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Abstract
Self-supervised learning (SSL) provides a promis-
ing alternative for representation learning on hy-
pergraphs without costly labels. However, existing
hypergraph SSL models are mostly based on con-
trastive methods with the instance-level discrimi-
nation strategy, suffering from two significant lim-
itations: (1) They select negative samples arbitrar-
ily, which is unreliable in deciding similar and dis-
similar pairs, causing training bias. (2) They of-
ten require a large number of negative samples, re-
sulting in expensive computational costs. To ad-
dress the above issues, we propose SE-HSSL, a
hypergraph SSL framework with three sampling-
efficient self-supervised signals. Specifically, we
introduce two sampling-free objectives leveraging
the canonical correlation analysis as the node-level
and group-level self-supervised signals. Addition-
ally, we develop a novel hierarchical membership-
level contrast objective motivated by the cascad-
ing overlap relationship in hypergraphs, which can
further reduce membership sampling bias and im-
prove the efficiency of sample utilization. Through
comprehensive experiments on 7 real-world hyper-
graphs, we demonstrate the superiority of our ap-
proach over the state-of-the-art method in terms of
both effectiveness and efficiency.

1 Introduction
The hypergraph, where each hyperedge can connect any num-
ber of nodes, is a generalization data structure of the sim-
ple pairwise graph. It provides a natural and expressive way
to model complex high-order relationships among entities
in diverse real-world applications such as recommender sys-
tems [Xia et al., 2022b], computer vision [Yu et al., 2012],
and neuroscience [Xiao et al., 2019].

In recent years, hypergraph representation learning has
attracted increasing attention from both academia and in-
dustry to deal with hypergraph data [Yi and Park, 2020;
Jia et al., 2021; Antelmi et al., 2023]. Hypergraph neural net-
works (HGNNs) have become a popular tool in this domain,
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demonstrating remarkable effectiveness [Feng et al., 2019;
Chien et al., 2021]. However, task-specific labels can be ex-
tremely scarce in hypergraph datasets [Wei et al., 2022], and
deep models are prone to overfitting when trained with sparse
supervised signals [Thakoor et al., 2021]. Therefore, it is
crucial yet challenging to explore self-supervised learning for
HGNNs, where only limited or even no labels are needed.

Current hypergraph SSL models are mostly contrastive-
based, which aim to maximize the agreement between two
augmented views derived from the original hypergraph. Pre-
vious studies, such as HCCF [Xia et al., 2022a] and S2-
HHGR [Zhang et al., 2021b], employ contrastive strategies
to mitigate label scarcity in hypergraph-based recommender
systems, but they are not general methods designed for hy-
pergraph contrastive learning (HCL). HyperGCL [Wei et al.,
2022], as the first comprehensive hypergraph SSL method,
focuses on generating augmented views that better preserve
high-order relations compared to fabricated augmentations.
TriCL [Lee and Shin, 2023] proposes tri-directional contrast
objectives in hypergraphs to capture multi-view structural in-
formation, achieving state-of-the-art performance.

Nevertheless, existing contrastive-based approaches suffer
from two limitations: (1) They employ the instance-level dis-
crimination strategy, that is, pulling together the representa-
tion of the same node/hyperedge in the two augmented hy-
pergraphs while pushing apart every other node/hyperedge
pairs. However, this approach is unreliable for determining
similar/dissimilar pairs. For example, consider a co-author
hypergraph, papers (nodes) published by the same author
(hyperedge) are more likely to have similar topics. Authors
who co-publish (overlap) a significant number of papers may
share similar research interests. Treating them as negative
pairs arbitrarily would introduce training bias, resulting in
less discriminative representations. (2) They require a large
number of negative pairs to achieve the best performance.
However, generating a large number of negative pairs of-
ten comes with prohibitive computational costs, particularly
for large hypergraphs. In TriCL, in addition to node-level
and group-level contrast, it introduces membership-level con-
trast to maximize the agreements between each group (hy-
peredge) and its members (nodes) in two augmented views.
Although this signal has been proven to be highly effective,
it requires a large number of node-hyperedge negative pairs
to achieve the SOTA performance, leading to a complexity
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of O(|V| × |E|) in scoring function computation, where V
and E denote the number of nodes and hyperedges, respec-
tively. This would greatly limit the training speed. More-
over, it also follows the instance-level contrast strategy when
handling positive/negative membership pairs, which can in-
troduce the training bias mentioned above.

