the modeling of latent re-
lationships between support and query.

3.3 Density-Driven Strategy
The sample quality of the class-specific prototype has a di-
rect impact on the classification performance. We propose a
density-driven strategy to improve the quality of the proto-
type. The density-driven strategy is based on the insight: in
the feature space, there are higher-density regions and lower-
density regions. Samples from higher-density regions are

tightly clustered within a class to distinguish them well. Sam-
ples are sparsely observed in lower-density regions, which
indicates they have a lower quality to separate well between
classes. Therefore, the direction of sample density growth can
be seen as the direction in which recognizable information ag-
gregates. Consequently, we enhance the sample quality of the
prototype in the direction of density growth.

The overview of the proposed density-driven strategy is
shown in Figure 2, which consists of three steps at the n-
th iteration: 1) Given the prototype of the novel class, we
identify the lower-density region A for the novel class using
the high-confident query neighbors from the query set. 2) We
determine the local direction of sample density growth by lo-
cating the center of higher-density region B. 3) We refine
the initial prototype by the global direction of sample density
growth. As the initial prototype progressively gets closer to
the higher-density regions, the intra-class diversity of the pro-
totype declines and its representativeness rises. Specifically,
the initial class prototype for the novel class j is computed as
the mean of support features after Tukey’s transformation:

c
(0)
j =

1

|Sj |
∑

(x̂i,yi)∈Sj

x̂i, (7)

Unfortunately, with only a few samples, the prototype based
on the mean of the support features is prone to overfitting on
the support data and far from representing the whole novel
class. Subsequently, the prototype is iteratively re-estimated
in the manner described below:

Step 1: Seeking the query neighbors to identify the
lower-density region. To estimate the sample density
for novel class j around the prototype, we select some
high-confident pseudo-labeled neighbors from the query set.
Specifically, the confidence in classifying the query sample
x̂i into the novel class j at the n-th iteration is calculated as
follows:

Mij =
exp(−d(x̂i, c

(n)
j ))

ΣN
k=1 exp(−d(x̂i, c

(n)
k ))

, (8)

where c
(n)
j is the prototype of novel class j at the n-th it-

eration, and the d(·, ·) is the information gap between the
query sample x̂i and the prototype as formulated in Equa-
tion 6 in the similarity-evaluating strategy. As the similarity-
evaluating strategy adeptly captures the information gap be-
tween features, it enables the generation of pseudo-labels
with high quality. Subsequently, we select the top m(n)

pseudo-labeled query samples with the highest confidence for
each novel class, thereby constituting the neighborhood set as
follows:

Aj = {i | Mij ∈ Topm(M∗j)},
Nj = {x̂i | i ∈ Aj , x̂i ∈ Q}, (9)

where Topm(·) represents the operator for selecting m(n) el-
ements with the highest confidence from each column of the
matrix, and the hyperparameter m(n) denotes the total num-
ber of samples within the neighborhood set per novel class
at the n-th iteration. Q denotes the unlabeled query set af-
ter Tukey’s transformation. Aj contains the indices of the
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miniImageNet tieredImageNet

Method Transductive Backbone 1-shot 5-shot 1-shot 5-shot

MAML [Finn et al., 2017] ✗ ResNet-18 49.61 ± 0.92 65.72 ± 0.77 – –
RelationNet [Sung et al., 2018] ✗ ResNet-18 52.48 ± 0.86 69.83 ± 0.68 – –
MatchingNet [Vinyals et al., 2016] ✗ ResNet-18 52.91 ± 0.88 68.88 ± 0.69 – –
ProtoNet [Snell et al., 2017] ✗ ResNet-18 54.16 ± 0.82 73.68 ± 0.65 – –
TEAM [Qiao et al., 2019] ✓ ResNet-18 60.07 75.9 – –
Baseline [Chen et al., 2019]† ✗ ResNet-18 50.28 ± 0.18 74.74 ± 0.15 – –
Baseline + DIPO(ours) ✓ ResNet-18 71.85 ± 0.29 83.50 ± 0.16 – –

