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Abstract
Active learning is known to be a well-motivated al-
gorithm that aims to maximize model performance
with relatively small data, but it introduces sam-
pling bias due to active selection. To adjust the
bias, current literature utilizes corrective weights
in a supervised learning approach. However, those
methods consider only a small amount of actively
sampled data and thus estimation efficiency can be
improved using unsampled data together. In this
paper, we develop an actively improved augmented
estimation equation (AI-AEE) based on corrective
weights as well as imputation models that allow us
to leverage unlabeled data. The asymptotic distri-
bution of the proposed estimator as the solution to
the AI-AEE is derived, and an optimal sampling
scheme to minimize the asymptotic mean squared
error of the estimator is proposed. We then pro-
pose a general practical algorithm for training pre-
diction models in the active and semi-supervised
learning framework. The superiority of our method
is demonstrated on synthetic and real data exam-
ples.

1 Introduction
With the advancement of technology, big data has improved
the performance of modern machine learning and statisti-
cal models. However, dealing with a huge amount of unla-
beled data is a key challenge in many fields, such as elec-
tronic health records [Gronsbell et al., 2022], speech recog-
nition [Zhu, 2005], and text extraction [Settles et al., 2008].
Since labeling massive data is time-consuming, expensive,
and labor-intensive, it is important to acquire a subset of re-
liable data points from domain experts. Active learning (AL)
is an algorithm aiming for maximizing model performance
with sampled data. By selecting potentially more informa-
tive data points, models can be trained more efficiently in AL
setting. AL has a close connection with sampling designs in
that subsamples are drawn from a pool dataset (it is known
as subsampling). In many cases, sampling designs neces-
sitate prior information that we aim to estimate. Regarding
∗Corresponding Author

subsampling, we can implement the sampling designs using
knowledge obtained from actively labeled data within the AL
setting.

Although AL could be a promising sample-efficient learn-
ing algorithm, a major limitation is the sampling bias caused
by active selection where data points are selected from a pool
dataset in sequence. Since the actively sampled data points
are not drawn from a common population distribution, they
may lead to biased training models for the target popula-
tion unless the sampling bias is appropriately adjusted. In-
verse probability weighting [Horvitz and Thompson, 1952;
Ganti and Gray, 2012] is a standard method for removing
sampling bias under importance sampling, but this cannot
be applied directly to actively sampled data. To adjust the
bias introduced by active selection, Farquhar et al.[2021] cor-
rected sampling weights in a manner where modified weights
are assigned to the data points selected at earlier steps. By
applying corrective weighting, they proposed an unbiased es-
timator for a general loss function. However, they utilized
only a small amount of actively sampled data for model train-
ing in the manner of supervised learning and therefore, there
is room for improvement in estimation efficiency by leverag-
ing unsampled data.

Relevant work on semi-supervised learning (SSL) has
demonstrated that SSL algorithms yields better performance
than supervised learning in many cases by constructing impu-
tation models using labeled data, which are then employed to
impute outcomes for unlabeled data.[Krijthe and Loog, 2017;
Chakrabortty and Cai, 2018]. Subsequently, prediction mod-
els are built using the labeled data and the imputed data.
Motivated by these results, we focus on leveraging unla-
beled data under the AL setting in this work. We propose
an actively improved augmented estimating equation (AI-
AEE) based on corrective weights and imputation models.
The main idea behind AI-AEE is to automatically annotate
unsampled data by using an imputation model constructed
from actively sampled data. Moreover, we propose sampling
schemes to actively select informative data points. Several
recent works have investigated optimal sampling probabil-
ity under binary classifiers aiming to minimize the asymp-
totic variance of the resultant estimator [Wang et al., 2018;
Zhang et al., 2021]. Adopting this idea, we derive the asymp-
totic distribution of our proposed estimator and an optimal
sampling scheme by minimizing the asymptotic mean square
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error of the estimator. The major contributions are as follows.

1. We propose the AI-AEE constructed from actively la-
beled data and unlabeled data. To leverage the unlabeled
data, an actively improved imputation model is consid-
ered. The AI-AEE is an unbiased estimator for true tar-
get population risk, and is robust even when the imputa-
tion model deviates from for the true model.