To address the above issues, we introduce SE-HSSL, a
sampling-efficient framework for hypergraph self-supervised
learning. Specifically, it first employs an HGNN to encode
the original hypergraph and two augmented views, generat-
ing multi-view node and hyperedge representations. Then, to
capture high-order relations in hypergraphs and reduce sam-
pling bias caused by previous contrastive-based methods, we
propose tri-directional sampling-efficient self-supervised sig-
nals. For node-level and group-level learning, we design two
optimization objectives based on the idea of canonical corre-
lation analysis (CCA) [Andrew et al., 2013]. These two sig-
nals allow the model to maximize the agreement between two
augmented views without reliance on any negative sample.
Furthermore, instead of relying on instance-level member-
ship discrimination, which focuses on distinguishing between
“real” and “fake” node-hyperedge memberships, we present
a novel hierarchical membership-level contrast signal based
on the overlap structure within hypergraphs. This design ef-
fectively addresses sampling bias in membership-level learn-
ing and substantially reduces the number of negative pairs,
leading to improved effectiveness and efficiency. Finally, the
model jointly optimizes the three objectives, facilitating com-
prehensive representation learning in hypergraphs. Our main
contributions are summarized as follows:

• We propose SE-HSSL, a hypergraph self-supervised
learning method that can address training bias and sam-
pling inefficiency challenges in existing HCL methods.

• In our HSSL framework, we introduce sampling-free
CCA-based node- and group-level objectives to reduce
training bias and generate more discriminative represen-
tations. Furthermore, our novel hierarchical member-
ship contrast signal can effectively preserve membership
relations with only a few sampled node-hyperedge pairs.

• We conduct a comprehensive evaluation of SE-HSSL on
7 real-world datasets. The experimental results demon-
strate its superiority over strong baselines across various
benchmark downstream tasks. The efficiency test shows
that it can achieve at least 2x speedup during training
compared to the state-of-the-art on most datasets.

2 Preliminary
Notations. Let H(V , E) represent a hypergraph with vertex
set V = {vi}|V|

i=1 and hyperedge set E = {ej}|E|j=1. X ∈ R|V|×F

denotes the F dimensional node feature matrix. As each hy-
peredge e ∈ E is a subset of V , we denote |e| as the size
of e. Each hyperedge ej is associated with a positive num-
ber wj as hyperedge weight, and all the weights formulate
a diagonal matrix W ∈ R|E|×|E|. The hypergraph structure
can be represented by an incidence matrix H ∈ R|V|×|E|,
where each entry hij = 1 if vi ∈ ej and hij = 0 otherwise.
We represent the degree of vertices using the diagonal matrix

Dv ∈ R|V|×|V|, where each entry is d(vi) =
∑

ej∈E wj · hij .
The degree of hyperedges is denoted by the diagonal matrix
De ∈ R|E|×|E|, with each element δ(ej) =

∑
vi∈ej

hij rep-
resenting the number of nodes connected by ej .

Hypergraph Neural Networks (HGNNs). HGNNs apply
a two-stage neighborhood aggregation scheme to learn hyper-
graph representations. This entails updating the hyperedge
representation by aggregating representations of its incident
nodes, and updating the node representation by propagating
information from representations of its incident hyperedges:

z
(l)
e,j = f

(l)
V→E(z

(l−1)
e,j , {z(l−1)

v,k |vk ∈ ej})

z
(l)
v,i = f

(l)
E→V(z

(l−1)
v,i , {z(l)e,k|vi ∈ ek})

(1)

where z(l)e,j , z
(l)
v,i are embeddings of ej and vi at layer l, respec-

tively. f
(l)
V→E and f

(l)
E→V are two permutation-invariant func-

tions which aggregates information from nodes and hyper-
edges, respectively, at the l-th layer. Recent works have pro-
posed different f (l)

V→E and f
(l)
E→V , leading to multiple HGNN

variants [Kim et al., 2020; Chien et al., 2021].

Deep Canonical Correlation Analysis (DCCA). CCA is
a classical multivariate analysis method designed to identify
the linear combinations of variables from each set that are
maximally correlated with each other. Recent research has
explored the application of CCA in multi-view learning by
leveraging deep neural networks instead of linear transfor-
mations [Andrew et al., 2013; Jing et al., 2014]. This tech-
nique helps capture complex and nonlinear relationships that
are commonly shared between two sets of multidimensional
vectors. Assuming X1 and X2 are input data from two views,
the DCCA optimization objective can be formulated as:

min
θ1,θ2

LC(fθ1(X1), fθ2(X2))

+ λ(LD(fθ1(X1)) + LD(fθ2(X2)))
(2)

where fθ1 , fθ2 are two neural networks, and λ is a Lagrangian
multiplier. LC is the invariance term that measures the cor-
relation between the two views, while LD is the feature-
level decorrelation term. Following the popular setting in soft
CCA [Chang et al., 2018], LD computes the L1 distance be-
tween fθi(Xi) and identity matrix, for i = 1, 2.