DPGN [Yang et al., 2020] ✓ ResNet-12 67.77 ± 0.32 84.60 ± 0.43 72.45 ± 0.51 87.24 ± 0.39
CAN+T [Hou et al., 2019] ✓ ResNet-12 67.19 ± 0.55 80.64 ± 0.35 73.21 ± 0.58 84.93 ± 0.38
MetaNODE [Zhang et al., 2022] ✓ ResNet-12 77.92 ± 0.99 85.13 ± 0.96 83.46 ± 0.92 88.46 ± 0.57
Inv-Equ [Rizve et al., 2021]† ✗ ResNet-12 67.37 ± 0.19 84.30 ± 0.13 72.07 ± 0.22 86.50 ± 0.15
Inv-Equ + DIPO(ours) ✓ ResNet-12 82.97 ± 0.25 90.13 ± 0.12 84.90 ± 0.25 90.30 ± 0.14
Transductive Fine-tuning [Dhillon et al., 2019] ✓ WRN-28-10 65.73 ± 0.68 78.40 ± 0.52 73.34 ± 0.71 85.50 ± 0.50
LaplacianShot [Ziko et al., 2020] ✓ WRN-28-10 74.86 ± 0.19 84.13 ± 0.14 80.18 ± 0.21 87.56 ± 0.15
BD-CSPN [Liu et al., 2020b] ✓ WRN-28-10 70.31 ± 0.93 81.89 ± 0.60 78.74 ± 0.95 86.92 ± 0.63
SIB [Hu et al., 2020] ✓ WRN-28-10 70.00 ± 0.60 79.20 ± 0.40 – –
Oblique Manifold [Qi et al., 2021] ✓ WRN-28-10 80.64 ± 0.34 89.39 ± 0.39 85.22 ± 0.34 91.35 ± 0.42
iLPC [Lazarou et al., 2021] ✓ WRN-28-10 83.05 ± 0.79 88.82 ± 0.42 88.50 ± 0.75 92.46 ± 0.42
noHub-S [Trosten et al., 2023] ✓ WRN-28-10 82.0 ± 0.26 88.03 ± 0.13 82.85 ± 0.27 88.31 ± 0.16
S2M2-R [Mangla et al., 2020]† ✗ WRN-28-10 65.15 ± 0.20 83.20 ± 0.13 72.89 ± 0.22 88.00 ± 0.14
S2M2-R + PT+MAP [Hu et al., 2021]† ✓ WRN-28-10 82.62 ± 0.24 88.82 ± 0.13 88.16 ± 0.22 92.14 ± 0.13
S2M2-R + EASE [Zhu and Koniusz, 2022] † ✓ WRN-28-10 82.97 ± 0.25 88.81 ± 0.13 88.60 ± 0.23 92.28 ± 0.13
S2M2-R + protoLP [Zhu and Koniusz, 2023]† ✓ WRN-28-10 82.92 ± 0.26 88.79 ± 0.13 88.50 ± 0.24 92.27 ± 0.14
S2M2-R + DIPO(ours) ✓ WRN-28-10 84.41 ± 0.24 90.70 ± 0.11 88.81 ± 0.23 93.07 ± 0.12

Table 1: The 5-way, 1-shot and 5-shot classification accuracy (%) on miniImageNet and tieredImageNet with 95% confidence intervals. ”†”
indicates that we have re-implemented the method in the same few-shot setting. The best results are highlighted in bold.

top m(n) high-confident query neighbors with respect to the
prototype c

(n)
j . Nj is the neighborhood set of novel class j,

which comprises the query samples corresponding to the in-
dices stored in Aj . The neighborhood set represents the lo-
cal neighborhood information of the prototype, which can be
used to describe the density. Thus, the lower-density region
A for novel class j is delineated by the prototype c(n)j and the
query neighbors within the neighborhood set Nj , as shown in
Figure 2(1).