2. We derive asymptotic distributions of the proposed esti-
mator obtained from AI-AEE and an existing estimator
and compare the efficiency of the estimators.

3. We propose an optimal sampling scheme to minimize
the asymptotic mean squared error of the proposed esti-
mator.

4. Based on the proposed estimator and sampling scheme,
we propose a practical batch-mode algorithm for train-
ing prediction models in the active and semi-supervised
learning setting. By applying the algorithm to synthetic
and real data examples, we demonstrate the superiority
of our methods compared to others.

The paper is organized as follows. Section 2 describes the
problem setup in this work and examines theoretical results
of the estimator based on the existing method. Section 3 pro-
poses the estimator as the solution to AI-AEE and provides its
theoretical properties and insights. Also, we propose an opti-
mal sampling scheme for the proposed estimator and develop
the practical algorithm in the active semi-supervised learning
setting. In Section 4, we investigate previous works relevant
to AL, SSL, and optimal subsampling schemes. Section 5
presents results of numerical studies. Section 6 concludes the
paper and discusses future works.

2 Related Works
2.1 Unbiased Active Learning and Testing
In machine learning fields, AL has been a powerful tool for
developing sample-efficient algorithms in a manner that in-
formative data points are labeled throughout multiple steps
using the information from earlier steps. However, many re-
lated works with active learning algorithms did not address
bias due to active selection [Gal et al., 2017; Yoo and Kweon,
2019]. To overcome this problem, unbiased AL algorithms
were proposed for training models under sampling with re-
placement [Ganti and Gray, 2012] and active selection [Far-
quhar et al., 2021]. A few recent works developed unbiased
model evaluation methods in the AL setting (it is also known
as active testing). Yilmaz et al. proposed an unbiased es-
timator of test metrics under Poisson sampling. Kossen et
al.[2021] developed an estimator for a model test risk and
Kossen et al.[2022] improved the efficiency of model evalua-
tion using a surrogate model under active selection.

2.2 Semi-Supervised Learning (SSL)
SSL can lead to efficiency gains in training models by using
labeled and unlabeled data together. Recent relevant works
have investigated the classification model training with high
dimensional covariates [Chakrabortty et al., 2019], data shift
[Cai et al., 2022], and surrogate variables [Hou et al., 2021],

as well as model validation with classification accuracy met-
rics [Gronsbell and Cai, 2018] and data shift [Wang et al.,
2022b; Zhou et al., 2022] under the SSL setting. Those works
considered imputation models to replace unlabeled data with
imputed values. However, they have studied under the simple
sampling setting where the labeled data were derived from
a random sampling. Gronsbell et al.[2022] selected a small
subset of data under the stratified sampling and improved esti-
mation efficiency of Brier score and overall misclassification
rate leveraging unlabelled data together.

2.3 Optimal Subsampling
Subsampling strategy is important to improve estimation ef-
ficiency by labeling informative subsets of the pool data. In
recent works faced with massive data, optimal subsampling
strategies have been developed for machine learning and sta-
tistical models, such as classification models [Wang et al.,
2018; Yao and Wang, 2019; Wang et al., 2021], generalized
linear models [Ai et al., 2018; Lee et al., 2021], and mixture
models [Lee et al., 2022]. Those papers and our work have
different goals. Assuming fully labeled data are available,
the above-mentioned work selects subsample with the goal
of mitigating computational burden. Also, the proposed sub-
sampling probabilities in those papers depend on outcomes
which cannot be used in our paper. Imberg et al.[2020] and
Zhang et al.[2021] constructed optimal subsampling designs
for generalized linear models under sampling with replace-
ment when outcomes are not available. However, since we
considered sampling design under the active learning setting
and an extension of generalized linear models, we cannot di-
rectly apply their sampling design to our setting. Farquhar
et al.[2021] introduced an optimal subsampling distribution
which is proportional to the expectation of a one dimensional
loss function. Imberg et al.[2022] developed optimal active
sampling schemes for finite population characteristics based
on machine learning tools. However, since both designs were
derived based on models different from our target model, we
cannot directly apply them to our specific setting.

3 Problem Setup
Let y be the binary outcome variable and x be the p di-
mensional vector of covariates including the intercept term.
We consider a possibly misspecified working model P (y =
1|x) = g(xTβ) where g(·) is a known smooth function of β
and β is the unknown parameter. That is, the working model
might deviate from the conditional density of y given x due
to the invalid model assumptions.