Problem statement. Given a hypergraph H(H,X), our
objective is to train an optimal hypergraph encoder fθ :
(H,X) → (Zv,Ze) in an unsupervised manner. This en-
coder maps the node and hyperedge to low-dimensional em-
beddings, which can be beneficial for various downstream
tasks, such as node classification and node clustering.

3 Methodology
In this section, we introduce our proposed Hypergraph SSL
framework. We begin by briefly presenting an overview of
SE-HSSL. Then, we bring forward the details of its three
modules. Finally, we describe the joint optimization strategy.
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Figure 1: The architecture of the hypergraph self-supervised learning framework SE-HSSL.

3.1 Overview
As illustrated in Figure 1, our hypergraph SSL architecture
consists of the following three major components: hyper-
graph augmentation, hypergraph encoding, and optimization
for self-supervised signals. Initially, the given input hyper-
graph H(H,X) undergoes data augmentation to obtain two
correlated views H̃1(H̃1, X̃1) and H̃2(H̃2, X̃2). Next, we
utilize a shared HGNN encoder fθ to generate node and hy-
peredge representations for the original hypergraph H and
the two augmented views, H̃1 and H̃2. While most existing
HSSL approaches apply instance-level contrast signals that
could lead to sampling bias and heavy computation burden,
in this paper, we construct three novel sampling-efficient self-
supervised signals: a node-level CCA objective, a group-level
CCA objective, and a hierarchical membership-level contrast
objective. Lastly, we jointly optimize the loss function of
these signals, denoted as LN ,LG, and LHM , respectively.

3.2 Hypergraph Augmentation
We consider two manually designed hypergraph augmenta-
tion strategies: node feature masking and membership mask-
ing. In node feature masking, we first sample a random vector
m̃ ∈ {0, 1}F , where each dimension is independently drawn
from a Bernoulli distribution, i.e., m̃j ∼ B(1 − pf ), ∀i. The
augmented feature matrix X̃ is then computed as follows:

X̃ = [x1 ⊙ m̃;x2 ⊙ m̃, ..., x|V| ⊙ m̃]T (3)

where ⊙ denotes the element-wise multiplication and [·; ·]
is the concatenate operator. Regarding membership mask-
ing, we aim to disrupt high-order relations in hypergraphs
by randomly kicking out vertices from hyperedges. We con-
struct a masking matrix M ∈ {0, 1}|V|×|E| where each entry
mij ∼ B(1 − pm). The membership masking augmentation
on hypergraph topology can be formulated as:

H̃ = M⊙H (4)

pf and pm denote drop probability for node features and
node-hyperedge membership links, respectively.

3.3 Hypergraph Encoder
Following the classic hypergraph message passing scheme,
we take the HGNN with the element-wise mean pooling layer
as our hypergraph encoder. Formally, the l-th layer of HGNN
can be represented as:

Z
(l)
E = ϕ(D−1

e HTZ
(l−1)
V Θ

(l)
E )

Z
(l)
V = ϕ(D−1

v HWZ
(l)
E Θ

(l)
V )

(5)

where Z
(l)
E ∈ R|V|×D,Z

(l)
V ∈ R|E|×D are hyperedge and

node representations at the l-th layer. D is the embedding
dimensionality. Θ

(l)
E and Θ

(l)
V denote trainable parameters

for f
(l)
V→E and f

(l)
E→V , respectively. ϕ(·) represents PReLU

nonlinear activation function. W is initialized as an identity
matrix, which means equal weights for all hyperedges.

3.4 Self-supervised Signal Construction
To address the issues of training bias and heavy computation
burden caused by arbitrary negative sampling, we propose tri-
directional sampling-efficient self-supervised signals.