Step 2: Determining the local direction of sample den-
sity growth. Inspired by the mean shift [Fukunaga and
Hostetler, 1975], we determine the local direction of sample
density growth by locating the center of the higher-density re-
gion. More precisely, the center of the higher-density region
B for novel class j at the n-th iteration is calculated as:

C
(n)
B =

1

m(n)

∑
x̂i∈Nj

x̂i, (10)

where Nj is the neighborhood set of novel class j, and m(n) is
the number of samples within the neighborhood set Nj . The
higher-density region B for novel class j is located by the
center C(n)

B and the query neighbors within the neighborhood
set Nj , as shown in Figure 2(2).

The direction from the center of the lower-density region
to the center of the higher-density region is the mean shift
vector, which always points towards the direction of the max-
imum increase in the density [Fukunaga and Hostetler, 1975].
Consequently, the direction from the prototype c

(n)
j to the

center C(n)
B can be interpreted as the local direction of density

growth.
Step 3: Refining the initial prototype in the global di-

rection of density growth. For a more stable and accurate
estimation, we refine the prototype by taking into account all

local directions of sample density growth from previous iter-
ations. Specifically, the refined prototype is formulated as:

c
(n+1)
j = (1− λ)c

(0)
j + λC

(n)
B , (11)

where c(0)j is the initial prototype of novel class j, C(n)
B is the

center of the higher-density region B for novel class j at the
n-th iteration, and λ = m(n)

|Sj |+m(n) . This indicates that as the

hyperparameter m(n) increases, the refined prototype gradu-
ally moves closer to C

(n)
B from c

(0)
j , which can be interpreted

as the global direction of sample density growth, as shown
in Figure 2(3). To avoid making risky decisions in the early
iterations and to obtain a more stable and accurate prototype,
we propose to slowly increase the number of query neighbors
m(n) during the iterations. For simplicity, we define a tuple
(m,Niter, step) to illustrate m(n) at each iteration, where m
indicates the number of query neighbors for the first iteration,
Niter denotes the number of iterations, and step represents
the incremental increase in m for each subsequent iteration
in the density-driven strategy. Therefore, the refined proto-
type c

(Niter)
j can be regarded as the final prototype of novel

class j.

3.4 Final Classification
We employ a nearest neighbor classifier as the task-specific
classifier for each meta-test task. Specifically, the confidence
of the query sample x̂i belonging to class j is estimated based
on the information gap between it and the prototype as fol-
lows:

P (yi = j|x̂i) =
exp(−d(x̂i, c

(Niter)
j )

ΣN
n=1 exp(−d(x̂i, c

(Niter)
n ))

, (12)

where c
(Niter)
j is the final prototype of class j obtained

through the density-driven strategy, and the information
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CUB CIFAR-FS

Method Transductive Backbone 1-shot 5-shot 1-shot 5-shot

MAML [Finn et al., 2017] ✗ ResNet-18 69.96 ± 1.01 82.70 ± 0.65 – –
RelationNet [Sung et al., 2018] ✗ ResNet-18 72.36 ± 0.90 83.64 ± 0.60 – –
MatchingNet [Vinyals et al., 2016] ✗ ResNet-18 67.59 ± 1.02 82.75 ± 0.58 – –
ProtoNet [Snell et al., 2017] ✗ ResNet-18 71.88 ± 0.91 87.42 ± 0.48 – –
Negative-Cosine [Liu et al., 2020a] ✗ ResNet-18 72.66 ± 0.85 89.40 ± 0.43 – –
LaplacianShot [Ziko et al., 2020] ✓ ResNet-18 80.96 88.68 – –
Baseline [Chen et al., 2019]† ✗ ResNet-18 59.96 ± 0.21 81.95 ± 0.13 – –
Baseline + DIPO(ours) ✓ ResNet-18 85.37 ± 0.24 91.30 ± 0.10 – –