Let βt be the unknown parameter satisfying the following
estimating equation,

E[x{y − g(xTβ)}] = 0. (1)

The equation is commonly used to obtain quasi-likelihood es-
timators for generalized linear models. Although this model
may not be correctly specified for the true model, the working
model is commonly used for the purpose of interpretability
to examine the association between the outcome and covari-
ates in the statistical field. Under the AL setting, we start
with a dataset including only fully labeled covariates. Let
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DN = {xi}Ni=1 be the dataset of size N with labeled covari-
ates where xi’s are independent and identically distributed. If
data for y is fully observed, we can obtain β̂f for βt as the
solution to the full data based estimating equation,

N∑
i=1

xi{yi − g(xT
i β)} = 0. (2)

However, since we cannot acquire all labeled outcomes in
practice, we sample a subset of data for labeling. Let Dn =
{(y1,x1), ..., (yn,xn)} denote as labeled outcomes, covari-
ates selected from DN . For 1 ≤ s ≤ n, let Ds be the selected
data from the first to the sth sampling step from DN , and
D−s be the remaining data excepting Ds. Let Rs = {i : xi /∈
D−s, 1 ≤ i ≤ N} and R−s = {i : xi ∈ D−s, 1 ≤ i ≤ N}
be the index sets indicating the sampled data and the unsam-
pled data from the first to the sth sampling step, respectively.
Let π(xk, R(s−1)) be the sampling probability used for the
sth sampling step for k ∈ R−(s−1). If we select data points
randomly, we can consider the sampled data based estimating
equation to obtain an estimator,

n∑
i=1

xi{yi − g(xT
i β)} = 0. (3)

Since the non-uniform sampling probability is considered in
the AL setting, the application of the estimating equation
in (3) with the actively sampled data can lead to a biased es-
timator. If the model g(xTβ) is correctly specified, then we
can obtain (asymptotically) an unbiased estimator from (3)
for βt since the sampling probability depends on only covari-
ates [Wang and Kim, 2022; Wang et al., 2022a]. However,
when the prediction models are misspecified, the unbiased
estimator from (3) is not guaranteed. In this work, we wish
to unbiasedly estimate β̂f with the actively selected subdata
accommodating the model misspecification.

4 Estimation
4.1 Corrective Weighting Estimator
Under the AL framework, Farquhar et al.[2021] adjusted the
sampling bias based on corrective weights. Adopting the ap-
proach, we can obtain the corrective weighting (CW) estima-
tor β̃

cw
from the following estimating equation,

Qcw(β) ≡
n∑

i=1

wixi{yi − g(xT
i β)} = 0, (4)

where wi = 1 + [{(N − i + 1)π(xi, R(i−1))}−1 − 1](N −
n)/(N − i). The corrective weight wi is readjusted at each
step in an iterative manner to remove the bias. When the sam-
ple size n increases, n→ N , the corrective weights goes to 1
and Qcw(β) is closer to the full data based estimating equa-
tion in (2). In addition, if the sampling probability is uniform,
wi’s are equal to one and Qcw(β) is the same as the estimat-
ing equation in (3). The following result shows that Qcw(β)
is unbiased.

Proposition 1. The estimating equation QCW (β) is an un-
biased estimator of E[x{y − g(xTβ)}].

To further investigate the asymptotic distribution of β̃
cw

,
we need the following assumptions.

Assumption 1. The matrix
∑N

i=1 ġ(xT
i β̂f )xix

T
i /N goes

to a positive-definite matrix in probability where ġ(η) =
∂g(η)/∂η.
Assumption 2. max

k∈R(s−1)

‖xk‖4/{Nπ(xk, R(s−1))} = Op(1)

for 1 ≤ s ≤ n.
Assumption 3. Assume that ġ(xT

i β) is Lipschitz continuous
in β. There exists ϕ(xi) with E(ϕ(xi)