Node-level CCA objective. Most contrastive methods rely
on negative pairs to avoid degenerated solutions in feature
space [Zhang et al., 2021a], that is, different dimensions are
highly correlated and can capture the same information, mak-
ing learned representations less discriminative. Following the
DCCA, we can maximize the agreement of two augmented
views with the invariance term and prevent degenerated so-
lutions with the feature-level decorrelation term. In this way,
we are not required to select negative pairs arbitrarily, thereby
reducing sampling bias. Specifically, we first normalize node
embedding matrix ZV along instance dimension so that each
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feature dimension follows a distribution with 0-mean and
1√
|V|

-standard deviation:

ẐV =
ZV − µ(ZV)

σ(ZV)×
√
|V|

(6)

where µ(·), σ(·) denote computing mean value and standard
deviation for each feature dimension, respectively. Next, with
normalized matrices Ẑ1,V and Ẑ2,V for two augmented views,
we construct node-level CCA loss LN which consists of an
invariance term Linv

N and a decorrelation term Ldec
N as:

Linv
N =

∣∣∣∣Ẑ1,V − Ẑ2,V
∣∣∣∣2
F

(7)

Ldec
N =

∣∣∣∣ẐT
1,V Ẑ1,V − I

∣∣∣∣2
F
+
∣∣∣∣ẐT

2,V Ẑ2,V − I
∣∣∣∣2
F

(8)

LN = Linv
N + λNLdec

N (9)
where I ∈ RD×D is the indentity matrix and λN represents
a non-negative weight.

∣∣∣∣ · ∣∣∣∣2
F

denote the square of Frobe-
nius norm. Linv

N preserves the node-wise invariant informa-
tion while Ldec

N can prevent dimension collapse [Hua et al.,
2021], leading to more discriminative representations.
Group-level CCA objective. Group-level SSL signal aims
to distinguish the representations of the same hyperedge in
the two augmented views from other hyperedge representa-
tions, which helps the model preserve group-wise informa-
tion in the hypergraph. Similar to the node-wise SSL signal,
we can formulate the CCA loss in group-wise relation as:

Linv
G =

∣∣∣∣Ẑ1,E − Ẑ2,E
∣∣∣∣2
F

(10)

Ldec
G =

∣∣∣∣ẐT
1,E Ẑ1,E − I

∣∣∣∣2
F
+
∣∣∣∣ẐT

2,E Ẑ2,E − I
∣∣∣∣2
F

(11)

LG = Linv
G + λGLdec

G (12)

where Ẑ1,E and Ẑ2,E are normalized hypergraph embedding
matrices from two augmented views. λG is the non-negative
coefficient for the decorrelation term. LG,Linv

G ,Ldec
G rep-

resent group-wise SSL loss, group-wise invariant term, and
group-wise decorrelation term, respectively.
Hierarchical membership-level contrast. Membership-
level contrast aims to differentiate a “real” node-hyperedge
membership from a “fake” one across the two augmented
views initially. In this work, we only sample and contrast
membership pairs from the original view as shown in Fig-
ure 1. This can avoid bias caused by random augmentation.
Following the instance-level discrimination in the previous
work, each anchor node vi and one of its incident hyperedge
ej would form a positive pair and all (vi, ek) where vi /∈ ek
are considered as negative pairs with the same status. How-
ever, this kind of contrast strategy may result in learning bias.
For instance, consider the hypergraph in Figure 2(a) as a co-
author network, where v1 ∈ e1, but v1 /∈ e3. We can ob-
serve a close collaboration relationship (significant overlap)
between authors e1 and e3, indicating shared research inter-
ests. Although paper v1 has a stronger correlation with in-
cident author e1, its content may also be similar to works of
neighborhood author e3. This membership-level similarity
strength can be easily extended to a broader neighborhood

Figure 2: Hierachical membership relation

through cascading overlap, leading to a hierarchical member-
ship structure. Based on this insight, we formally introduce
two concepts: membership hop and k-hop membership set.

Definition 1. (membership hop) Given a hypergraph
H(V , E), we connect each vertex with other vertices at the
same hyperedge to form a clique expansion graph. For each
vi ∈ V and ej ∈ E , the membership hop is defined as:

Mhop(vi, ej) = max{hop(vi, vk)|vk ∈ ej}

where hop(vi, vk) denotes the hop number between vi and vk
in the expansion graph. In particular, if ej is not reachable
from vi, Mhop(vi, ej) = ∞.