DPGN [Yang et al., 2020] ✓ ResNet-12 75.71 ± 0.47 91.48 ± 0.33 77.90 ± 0.50 90.20 ± 0.40
ECKPN [Chen et al., 2021] ✓ ResNet-12 77.43 ± 0.54 92.21 ± 0.41 79.20 ± 0.40 91.00 ± 0.50
Inv-Equ [Rizve et al., 2021]† ✗ ResNet-12 – – 77.69 ± 0.21 89.44 ± 0.14
Inv-Equ + DIPO(ours) ✓ ResNet-12 – – 88.37 ± 0.22 91.94 ± 0.15
Transductive Fine-tuning [Dhillon et al., 2019] ✓ WRN-28-10 – – 76.58 ± 0.68 85.79 ± 0.50
BD-CSPN [Liu et al., 2020b] ✓ WRN-28-10 87.45 91.74 – –
iLPC [Lazarou et al., 2021] ✓ WRN-28-10 91.03 ± 0.63 94.11 ± 0.30 86.51 ± 0.75 90.60 ± 0.48
SIB [Hu et al., 2020] ✓ WRN-28-10 – – 80.00 ± 0.60 85.30 ± 0.40
S2M2-R [Mangla et al., 2020]† ✗ WRN-28-10 80.32 ± 0.20 90.86 ± 0.11 74.66 ± 0.21 87.65 ± 0.15
S2M2-R + PT+MAP [Hu et al., 2021]† ✓ WRN-28-10 91.56 ± 0.18 94.09 ± 0.09 87.36 ± 0.23 90.71 ± 0.16
S2M2-R + protoLP [Zhu and Koniusz, 2023]† ✓ WRN-28-10 91.67 ± 0.19 94.07 ± 0.10 87.46 ± 0.24 90.53 ± 0.16
S2M2-R + DIPO(ours) ✓ WRN-28-10 92.52 ± 0.18 94.97 ± 0.08 86.66 ± 0.23 90.77 ± 0.15

Table 2: The 5-way, 1-shot and 5-shot classification accuracy (%) on CUB and CIFAR-FS with 95% confidence intervals. ”†” indicates that
we have re-implemented the method in the same few-shot setting. The best results are highlighted in bold.

gap d(·, ·) is evaluated using Equation 6 in the similarity-
evaluating strategy. Algorithm 1 shows the prediction pro-
cedure of the proposed DIPO.

4 Experiments
4.1 Experimental Setup
Datasets. We evaluate our approach on four representative
few-shot classification benchmarks, including miniImageNet,
tieredImageNet, CIFAR-FS, and CUB. miniImageNet con-
stitutes a subset of ImageNet [Russakovsky et al., 2014].
Following the previous work [Ravi and Larochelle, 2017],
the dataset is categorized into 64 base classes, 16 validation
classes, and 20 novel classes. tieredImageNet represents
a more extensive subset of ImageNet [Russakovsky et al.,
2014], featuring 608 classes derived from a hierarchical cate-
gory structure. Consistent with the previous work [Ren et al.,
2018], the dataset is partitioned into 351 base classes, 97 val-
idation classes, and 160 novel classes. CUB is a fine-grained
dataset that encompasses 200 distinct bird classes. Follow-
ing [Welinder et al., 2010], we divide the dataset into 100
base classes, 50 validation classes, and 50 novel classes. Fol-
lowing [Bertinetto et al., 2018], CIFAR-FS is split into 64
base classes, 16 validation classes, and 20 novel classes.

Implementation Details. For the feature extractor, we em-
ploy the ResNet-18 [Chen et al., 2019], ResNet-12 [Rizve et
al., 2021] and WRN-28-10 [Mangla et al., 2020] to show the
effectiveness of our method. Note that the features are ex-
tracted from the penultimate layer (with a ReLU activation
function) of the feature extractor, ensuring that all values are
non-negative to maintain the validity of Tukey’s transforma-
tion in Equation 3. For the task-specific classifier, we employ
a nearest neighbor classifier to establish the effective deci-
sion boundaries for the novel classes. The hyperparameters
of the proposed method contain the number of relevant base
classes k, the power of Tukey’s transformation β, and the tu-
ple (m,Niter, step), where m is the number of query neigh-
bors for each novel class at the first iteration, Niter is the
number of iterations, and step is the incremental increase in

m for each subsequent iteration. More detailed information
on the hyperparameter settings and the hyperparameter tun-
ing is presented in the supplementary material. We follow
the 5-way 1-shot and 5-way 5-shot settings and use the top-1
accuracy as the evaluation metric to evaluate the performance
of our method. Unless otherwise specified, there are 15 query
samples per class in each task. The reported results represent
the average accuracy (%) along with the 95% confidence in-
terval, computed over 10,000 tasks randomly selected from
the novel classes.