2) < ∞ such that
|ġ(xT

i β1)− ġ(xT
i β2)| ≤ ϕ(xi)‖β1 − β2‖ for every β1 and

β2.
Assumption 1 is a mild condition to ensure that the target

function has an unique maximum solution. However, this as-
sumption may not hold in the high-dimensional setting where
the number of covariates is much larger than the total data
size and subdata size. Assumption 2 is a condition on sam-
pling probabilities and the distribution of covariates. It im-
poses moment constraints. For example, Assumption 2 holds
if E(x4) < ∞ for equal sampling probabilities. Assump-
tion 3 restrict the gradient of the function g(·) to ensure that
we can use a martingale central limit theorem to establish the
asymptotic normality of the estimator.
Theorem 1. Under Assumptions (1)- (3), if N,n→∞

√
nV−1/2cw (β̃

cw
− β̂f ) −→ N(0, I), (5)

in distribution, where Vcw = Σ−1N ΛcwΣ−1N , Λcw = Λcw
1 −

Λcw
2 ,

ΣN =
1

N

N∑
i=1

ġ(xT
i β̂f )xix

T
i ,

Λcw
1 =

1

nN2

n∑
i=1

ci
∑

k∈R−(i−1)

xkxT
k {yk − g(xT

k β̂f )}2

π(xk, R(i−1))
,

Λcw
2 =

1

nN2

n∑
i=1

ci

 ∑
k∈R−(i−1)

xk{yk − g(xT
k β̂f )}

⊗ .
and A⊗ = AAT for any vector A.

In Theorem 1, the matrix Λcw can be viewed as the vari-
ation due to subsampling and Λcw

1 depends on the sampling
probabilities.
Remark 1. We note that under some regularity conditions,
β̂f −βt = Op(1/

√
N) [McCullagh, 1983]. Then, if n/N →

0, we have
√
n(β̃

cw
− β̂f ) converges in distribution to a nor-

mal distribution with mean 0 and variance-covariance matrix
Vcw.

4.2 Proposed Estimator
Although the estimating equation in (4) yields the unbiased
estimator, it ignores the unsampled data. In the SSL litera-
ture, improved estimation efficiency was gained by augment-
ing imputed outcomes [Robins et al., 1994; Carpenter et al.,
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2006; Cao et al., 2009]. Inspired by these results, we lever-
age the unlabeled data through an imputation approach. Let
m(x) be the imputation model used for labeling unsampled
outcomes. Let {δ1:ni }Ni=1 be the indicator function where
δ1:ni = 1 if ith data point is selected in the first through the
nth sampling and δ1:ni = 0 otherwise. We consider the aug-
mented estimating equation (AEE),

Qaee(β) ≡
N∑
i=1

δ1:ni w(xi)xi{yi − g(xT
i β)}

+ {1/N − w(xi)δ
1:n
i }x{m(xi)− g(xT

i β)} = 0.

We show that the Qaee(β) is unbiased.
Proposition 2. The AEE, Qaee(β) is an unbiased estimator
of E[x{y − g(xTβ)}].

From Proposition 2, we observe that the proposed AEE is
unbiased although the imputation modelm(x) is misspecified
for the true model. We can consider the imputation models
using all covariates without loosing information of covariates
such as addictive models, nonparametric models, random for-
est, and gradient boosting to deal with more complex struc-
tures between outcome and covariates. With m̂n(·) the im-
putation model developed by the actively sampled data Dn,
we propose the actively improved (AI) estimator β̃

ai
as the

solution to actively improved AEE (AI-AEE),

Qai(β) ≡
N∑
i=1

δ1:ni w(xi)xi{yi − g(xT
i β)}

+ {1/N − w(xi)δ
1:n
i }xi{m̂n(xi)− g(xT

i β)} = 0.

We present an additional assumption to investigate the
asymptotic distribution of β̃

ai
.

Assumption 4. Assume that sup
x∈X
|m̂n(x)−m(x)| = op(1).