Definition 2. (k-hop membership set) Given a hypergraph
H(V , E), for each vi ∈ V , the vi’s k-hop membership set is:

Mk(vi) = {ej |Mhop(vi, ej) = k}

This hierarchical membership relation has been illustrated
in Figure 2. To describe it as a self-supervised signal during
training, in k-th membership hop, we consider each Mk(vi)
as the positive set Pk while Mk+1(vi) as the negative set Nk.
Inspired by MIL-NCE [Miech et al., 2020] which can handle
multiple positive samples, we design a loss function in k-th
membership hop for vi as:

Lk(vi) = −log

∑
ep∈Pk

eD(vi,ep)/τ∑
ep∈Pk

eD(vi,ep)/τ +
∑

eq∈Nk
eD(vi,eq)/τ

(13)
where D(v, e) represents a trainable discriminator that predict
the similarity score between v and e. we implement it using
a bilinear function, as described in [Lee and Shin, 2023]. τ
denotes the temperature parameter. In this way, our objective
can be interpreted as hyperedges in Mk(vi) is overall more
similar with vi than those in Mk+1(vi). This multi-positive
setting can enhance model robustness to noisy positive sam-
ples. Then, it is natural to enumerate this objective in dif-
ferent membership ranges, formulating our final hierarchical
membership loss LHM as:

LHM = −
∑
vi∈V

1

K

K∑
k=1

log
[
min{e−Lk(vi), α}

]
(14)

where α ∈ (0, 1) is the secure threshold to avoid over-
pushing two neighboring membership hops. K is a hyperpa-
rameter that denotes the chosen membership range. However,
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using all the samples in different membership sets is compu-
tationally prohibitive for large hypergraphs. To deal with this,
we uniformly sample a fixed number of d hyperedges in each
Mk(vi) in implementation. The experiments in Section 4
show that only a small sample number can make SE-HSSL
achieve superior performance than the state-of-the-art.

We consider the frequency of calculating similarity func-
tion D(v, e) when evaluating the time complexity in mem-
bership contrast. The current state-of-the-art method TriCL
requires a complexity of up to O(|V|× |E|), whereas the time
complexity of SE-HSSL is O(|V|Kd).

3.5 Model Optimization
To preserve multi-view structural information during self-
supervised hypergraph representation learning, we combine
tri-directional signals and jointly optimize the node-level
CCA loss LN , group-level CCA loss LG, and hierarchical
membership-level contrast loss LHM as:

L = LN + λ1LG + λ2LHM + λ3||Θ||2 (15)

where λ1, λ2, λ3 are hyperparameters to control the strengths
of group-level loss, membership-level loss, and L2 regular-
ization respectively. Θ = {ΘE ,ΘV} represents the learnable
parameters in hypergraph encoder.

4 Experiment
In this section, We first briefly introduce the experimental se-
tups. Subsequently, we conduct extensive experiments to val-
idate the effectiveness and efficiency of our model.

4.1 Experimental Setups
Datasets. We empirically evaluate the model performance
on 7 commonly used hypergraph benchmark datasets, whose
details are shown in Table 1.
Baselines. To comprehensively validate our method, we
compare it against 11 strong baselines, including 4 semi-
supervised models (i.e., HGNN [Feng et al., 2019], Hy-
perGCN [Yadati et al., 2019], UniGIN [Cai et al., 2022]),
and AllSet [Chien et al., 2021], 5 common graph based
self-supervised methods (i.e., DGI [Veličković et al., 2018],
GRACE [Zhu et al., 2020], BGRL [Thakoor et al., 2021],
CCA-SSG [Zhang et al., 2021a], and COSTA [Zhang et al.,
2022]), and 2 hypergraph contrastive learning methods (i.e.,
HyperGCL [Wei et al., 2022] and the current SOTA method
TriCL [Lee and Shin, 2023]). For the evaluation of graph-
based SSL methods, we follow [Lee and Shin, 2023] by ap-
plying clique expansion to hypergraphs, thereby converting
them into simple graphs.
Evaluation protocol. In this work, we focus on two com-
monly used benchmark hypergraph learning tasks: node clas-
sification and node clustering [Zhou et al., 2006; Lee and
Shin, 2023]. For the node classification task, we follow the
linear evaluation scheme utilized in previous work [Wei et al.,
2022; Lee and Shin, 2023]. Specifically, we first train the hy-
pergraph encoder in a self-supervised manner as described in
Section 3. Afterward, with the trained model, we generate
node embeddings and randomly split them into training, val-
idation, and test samples using splitting percentages of 10%,

Name Type |V| |E| F Classes

Cora [Wei et al., 2022] citation 2708 1579 1433 7
Citeseer [Wei et al., 2022] citation 3312 1079 3703 6
Pubmed [Wei et al., 2022] citation 19717 7963 500 3

Cora-CA [Yadati et al., 2019] co-author 2708 1072 1433 7
NTU2012 [Yang et al., 2022] graphics 2012 2012 100 67

ModelNet40 [Yang et al., 2022] graphics 1231112311 100 40
Zoo [Hein et al., 2013] animal 101 43 16 7

Table 1: Statistics of datasets

10%, and 80%, respectively. Finally, we employ the obtained
embeddings from the training set to train a logistic regression
classifier and evaluate its performance on test node embed-
dings. For fair evaluation, we report the average test accuracy
along with its corresponding standard deviation based on 20
random initializations for each dataset.