4.2 Experimental Results
Few-shot image classification. We compare the proposed
DIPO with state-of-the-art methods in the 5-way 1-shot
and 5-way 5-shot settings. Table 1 shows the results on
miniImageNet and tieredImageNet, and Table 2 shows the
results on CUB and CIFAR-FS. Our DIPO is insensitive to
feature extractors, and we employ the algorithms proposed in
Baseline [Chen et al., 2019], Inv-Equ [Rizve et al., 2021], and
S2M2-R[Mangla et al., 2020] to obtain the pre-trained feature
extractor to show the effectiveness of our method. Compared
to the baseline models [Chen et al., 2019; Rizve et al., 2021;
Mangla et al., 2020], our method exhibits an average im-
provement of nearly 16% in the 1-shot task and nearly 6%
in the 5-shot task. Among the state-of-the-art methods, BD-
CSPN, SIB, MetaNODE, PT+MAP, and protoLP are our
strong competitors since they also focus on learning high-
quality prototypes for the novel classes. Compared to the
competitors, we can observe that the DIPO achieves consis-
tent improvements on different datasets. And the improve-
ments are larger in the 1-shot task than the 5-shot task since
the prototype is more biased in the 1-shot setting. This fur-
ther illustrates the effectiveness of our approach in refining
the prototypes. From these experiments, we can conclude that
our proposed DIPO could reach or exceed the state-of-the-art
methods under the 5-way 1-shot and 5-way 5-shot settings of
miniImageNet, tieredImageNet, CIFAR-FS, and CUB.

Cross-domain (miniImageNet → CUB). Cross-domain is
a challenging scenario in few-shot classification due to the
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miniImagenet → CUB

Method Transductive backbone 5-way 5-shot

MAML [Finn et al., 2017] ✗ ResNet-18 51.34 ± 0.72
RelationNet [Sung et al., 2018] ✗ ResNet-18 57.71 ± 0.73
MatchingNet [Vinyals et al., 2016] ✗ ResNet-18 53.07 ± 0.74
ProtoNet [Snell et al., 2017] ✗ ResNet-18 62.02 ± 0.70
Baseline [Chen et al., 2019] ✗ ResNet-18 65.57 ± 0.70
Baseline++ [Chen et al., 2019] ✗ ResNet-18 62.04 ± 0.76
SimpleShot [Wang et al., 2019] ✗ ResNet-18 65.63
Negative-Cosine [Liu et al., 2020a] ✗ ResNet-18 67.03 ± 0.76
S2M2-R [Mangla et al., 2020] ✗ ResNet-18 70.44 ± 0.75
LaplacianShot [Ziko et al., 2020] ✓ ResNet-18 66.33
TDO [Liu et al., 2023] ✓ ResNet-18 68.82 ± 0.75
TIM [Boudiaf et al., 2020] ✓ ResNet-18 71.00
Oblique Manifold [Qi et al., 2021] ✓ ResNet-18 74.11

DIPO (ours) ✓ ResNet-18 77.48 ± 0.19

Table 3: The 5-way 5-shot accuracy (%) for cross-domain on
miniImageNet → CUB. The best results are highlighted in bold.

large domain shift between the base and novel domains. To
show the effectiveness of our method in the cross-domain
scenario, we conduct the tests on miniImageNet → CUB. In
particular, we follow the steps to train ResNet-18 described
by [Chen et al., 2019], where the base classes are drawn
from miniImageNet, and the novel classes are drawn from
CUB. Table 3 shows the 5-way 5-shot results achieved us-
ing ResNet-18 as the feature extractor for a fair comparison.
These results show that the proposed DIPO outperforms oth-
ers by about 3% margins. Our method employs a mechanism
to transfer the diversity of the top k relevant base classes to
facilitate the recognition of novel classes. By selecting the
number of relevant base classes k, it is adept at handling sce-
narios where the base and novel domains exhibit differences.