Assumption 4 imposes the condition on the imputation
modelm(x) to ensure that the difference between m̂n(x) and
the limiting of m(x) is small when the subdata size is large
enough.
Theorem 2. Under Assumptions 1, 2 and 4, if N,n→∞

√
nV
−1/2
ai (β̃

ai
− β̂f ) −→ N(0, I), (6)

in distribution, where Vai = Σ−1N ΛaiΣ−1N , Λai = Λai
1 −Λai

2 ,

Λai
1 =

n∑
i=1

c2i
nN2

∑
k∈R−(i−1)

xkx
T
k {yk −m(xk)}2

π(xk, R(i−1))
,

Λai
2 =

1

nN2

n∑
i=1

c2i

 ∑
k∈R−(i−1)

xk{yk −m(xk)}

⊗ .
As discussed in the previous section, the matrix Λai can be

viewed as the variation due to subsampling and Λai
1 depends

on the sampling probabilities. Also, if n/N → 0, we have
√
n(β̃

ai
− βt) converges in distribution to a normal distribu-

tion with mean 0 and variance-covariance matrix Vai under
some regularity conditions. From the asymptotic results, we
compare the proposed estimator β̃

ai
with β̃

cw
.

Theorem 3. Under Assumption 2, ifm(x) = E(y|x), Vcw+
op(1) ≥ Vai, where B1 ≥ B2 if and only if B1 − B2 is
positive semi-definite for two positive semi-definite matrices
B1 and B2.

From Theorem 3, when the imputation model is correctly
specified, the estimation efficiency of β̃

ai
is asymptotically

higher, compared to β̃
cw

.

5 Subsampling Probability and Algorithm

5.1 Self-Learning Based Subsampling Probability

A key challenge in the AL setting is to select informative
data points. Theorem 2 shows that the asymptotic variance of
the proposed estimator depends on the sampling probability.
Thus, we aim to minimize Vai for achieving higher estima-
tion efficiency with less data. To the this end, we consider
the A-optimality criterion minimizing the trace of asymptotic
variance matrix [Kiefer, 1959; Wang et al., 2018].

Theorem 4. The optimal subsampling probabilities at sth
sampling step given R(s−1) that minimize tr(Vai) are

πos
k,s =

|yk −m(xk)|‖Σ−1N xk‖∑
j∈R−(s−1)

|yj −m(xj)|‖Σ−1N xj‖
, (7)

for k ∈ R−(s−1). In (4), we give preferences to data points
with larger quantities of |yi −m(xi)|. The closer data points
are to classification boundary, the more they are likely to be
sampled. However, we cannot directly calculate the sampling
probability since it depends on unobserved outcome yi. Thus,
we propose surrogate sampling probabilities. By replacing yi
by g(xT

i β), we can consider the following self-learning based
sampling (SBS) probabilities at the sth sampling step given
R(s−1),

πsbs
k,s =

|g(xT
kβ)−m(xk)|‖Σ−1N xk‖∑

j∈R−(s−1)

|g(xT
j β)−m(xj)|‖Σ−1N xj‖

, (8)

for k ∈ R−(s−1). The SBS probability is proportional to the
quantity |g(xT

kβ) − m(xk)| = |{yk − g(xT
kβ)} − {yk −

m(xk)}|. Either the data points are close to the boundary
from the model g(·) but are not close to the boundary from the
model m(·) or visa versa, they are selected with high proba-
bility.
Remark 2. We note that tr(Vai) ≤ tr(Vcw) + tr(Vu) where
Vu = Σ−1N ΛuΣ−1N and

Λu =
1

nN2

n∑
i=1

∑
k∈R−(i−1)

xkxT
k {g(xT

kβ)−m(xi)}2

π(xk|R(i−1),DN )
.

The SBS probability can be obtained by minimizing tr(Vu).
Thus, we can view that SBS probability aims for minimizing
the upper bound of the asymptotic variance Vai.
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Algorithm 1 Unbiased Active Semi-supervised Learning Al-
gorithm

• Select a pilot subsample of size n0 randomly from DN for
the initial step. Using the subsample, build the imputation
model m̂0(·), and calculate β̃

ai

0 from the equation (3) and
Σ

β̃
ai
0 ,N

.