For the node clustering task [Lee and Shin, 2023], we apply
the k-means clustering algorithm to the output node represen-
tations and get the predicted results. As in [Zhao et al., 2021],
the normalized mutual information (NMI), and adjusted rand
index (ARI) are used to measure the performance of cluster-
ing. We randomly perform k-means on generated node em-
beddings 5 times and report the averaged results.

Implementation details. For all baselines, we report their
performance based on the official implementations and de-
fault hyper-parameters from original papers. For SE-HSSL,
we set the number of encoder layers to 1 for all datasets. We
set the group-level coefficient λ1 = 1 and regularization co-
efficient λ3 = 0.05. The sampling number d in each mem-
bership set is fixed to 10. The membership-level coefficient
λ2 is tuned over {0.1, 0.18, 0.20} . Besides, we tune the em-
bedding size D in {256, 512, 784, 1024}, the hyperedge hop
K in {1, 2, 3, 4}, the temperature τ in {0.4, 0.5, 0.6}, and
threshold α in {0.62, 0.65}. We have released our code in
https://github.com/Coco-Hut/SE-HSSL.

4.2 Node Classification Evaluation
We first employ the node classification task to evaluate the
effectiveness of SE-HSSL. The performance of all compared
methods is summarized in Table 2. The first 4 lines present
the results of supervised HGNNs. It can be observed that
the AllSet network demonstrates superior performance com-
pared to other methods. This is because its learnable mul-
tiset functions allow for higher expressive power. However,
we notice that these methods perform poorly compared to the
HSSL models. This is because, when labels are limited, su-
pervised models are prone to overfitting and fail to generalize
well to unseen data. For SSL frameworks, they can capture
the underlying semantics of data without labels. Lines 5-9
show the results of several popular graph SSL methods. Al-
though they achieve superior overall performance compared
to supervised methods, their accuracy scores are considerably
lower than those of HSSL methods. This is because, during
the expansion of a hypergraph to a simple graph, a signifi-
cant amount of high-order information is lost. The above ob-
servations suggest that it is necessary to devise specific SSL
models for hypergraph learning. The last 3 lines compare
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Method Cora Citeseer Pubmed Cora-CA NTU2012 Zoo ModelNet40 Avg.Rank

HGNN 73.36±3.40 64.66±2.95 79.22±1.59 73.26±2.86 70.53±7.68 77.56±11.34 91.14±0.35 9.3
HyperGCN 74.32±2.39 65.28±2.85 77.90±1.39 72.17±1.92 71.68±2.40 78.37±10.90 90.81±0.30 8.7

UniGIN 71.81±2.36 63.58±3.07 77.71±3.39 71.20±2.50 68.83±3.60 74.51±10.87 90.65±0.71 11.0
AllSet 77.12±0.61 67.88±1.36 81.55±0.29 76.89±1.63 73.70±0.50 78.19±10.39 95.92±0.24 5.4

DGI 76.54±1.48 66.78±1.56 77.68±2.24 74.56±1.44 70.46±2.45 63.11±13.14 91.48±0.57 9.7
GRACE 76.90±2.25 66.45±2.57 80.64±0.46 75.02±2.06 69.77±2.38 62.16±15.45 89.96±0.39 9.7
BGRL 78.01±1.53 67.11±1.78 81.38±0.61 77.97±2.84 71.49±1.78 65.50±12.36 92.28±2.52 6.9

CCA-SSG 79.29±1.51 67.48±1.77 82.14±0.64 78.45±1.16 72.81±2.43 78.35±10.85 93.91±0.18 4.3
COSTA 77.49±1.83 68.74±1.61 81.89±0.56 78.03±2.07 72.14±2.18 69.69±9.46 91.64±2.18 5.7

HyperGCL 78.86±1.09 69.49±1.62 83.95±0.40 77.90±1.15 75.44±1.15 67.74±10.34 96.42±0.31 4.1
TriCL 81.61±1.24 72.05±1.14 84.24±0.63 82.17±0.92 75.21±2.46 80.09±11.14 97.05±0.13 2.0

SE-HSSL 82.47±1.14 72.74±0.98 84.38±0.71 82.59±0.93 75.19±2.36 80.68±11.13 97.17±0.13 1.3

Table 2: Evaluation results for node classification: mean accuracy (%) ± standard deviation. For each dataset, the top and runner-up perfor-
mances are indicated by boldface and underlined formatting, respectively.

the results of SE-HSSL with the latest HCL models. The
proposed SE-HSSL achieves the best performance on most
datasets. For example, we achieve mean accuracy scores of
82.47% and 72.74% on the Cora and Citeseer datasets, re-
spectively. These results show a relative improvement of
0.86% and 0.69% over the current SOAT method TriCL. It
is noteworthy that SE-HSSL outperforms TriCL and Hyper-
GCL even without the utilization of node-wise and group-
wise negative samples. Furthermore, it only requires a small
number of membership pairs. These highlight the effective-
ness of our tri-directional sampling-efficient signals.