The class-unbalanced setting [Veilleux et al., 2021] is pre-
sented in the supplementary material.

4.3 Ablation Study
We conduct the comparison experiments to show the effec-
tiveness of the similarity-evaluating strategy and the density-
driven strategy proposed in our DIPO. Since the similarity-
evaluating strategy employs the Mahalanobis distance to
measure the information gap between the labeled and unla-
beled samples, we compare it with the cosine distance and
Euclidean distance for better illustration. Results are pre-
sented in Table 4. The application of the density-driven
strategy results in improvement gains of 14.16%, 12.92%,
and 24.10% for the cosine distance, Euclidean distance, and
similarity-evaluating strategy, respectively, in the 5-way 1-
shot task. Since the density-driven strategy utilizes the query
samples for transductive inference, it can derive a more ac-
curate prototype than the initial prototype obtained solely
from support samples. The first three rows and the last three
rows in Table 4 compare the cosine distance, Euclidean dis-
tance, and similarity-evaluating strategy without and with
the density-driven strategy, respectively. The similarity-
evaluating strategy can adeptly capture the information gap
between features compared to the other two distance metrics:
1) it amplifies the bias in the initial prototype, resulting in
lower performance as shown in the first three rows; 2) it con-
tributes to a greater improvement based on the higher-quality
prototype as shown in the last three rows. The comparison
results further demonstrate the effectiveness of our method.

miniImageNet

cosine Euclidean SES DDS 5-way 1-shot 5-way 5-shot

✓ 63.12 ± 0.20 83.91 ± 0.13
✓ 62.81 ± 0.20 82.13 ± 0.14

✓ 60.31 ± 0.21 80.81 ± 0.15
✓ ✓ 77.28 ± 0.26 86.71 ± 0.14

✓ ✓ 75.73 ± 0.27 84.64 ± 0.15
✓ ✓ 84.41 ± 0.24 90.70 ± 0.11

Table 4: The ablation study for both the 5-way 1-shot and 5-way 5-
shot settings on miniImageNet with backbone WRN-28-10. cosine
or Euclidean: cosine or Euclidean distance, the distance metric of
labeled and unlabeled samples instead of the Mahalanobis distance
in Equation 6 in the similarity-evaluating strategy. SES: similarity-
evaluating strategy, without which we do not calculate the informa-
tion gap using the the Mahalanobis distance. DDS: density-driven
strategy, without which we just calculate the initial prototypes using
support samples to be the final prototypes.

Figure 3: The t-SNE visualization of DIPO on a 5-way 1-shot
task sampled from miniImageNet. Different colors mean different
classes. ”⋆” means the initial prototypes, ”o” means query sam-
ples, ”+” means the refined prototypes at different iterations, and
”∆” means the final prototypes.

4.4 Visualization of DIPO
We visualize the prototypes refined by our DIPO for a 5-way
1-shot task on miniImageNet by means of t-SNE [van der
Maaten and Hinton, 2008], as shown in Figure 3. Note that
the initial prototype is the support sample since there is only
one support sample in each novel class. It can be seen that
the initial prototypes are biased and far away from the class
centers. By refining the prototypes in the direction of density
growth, the prototypes progressively get closer to the class
centers. This indicates that our DIPO effectively learns high-
quality prototypes.

5 Conclusion
In this paper, we investigate the correlation between sam-
ple quality and density and propose a Density-driven Itera-
tive Prototype Optimization (DIPO) to improve the quality of
the prototypes. We show that the proposed method brings
consistent performance improvements over multiple base-
lines and could reach or exceed the state-of-the-art perfor-
mance on four benchmark datasets, including miniImageNet,
tieredImageNet, CUB, and CIFAR-FS. The visualization of
the refined prototypes by DIPO shows that our method can
effectively learn high-quality prototypes.
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