• For b = 1, 2, ..., repeat until cost of labelling is regulated
1. Calculate the sampling probability based on

β̃
ai

b−1,Σβ̃
AI
b−1,N

, and m̂b−1(·),

π̃sbs
k,b ∝ |g(xT

k β̃
ai

b−1)− m̂b−1(xk)|‖Σ−1
β̂

AI
b−1,N

xk‖,

for k ∈ Rbat
−(b−1). According to π̃sbs

k,b , select data points
without replacement and label the outcomes, Bb =
{(ybi,xbi) : i = 1, ..., nb}

2. With the combined sub-data B1:b of size Nb, update the
imputation model m̂b(·)

3. Obtain the estimate β̃
ai

b from the AI-AEE Qai(β) with
m̂b(·)

5.2 Practical Algorithm
To specify the proposed sampling probability in (8) under the
AL framework, quantities to replace β,m(·) and ΣN are re-
quired in practice. To deal with this, we propose a general
practical algorithm based on batch-mode active selection. For
b = 1, 2, ..., we denote Bb = {(ybi,xbi) : i = 1, ..., nb} as a
sub-data selected from BN/Nb−1

at bth batch where BN/Nb−1

is the remaining data with the covariates excepting the data
selected at 1,..., b − 1 batch. Denote B1:b = {B1, ...,Bb}
as a cumulative sub-data collected from 1st to bth batch.
Rbat
−b = {i : xi ∈ BN/Nb

, 1 ≤ i ≤ N} be the index sets.
Nb =

∑b
i=1 ni is the cumulative sub-data size.

The basic idea of the algorithm is that we construct
the quantities using the sampled data acquired at previous
steps and update the sampling probability to select addi-
tional data points. Let m̂b−1(·) and β̃

ai

b−1 be the impu-
tation model and the coefficient estimator constructed by
B1:(b−1). To select bth sub-data, we replace β,m(·) and

ΣN by β̃
ai

b−1, m̂b−1(·) and Σ
β̃

ai
b−1,N

in (8) where Σ
β̃

ai
b−1,N

=∑N
i=1 ġ(xT

i β̃
ai

b−1)xix
T
i /N . Then, we obtain the updated es-

timator β̃
ai

b based on the cumulative sampled data B1:b. The
summary of the algorithm is presented in Algorithm 1.

6 Numerical Studies
In this section, we conduct numerical studies to assess the
performance of the proposed estimator with synthetic data
and four real data examples. The codes used for the nu-
merical studies are available on a Github repository https:
//github.com/IJCAI-24/ActiveSemiPrediction.

0.
00

0.
10

0.
20

Batch

S
qu

ar
ed

 B
ia

s

1 2 3 4 5 6 7 8 9 10

CW−SBS
AI−SBS

1.
0

2.
0

3.
0

Batch

M
S

E

1 2 3 4 5 6 7 8 9 10

CW−SBS
AI−SBS

(1) Case 1

0.
00

0.
10

0.
20

Batch

S
qu

ar
ed

 B
ia

s

1 2 3 4 5 6 7 8 9 10

CW−SBS
AI−SBS

1.
0

2.
0

3.
0

Batch

M
S

E

1 2 3 4 5 6 7 8 9 10

CW−SBS
AI−SBS

(2) Case 2

0.
0

0.
4

0.
8

Batch
S

qu
ar

ed
 B

ia
s

1 2 3 4 5 6 7 8 9 10

CW−SBS
AI−SBS

1.
0

2.
0

3.
0

Batch

M
S

E

1 2 3 4 5 6 7 8 9 10

CW−SBS
AI−SBS

(3) Case 3

Figure 1: The sum of squared bias and the square root of MSEs
over 10 batches for three different cases under the proposed self-
learning based sampling probability. Each batch size is 100 and a
pilot subsample of size is 150 for the initial step. CW and AI mean
the corrective weighting esti- mator and the actively improved esti-
mator, respectively.

6.1 Synthetic Data
We generate synthetic data to evaluate the performance of
the proposed algorithm. We consider 7 dimensional covari-
ates xi = (x1,i, ..., x7,i). The covariates (x1,i, ..., x5,i) are
generated from a multivariate normal distribution N(0,Σ)
and x6,i and x7,i are generated from a uniform distribution
Unif(0, 0.5) where Σjk = 2 ∗ 0.4I(j 6=k) for j, k = 1, . . . , 5
and I() is the indicator function. With β1 = ... = β7 = 0.7,
we consider three different models to generate the outcome
yi;

Case 1. yi ∼ Bern(θi) with logit(θi) = −3 + xT
i β

Case 2. yi ∼ Bern(θi) with logit(θi) =−3+xT
i β+h1(x),

where h1(x) = 0.5 ∗ sin(0.5 ∗ x1,i)− 0.5 ∗ sin(0.5 ∗ x2,i) +
0.2 ∗ sin(0.2 ∗ x7,i).