4.3 Node Clustering Evaluation
In the subsection, we conduct the node clustering task on 7
datasets. We compare SE-HSSL with 2 HCL methods and
3 strong graph SSL models. Table 3 shows that SE-HSSL
achieves the best clustering results on 6 out of 7 datasets and
obtains 1st place in terms of the average rank. Moreover, we
find it achieves an average improvement of 1.80% in NMI and
2.78% in ARI compared to TriCL across all datasets. This
is because our sampling-efficient signals effectively reduce
training bias and avoid degenerated solutions, making learned
embeddings more informative and discriminative.

4.4 Ablation Study
In this subsection, we evaluate the effectiveness of each de-
signed SSL objective. The results are summarized in Table 4.
We find that the performance degrades when any of the ob-
jectives is dropped, which indicates the effectiveness of each
signal. We also observe that SE-HSSL-w/o N achieves lower
accuracy compared to the other two variants on most datasets.
This is because we focus on the node-level downstream task.
Notably, the removal of hierarchical membership loss brings
about even larger performance degradation than SE-HSSL-
w/o N on Citeseer and Zoo datasets, which shows that this
signal is essential in boosting model performance.

4.5 Parameter Sensitivity Analysis
We perform sensitivity analysis on two critical parameters to
further validate the robustness of SE-HSSL. We report mean
accuracy w.r.t. the node classification task in Figure 3.
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Figure 3: Parameter sensitivity test.

Embedding size D. Figure 3(a) illustrates that as we vary
the embedding size from 128 to 512, the model performance
improves overall, suggesting that our model benefits from a
larger representation capacity. However, we notice a decline
in performance as the embedding size further increases on
most datasets. This is because the embedding space becomes
sparse when D is too large. Consequently, there is limited
meaningful information available in each dimension of the
embedding, with many dimensions being irrelevant or redun-
dant. This makes it challenging for the downstream classifier
to extract meaningful features from embeddings.

Hyperedge hop K. In the hierarchical membership con-
trast, we sample neighborhood hyperedges ranging from 1
to K hops for each node. As depicted in Figure 3(b), we ob-
serve that the model can achieve near-optimal performance
when K is set to 1. Increasing the neighborhood range only
leads to marginal performance gains on most datasets. This
suggests that our model exhibits robustness and is not highly
sensitive to the number of hops when sampling hyperedges.
We attribute this to our multi-positive membership loss which
does not enforce a higher similarity for all positive pairs and
can effectively disregard the noisy positives.

4.6 Efficiency Evaluation
We measure the training time to validate the efficiency of
the proposed SE-HSSL. We mainly compare it with TriCL,

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4403



Method Cora Citeseer Pubmed Cora-CA NTU2012 Zoo ModelNet40 Avg.RankNMI ↑ ARI ↑ NMI ↑ ARI ↑ NMI ↑ ARI ↑ NMI ↑ ARI ↑ NMI ↑ ARI ↑ NMI ↑ ARI ↑ NMI ↑ ARI ↑
BGRL 40.81 22.54 31.69 24.87 15.98 16.80 32.48 21.72 67.76 33.52 70.55 58.65 73.63 45.36 5.9

CCA-SSG 49.08 40.57 38.45 36.02 17.22 17.24 38.13 26.18 73.72 42.26 79.59 74.70 79.08 56.44 3.9
COSTA 45.58 36.08 34.83 28.18 20.41 15.92 36.09 22.90 71.77 40.32 76.25 61.95 75.23 46.33 4.9

HyperGCL 40.24 32.35 39.06 38.88 28.72 24.73 46.15 39.33 84.27 70.88 77.40 79.36 93.71 89.91 2.9
TriCL 56.95 49.77 42.63 42.44 30.80 29.06 44.39 37.21 83.75 68.33 90.87 88.62 93.80 87.07 2.2