Case 3. yi ∼ Bern(θi) with logit(θi) = −5.4 + xT
i β +

h2(x), where h2(x) = 0.5 ∗ x25,i − 0.5 ∗ x27,i + exp(0.5 ∗
x1,i + 0.5 ∗ x2,i).

For all cases, about 25% of outcomes is y = 1. We gen-
erate full training data of size N = 105 and consider 10
batches. In each batch, we select the subdata of size 100. For
the initial values in the proposed algorithm, uniform samples
of size 150 are used. Natural spline models with 2 degree of
freedom is considered for the imputation model in each repe-
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Figure 2: The sum of squared bias and the square root of MSEs over
10 batches for three different cases. Each batch size is 100 and a
pilot subsample of size is 150 for the initial step. Uni, LC, Ent and
SBS mean the uniform sampling probability, the least confidence
sampling probability, the entropy sampling probability and the pro-
posed self-learning based sampling probability, respectively.

tition, and the models estimate non-linear effects for all con-
tinuous covariates. The repetition is 300 times and calculate
empirical MSEs and the sum of squared bias for coefficients

based on
∑S

s=1 ‖β̃
(s)

b −β̂f‖2/S and ‖
∑S

s=1 β̃
(s)

b /S−β̂f‖2,

respectively where S is the number of replications, β̃
(s)

b is the
estimate provided from the bth batch at the sth repetition, and
β̂f is the full data estimate.

We compare the proposed AI estimator with the CW es-
timator. In addition, we investigate the efficiency of sam-
pling schemes considering four different sampling probabil-
ities; uniform sampling probability (Uni), least confidence
(LC), entropy sampling probability (Ent), proposed self-
learning based sampling probability, π̃sbs (SBS). We used
sampling probabilities proportional to 1−g(xT

i β) for LC and
g(xT

i β) log {g(xT
i β)} for Ent.

Comparison of estimators We first compare the proposed
AI estimator with the CW estimator under the SBS scheme.
The results are shown in Figure 1. As the cumulative batch
size increases, the MSEs of all methods become smaller and
the biases are reduced. The AI method leveraging unlabeled
data outperforms the CW estimator using only labeled data
for both of the sampling schemes in all cases.

Comparison of sampling schemes As shown in Figure 2,
the SBS scheme is always preferred for the AI estimator for
all cases in terms of the MSE. When combining different esti-

mators and sampling schemes, it is clear that the AI estimator
with the SBS performs best in terms of the MSE. As we ex-
pected, the statistical bias decreases for all sampling schemes
as the cumulative labeled size increases.

Smaller subsample size We conduct additional numerical
studies using synthetic data from Case 1 , 2 and 3 with 120
pilot sample size and 80 subdata size. Figure S.1 and S.2 in
Section 7 of Supplementary Material show the results. Over-
all, the results are similar to those in Figure 1 and 2. Across
all cases, the proposed AI method produces better results for
MSE than the CW method. Moreover, the AI method under
the proposed SBS sampling scheme tends to have better per-
formance than the others in terms of MSE. In general, the
results also indicate that the larger the pilot sample size and
subdata size are, the smaller the MSE tends to be over the
batches.

Effect of imputation models To investigate the impact of
imputation models, we use a simple natural spline model con-
sidering a non-linear effect of only x4 and linear effects of
the remaining covariates (OnlyX4). We compared the sim-
ple imputation model with the natural spline models consid-
ering non-linear effects of all continuous covariates (AllXs).
Figure S.3 in Section 7 of Supplementary Material presents
the results of the bias and MSE over batches for the CW and
AI method under the SBS sampling. Regardless imputation
models, the proposed AI methods shows better MSE perfor-
mance than the CW method. Also we observe that OnlyX4
and AllXs imputation models with the AI method show sim-
ilar performance for Case 1 and 2, while allXs yields lower
MSEs than onlyX4 for Case 3.