SE-HSSL 59.41 53.37 43.66 43.01 32.79 29.73 50.56 44.47 83.31 68.26 91.71 91.48 94.36 91.63 1.3

Table 3: Evaluation results for node clustering: NMI and ARI

Method Cora Citeseer Pubmed Cora-CA NTU2012 Zoo ModelNet40 Avg.Rank

SE-HSSL-w/o N 80.21±1.51 72.16±1.14 83.09±0.71 80.04±2.34 74.22±2.68 80.31±10.94 97.13±0.10 3.4
SE-HSSL-w/o G 81.23±0.85 72.28±0.95 83.84±0.74 82.27±0.93 75.08±2.21 79.81±10.88 97.12±0.11 2.7

SE-HSSL-w/o HM 81.71±1.41 71.67±1.21 83.90±0.76 82.15±1.02 74.81±2.25 79.51±10.89 97.15±0.14 2.9
SE-HSSL 82.47±1.14 72.74±0.98 84.38±0.71 82.59±0.93 75.19±2.36 80.68±11.13 97.17±0.13 1.0

Table 4: Ablation study on different SSL signals. The variants SE-HSSL-w/o N, SE-HSSL-w/o G, and SE-HSSL-w/o HM represent models
that have removed node-level CCA loss, group-level CCA loss, and hierarchical membership loss, respectively.
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Figure 4: The training time comparison between SE-HSSL and
TriCL. log(·) represents the natural logarithm.

which is the current SOTA approach with tri-directional con-
trast objectives. The results are shown in Figure 4. For better
visibility, we take the logarithm of training time when plot-
ting. It can be found that SE-HSSL is consistently faster than
TriCL across all datasets. What stands out is that our model is
at least 2.5 times faster than TriCL on large datasets, such as
PubMed and ModelNet40. This efficiency improvement can
be attributed to three key factors: 1) Sampling-free CCA ob-
jectives in node-level and group-level learning reduce com-
putation burden during training. 2) Hierarchical contrast in
membership-level learning only requires a small number of
node-hyperedge pairs in each neighborhood range, thereby
considerably enhancing the training speed. 3) Our method is
projection head-free, further reducing the computation cost.

5 Related Work
5.1 Contrastive Learning on Graph
Contrastive learning (CL), which was originally utilized in
computer vision [He et al., 2020], has recently been ap-
plied to the graph domain. The basic idea of graph con-
trastive learning (GCL) is to maximize agreement between
instances (e.g., node, subgraph, and graph) of different views
augmented from the original graph. DGI [Veličković et al.,
2018] maximizes the mutual information between the local
and global representations of nodes to learn their embeddings.
GraphCL [You et al., 2020] and GCA [Zhu et al., 2021] em-

ploy multiple augmentation strategies and treat nodes/graphs
with distinct IDs from the anchor node/graph as negative sam-
ples. COSTA [Zhang et al., 2022] and SFA [Zhang et al.,
2023] are two feature-level augmentation strategies that aim
to construct more effective contrast views than random aug-
mentations. However, the above methods can not effectively
learn high-order information in hypergraphs, so it is neces-
sary to design specific HSSL approaches.

5.2 Contrastive Learning on Hypergraph
Hypergraph contrastive learning has received little attention
and remains largely unexplored. While some investiga-
tions in recommender systems have applied contrastive strat-
egy in hypergraphs [Yang et al., 2021; Xia et al., 2022a;
Liang et al., 2023], they are not designed for general HCL.
HyperGCL [Wei et al., 2022] is the first general HCL frame-
work. It designs a variational auto-encoder to generate aug-
mentation views that can preserve the high-order information
in the original hypergraph. TriCL [Lee and Shin, 2023] uses
tri-directional contrastive objectives to capture group-level
and membership-level information in hypergraphs. However,
existing methods select a large number of negative samples
arbitrarily, which can be both unreliable and inefficient.

6 Conclusion
In this paper, we introduce SE-HSSL, a sampling-efficient
hypergraph self-supervised learning framework, to address
the efficiency bottleneck and training bias in instance-level
contrastive methods. To achieve this, we propose sampling-
free CCA-based objectives as self-supervised signals for
learning at both the node and group levels. This approach
allows us to effectively avoid degenerate solutions in the
learned embeddings and reduce sampling bias. Additionally,
we develop a novel hierarchical membership contrast objec-
tive, which only requires a small number of node-hyperedge
pairs to achieve effective membership-level self-supervised
training. Through extensive experiments conducted on 7 real-
world datasets, we empirically demonstrate the superior ef-
fectiveness and efficiency of SE-HSSL.
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