6.2 Real Data Examples
We apply the proposed algorithm to four real datasets; 1)
Bank Marketing data, 2) SUSY data, 3) Credit Card Clients
data and 4) Purchasing Intention data. The datasets are avail-
able on the UCI Machine Learning repository:
1) https://archive.ics.uci.edu/ml/datasets/bank+marketing,
2) https://archive.ics.uci.edu/ml/datasets/SUSY,
3) https://archive.ics.uci.edu/ml/datasets/default+of+credit+
card+clients, and
4) https://archive.ics.uci.edu/ml/datasets/Online+Shoppers+
Purchasing+Intention+Dataset.

For Bank Marketing dataset, 14 covariates with client in-
formation is considered to predict whether the client will
agree to a term deposit. The data size is 41,188 and about
11.27% of the responses is y = 1. SUSY dataset includes
18 features to classify a signal process which produces super-
symmetric particles. We consider the last 200,000 examples
in the dataset. The percent of the response y = 1 is about
45.93%. We use Credit Card Clients dataset with 30,000 cus-
tomers to classify default payment (yes = 1, no = 0) using
23 predictors such as demographics, history of past payment,
amount of bill statement and previous payment. The percent
of the response y = 1 is 22.12%. Purchasing Intention dataset
has 12,330 observations with about 15.47% of the response
y = 1 (y = 1; ending with shopping, y = 0; not end with
shopping). The dataset contains 17 covariates related to users
information in e-commerce market. We build a natural spline
model with 2 or 3 degree of freedom for the imputation mod-
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Figure 3: The square root of MSEs over 10 batches for four real data examples. Uni, LC, Ent and SBS mean the uniform sampling proba-
bility, the least confidence sampling probability, the entropy sampling probability and the proposed self-learning based sampling probability,
respectively. CW and AI mean the corrective weighting estimator and the actively improved estimator, respectively.

els. For initial values and the subdata size, we consider 150
and100 for the first two examples, and 200 and 200 for the
other examples, respectively. The total number of batches is
10 and the repetition is 300 times.

Figure 3 shows the performance of the CW and AI estima-
tors with four different sampling schemes. In general, the re-
sults are similar to those in the experiments with the synthetic
data. The AI method outperforms the CW method over the
batches under the identical non-uniform sampling scheme. It
is worth noting that the performance of the AI estimator with
the SBS scheme achieves the lowest MSE for all real data
examples. As shown in Figure S.4 in Section 7 of Supple-
mentary Material, the biases tend to decrease as the labeled
data is larger.

7 Conclusion and Limitations
In the AL setting, we proposed the AI-AEE to estimate the
unknown parameters in the target prediction models using
labelled and unlabelled data based on an imputation model.
We found that even when the imputation models are mis-
specified, AI-AEE is unbiased and robust. We derived the
asymptotic results for the CW estimator and the proposed AI
estimator and showed that the AI estimator has a higher effi-
ciency gain than the CW estimator. Furthermore, by minimiz-
ing the asymptotic mean squared errors of the AI estimator,
we derived the optimal sampling probability for each sam-
pling step. However, since the sampling probability depends
on the unlabelled outcomes and the full data-based estimator,
we proposed the surrogate SBS probability that is actively up-

dated with sampled data. We demonstrated that our methods
provide better performance than other methods in the numer-
ical studies.

There are some interesting topics that need to be further
investigated. In this paper, we found that the AI estimator
is more efficient than the CW estimator when the imputation
model is correctly specified. Under misspecification of the
imputation model, however, this is not guaranteed. In a recent
paper, Deng et al. developed a ’safe’ estimator in the linear
regression problem under the SSL setting. They showed that
it is no worse than the supervised estimators even when the
imputation model is not correctly specified. Using this idea,
we can build more robust prediction models in the AL setting
even when the imputation model is misspecified. Also, it is
challenging to train prediction models on rare event data in
practice. The scarcity of rare event data can lead to poor per-
formance. Also, the low prevalence of the rare event cases
may require tedious annotation work to collect data points in
the minor class under the AL setting. Therefore, it would be
important to collect the rare events for labelling. One possible
solution is to use surrogate variables that are highly correlated
with the rare cases [Liu et al., 2022]. The other solution is to
label data points with high risk prediction based on the trained
models to enrich the rare cases [Tan and Heagerty, 2020].

8 Supplementary Material
Supplementary Material includes all proofs of propositions
and theorems in the main manuscript, additional numerical
experiments and codes used for numerical studies.
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